
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Understanding and supporting large-scale requirements management

Wnuk, Krzysztof

2010

Link to publication

Citation for published version (APA):
Wnuk, K. (2010). Understanding and supporting large-scale requirements management. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/09838374-19e7-44dc-9a0d-daa9192e4065

Understanding and
Supporting Large-Scale

Requirements Management

Krzysztof Wnuk

Licentiate Thesis, 2010

Department of Computer Science
Lund University

Faculty of Engineering

ISSN 1652-4691
Licentiate Thesis 10, 2010
LU-CS-LIC: 2010-1

Department of Computer Science
Faculty of Engineering
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: krzysztof.wnuk@cs.lth.se

Abstract

Large market-driven software companies face new challenges in require-
ments engineering and management that emerged due to their recent ex-
tensive growth. At the same time, the pressure generated by competitors’
and users’ expectations demands being more competitive, creative and
flexible to more quickly respond to a rapidly changing market situation.
In the pursuit of staying competitive in this context, new ideas on how
to improve the current software engineering practice are requested to help
maintaining the engineering efficiency while coping with growing size and
complexity of requirements engineering processes and their products.

This thesis focuses on understanding and supporting large-scale re-
quirements management for developing software products to open mar-
kets. In particular, this thesis focuses on the following requirements man-
agement activities in the mentioned context, namely: scope management,
variability management and requirements consolidation. The goals of the
research effort in this thesis are to provide effective methods in support-
ing mentioned requirements management activities in a situation when the
size of them and their complexity require large time and skills efforts.

Based on empirical research, where both quantitative and qualitative
approaches were utilized, this thesis reports on possible improvements for
managing variability and presents visualization techniques to assist scope
management for large-scale software product development contexts. Both
reported ideas are empirically evaluated in case studies in a large-scale
context. Additionally, the benefits of using linguistic methods for require-
ments consolidation are investigated in a replicated experimental study
based on a relevant industry scenario.

i

ii

Acknowledgements

The work presented in this thesis was funded by the Swedish Governmen-
tal Agency for Innovation Systems under the grant for UPITER, Efficient
Requirements Architecture in Platform-Based Requirements Management
for Mobile Terminals.

First and foremost, I am particularly grateful to my supervisor, Professor
Björn Regnell, for his invaluable expertise and advice, inspiring and chal-
lenging discussions, and endless patience that supported me throughout
this work. I would also like to thank my assistant supervisor, Dr. Martin
Höst, for his enthusiastic guidance and excellent comments on my work.

The research presented in this thesis was conducted in close cooper-
ation between academia and industry. Therefore, I would like to thank
everyone involved at Sony Ericsson Mobile Communication AB for their
commitment, in particular Dr. Lena Karlsson, Lic. Eng. Thomas Ols-
son, Claes Schrewelius, and Dr. Even-André Karlsson. I am grateful to all
anonymous participants and their companies who have helped in making
the data collection possible for this thesis.

Recognition must also be given here to the co–authors of my papers
and others who have helped writing and reviewing them. In particular, I
would like to thank Lars Nilsson for his perfection in language reviews of
my articles and this thesis, which significantly improved their legibility.

I would like to thank my colleagues in the Software Engineering Re-
search Group for an inspiring and supporting collaboration atmosphere. I
would also like to mention all other colleagues at the Department of Com-
puter Science, thanks for providing an excellent environment to work in.

Last but not least, I would like to thank my wife Agata, the light of my
life, for her unwavering love and support. Also, to my family and friends:
thank you for constantly reminding me what is the most important in life.

