547 research outputs found

    Using a Boundary Object Framework to Analyze Interorganizational Collaboration

    Get PDF
    The U.S. military is facing a plethora of challenges as a result of tightening procurement budgets and the need to acquire new capabilities to operate in modern war environments. This requires integrating legacy systems with developing technologies in what is loosely defined to be a System of Systems. Most Systems of Systems require some integrator to manage and operate the system interfaces. In addition to technical integration challenges, these system integrators have the difficult undertaking of integrating various organizations. The boundary object framework proposed by this paper provides a tool for systems integrators working in System of Systems or any type of complex system to identify and categorize communication, coordination, and collaboration interfaces and address possible failures

    A rule-based method for scalable and traceable evaluation of system architectures

    Get PDF
    Despite the development of a variety of decision-aid tools for assessing the value of a conceptual design, humans continue to play a dominant role in this process. Researchers have identified two major challenges to automation, namely the subjectivity of value and the existence of multiple and conflicting customer needs. A third challenge is however arising as the amount of data (e.g., expert judgment, requirements, and engineering models) required to assess value increases. This brings two challenges. First, it becomes harder to modify existing knowledge or add new knowledge into the knowledge base. Second, it becomes harder to trace the results provided by the tool back to the design variables and model parameters. Current tools lack the scalability and traceability required to tackle these knowledge-intensive design evaluation problems. This work proposes a traceable and scalable rule-based architecture evaluation tool called VASSAR that is especially tailored to tackle knowledge-intensive problems that can be formulated as configuration design problems, which is demonstrated using the conceptual design task for a laptop. The methodology has three main steps. First, facts containing the capabilities and performance of different architectures are computed using rules containing physical and logical models. Second, capabilities are compared with requirements to assess satisfaction of each requirement. Third, requirement satisfaction is aggregated to yield a manageable number of metrics. An explanation facility keeps track of the value chain all along this process. This paper describes the methodology in detail and discusses in particular different implementations of preference functions as logical rules. A full-scale example around the design of Earth observing satellites is presented

    Enabling flexibility through strategic management of complex engineering systems

    Get PDF
    ”Flexibility is a highly desired attribute of many systems operating in changing or uncertain conditions. It is a common theme in complex systems to identify where flexibility is generated within a system and how to model the processes needed to maintain and sustain flexibility. The key research question that is addressed is: how do we create a new definition of workforce flexibility within a human-technology-artificial intelligence environment? Workforce flexibility is the management of organizational labor capacities and capabilities in operational environments using a broad and diffuse set of tools and approaches to mitigate system imbalances caused by uncertainties or changes. We establish a baseline reference for managers to use in choosing flexibility methods for specific applications and we determine the scope and effectiveness of these traditional flexibility methods. The unique contributions of this research are: a) a new definition of workforce flexibility for a human-technology work environment versus traditional definitions; b) using a system of systems (SoS) approach to create and sustain that flexibility; and c) applying a coordinating strategy for optimal workforce flexibility within the human- technology framework. This dissertation research fills the gap of how we can model flexibility using SoS engineering to show where flexibility emerges and what strategies a manager can use to manage flexibility within this technology construct”--Abstract, page iii

    Understanding and supporting large-scale requirements management

    Get PDF
    Large market-driven software companies face new challenges in requirements engineering and management that emerged due to their recent extensive growth. At the same time, the pressure generated by competitors’ and users’ expectations demands being more competitive, creative and flexible to more quickly respond to a rapidly changing market situation. In the pursuit of staying competitive in this context, new ideas on how to improve the current software engineering practice are requested to help maintaining the engineering efficiency while coping with growing size and complexity of requirements engineering processes and their products. This thesis focuses on understanding and supporting large-scale requirements management for developing software products to open markets. In particular, this thesis focuses on the following requirements management activities in the mentioned context, namely: scope management, variability management and requirements consolidation. The goals of the research effort in this thesis are to provide effective methods in supporting mentioned requirements management activities in a situation when the size of them and their complexity require large time and skills efforts. Based on empirical research, where both quantitative and qualitative approaches were utilized, this thesis reports on possible improvements for managing variability and presents visualization techniques to assist scope management for large-scale software product development contexts. Both reported ideas are empirically evaluated in case studies in a large-scale context. Additionally, the benefits of using linguistic methods for requirements consolidation are investigated in a replicated experimental study based on a relevant industry scenario

    Identification of Technology Integration Challenges at Two Global Automotive OEMs

    Get PDF
    Platform design has been firmly established in the automotive industry as a strategy to provide wider product variety while maintaining cost effective production. But this strategy can struggle to keep up with the pace and nature of emerging technologies. This paper reviews the existing approaches to modelling product platforms, and showcases the challenges at OEMs introducing new technological innovations in their platforms. A gap is identified in the methods to assess the ability of existing platforms to integrate new technologies whenever they become available

    Summary Report: Systematic IPT Integration in Lean Development Programs

    Get PDF
    This document provides a summary report of the M.I.T. Masters Thesis, "Systematic IPT Integration in Lean Development Programs" by Tyson R. Browning. These studies argue for the inclusion of program integration principles as an essential aspect of lean enterprise product development and organization.Lean Aerospace Initiativ

    Program Management for Large Scale Engineering Programs

    Get PDF
    The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the aerospace & defense sector. The main objective is to make a large number of LAI publications – around 120 – accessible to industry practitioners by grouping them along major program management activities. Our goal is to provide starting points for program managers, program management staff and system engineers to explore the knowledge accumulated by LAI and discover new thoughts and practical guidance for their everyday challenges. The whitepaper begins by introducing the challenges of programs in section 4, proceeds to define program management in section 5 and then gives an overview of existing program management frameworks in section 6. In section 7, we introduce a new program management framework that is tailored towards describing the early program management phases – up to the start of production. This framework is used in section 8 to summarize the relevant LAI research

    Large-Scale smart grids as system of systems

    Get PDF
    Smart Grids are advanced power networks that introduce intelligent management, control, and operation systems to address the new challenges generated by the growing energy demand and the appearance of renewal energies. In the literature, Smart Grids are presented as an exemplar SoS: systems composed of large heterogeneous and independent systems that leverage emergent behavior from their interaction. Smart Grids are currently scaling up the electricity service to millions of customers. These Smart Grids are known as Large-Scale Smart Grids. From the experience in several projects about Large-Scale Smart Grids, this paper defines Large-Scale Smart Grids as a SoS that integrate a set of SoS and conceptualizes the properties of this SoS. In addition, the paper defines the architectural framework for deploying the software architectures of Large-Scale Smart Grid SoS

    Whitepaper on Smart Manufacturing

    Get PDF
    • …
    corecore