Krzysztof Wnuk
In the year of grace 2010

iii

iv

Contents

Introduction 1
1 Setting the Context . 4

1.1 Software and requirements engineering 4
1.2 Requirements management in a large-scale market

driven context . 8
2 Research Focus . 12
3 Related Work . 15

3.1 Engineering and researching large-scale software sys-
tems . 15

3.2 Requirements prioritization, product management,
release planning and roadmapping 25

3.3 Visualization in software and requirements engineer-
ing . 28

3.4 Natural language processing techniques in require-
ments management . 30

4 Research Methodology . 31
4.1 Research design . 31
4.2 Research strategies used 32
4.3 Research methods used 33
4.4 Research classification 35
4.5 Validity . 38

5 Research Results . 40
6 Further Research . 44
References . 47

Paper I: Architecting and Coordinating Thousands of Requirements
- An Industrial Case Study 61
1 Introduction . 63
2 Industrial case context . 63
3 Research Methodology . 64
4 Tasks of the Requirements Architect in the case company . . 65
5 Views on requirements architecture and its quality 67
6 Conclusions . 68

v

References . 71

Paper II: An Industrial Case Study on Large-Scale Variability Man-
agement for Product Configuration in the Mobile Handset Do-
main 73
1 Introduction . 75
2 Industrial Context . 76
3 Research Methodology . 78
4 Results . 79

4.1 Perspectives on the Configuration Process 79
4.2 Configuration Activity Measurements 81
4.3 Problems Identified . 82

5 Improvement Proposal . 84
6 Evaluation of the Proposals 87
7 Related Empirical Work . 89
8 Conclusions . 90
References . 93

Paper III: What Happened to Our Features? Visualization and Under-
standing of Scope Change Dynamics in a Large-Scale Industrial
Setting 95
1 Introduction . 97
2 The case company . 98
3 Research Methodology . 99
4 Feature Survival Charts . 100
5 Evaluation results . 101
6 Scope tracking measurements 103

6.1 Definition of measurements 104
6.2 Theoretical analysis of measurements 105
6.3 Empirical application of measurements 106

7 Conclusions . 113
References . 117

Paper IV: Feature Transition Charts for Visualization of Cross-Project
Scope Evolution in Large-Scale Requirements Engineering for Prod-
uct Lines 119
1 Introduction . 121
2 Related Work . 122
3 The case of the company under study 123
4 Research Methodology . 124
5 Feature Transition Types . 125

5.1 Cross-project Feature Transitions 125
5.2 Within-project Feature Transitions 126
5.3 Multi-step feature Transitions 126

6 Visualizing Feature Transitions on the Industrial Example . 127

vi

6.1 Cross-projects Feature Transitions 129
6.2 Within-projects Feature Transitions 129
6.3 Visualizing multiple transitions. 130

7 Initial Validation . 131
8 Conclusions . 133
References . 135

Paper V: Replication of an Experiment on Linguistic Tool Support for
Consolidation of Requirements from Multiple Sources 139
1 Introduction . 141
2 Related Work . 143
3 Industrial Problem Description 146
4 Experimental Design . 147

4.1 Goals, Hypothesis, Parameters and Variables 149
4.2 Subjects . 150
4.3 Objects . 152
4.4 Instrumentation . 157
4.5 Data Collection Procedure 158
4.6 Validity Evaluation . 158

5 Experiment execution . 161
6 Experiment results analysis 163
7 Experiment results interpretation 166

7.1 Interpretation of this replication 166
7.2 Interpretation of the analysis of both cases 169

8 Conclusions . 170
References . 173

vii

viii

Introduction

Software is currently more and more pervasive and gaining more and more
importance in our lives. As a result, our dependence on software inten-
sive system in everyday life increases. At the same time, the intangible
and abstract nature of software artifacts demands revisiting and often re-
defining engineering approaches for constructing complex systems, estab-
lished originally in other than software domains. The constant need to
esteem new ways of achieving repeatability and quality control over the
software production process gets particularly important for large software
systems. In these systems, the adhered diversity, variability and complex-
ity may severely impede the management of software development pro-
cesses. Similarly, as the size and complexity of software systems continues
to increase, they result in increasingly large and complex sets of require-
ments. Currently, many companies are facing the problem of dealing with
enormous complexity of requirements engineering related artifacts, where
current requirements engineering technology can provide useful but only
partial solutions.

This thesis concentrate on understanding and supporting large-scale
requirements engineering with a focus on embedded systems product de-
velopment context. The research presented in this thesis aims for improv-
ing the understanding of large-scale requirements engineering contexts,
in particular the nature of requirements management related activities, as
well as providing methods for supporting some of these activities. The
results from this thesis concern scoping, variability management and con-
solidation tasks of requirements management. The presented visualization
techniques are confirmed to scale up to the in this thesis presented large-
scale company case context, increasing the understanding and assisting in
characterizing and improving the scoping process at the case company.

This thesis includes a collection of five papers. This introduction pro-
vides a background for the papers and relationships between the studies.
Section 1 gives the introduction to the context of the thesis. Section 2 de-
fines the focus of this thesis. Section 3 provides related work in the related
subareas of requirements engineering. Section 4 describes the methodol-
ogy used in this thesis. Throughout this introduction, the papers included
in this thesis will be refereed to their roman number (see the list below).

1

Other references can be found at the end of this introduction section.

Included papers

The following five papers are included in the thesis:

I Architecting and Coordinating Thousands of Requirements - An
Industrial Case Study
Krzysztof Wnuk, Björn Regnell and Claes Schrewelius
In Proceedings of the 15th International Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ09),
2009, LNCS vol. 5512, pp. 118-123

II An Industrial Case Study on Large-Scale Variability Management
for Product Configuration in the Mobile Handset Domain
Krzysztof Wnuk, Björn Regnell, Jonas Andersson and Samuel Nygren
In Proceedings of the Third International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS2009), 2009, pp.155-
164

III What Happened to Our Features? Visualization and Understand-
ing of Scope Change Dynamics in a Large-Scale Industrial Setting
Krzysztof Wnuk, Björn Regnell and Lena Karlsson
In Proceedings of the 17th International Requirements Engineering
Conference (RE09), 2009, pp.89-98

IV Feature Transition Charts for Visualization of Cross-Project Scope
Evolution in Large-Scale Requirements Engineering for Product
Lines
Krzysztof Wnuk, Björn Regnell and Lena Karlsson
In Proceedings of the Fourth International Workshop on Require-
ments Engineering Visualization (REV09), 2009

V Replication of an Experiment on Linguistic Tool Support for Con-
solidation of Requirements from Multiple Sources
Krzysztof Wnuk, Björn Regnell and Martin Höst
To be Submitted to Empirical Software Engineering Journal

Contribution Statement

Krzysztof Wnuk is the main author for all five included papers. This means
responsibility for running the research process, dividing the work between
co–authors, and conducting most of the writing. The research in Papers
I,III,IV and V was mainly performed by Krzysztof Wnuk, who designed
and conducted most of the work, as well as reported on the studies. Krzysztof

2

Wnuk wrote most of Papers I, III and IV, with the assistance from Profes-
sor Björn Regnell and industrial practitioners Dr. Lena Karlsson and Claes
Schrewelius respectively.

For Paper II, Krzysztof Wnuk wrote most of the text with the assistance
from Professor Björn Regnell, and Jonas Andersson and Samuel Nygren in
a master thesis project supervised by Krzysztof Wnuk. Most of the design
was performed together with the co–authors, while most of the execution
and analysis was performed by Jonas Andersson and Samuel Nygren.

For Paper V, Krzysztof Wnuk contributed in the design of the replicated
experiment, experiment execution and analysis. All authors contributed
in the discussions and writing; however, Krzysztof Wnuk wrote most of
Paper V.

Related Publications

The following papers are related but not included in the thesis:

VI Can We Beat the Complexity of Very Large–Scale Requirements
Engineering?
Björn Regnell, Richard Berntsson Svensson, and Krzysztof Wnuk
In Proceedings of the 14th International Working conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ08),
LNCS 5025, pp. 123-12.
This paper presents challenges faced in very large–scale requirements
engineering, which is the context of this thesis. This paper is partly
included in Section 3.1 of the Introduction.

VII Visualization of Feature Survival in Platform-Based Embedded Sys-
tems Development for Improved Understanding of Scope Dynam-
ics
Krzysztof Wnuk, Björn Regnell and Lena Karlsson
In Proceedings of the 2008 Requirements Engineering Visualization
(REV08), 2008, pp.41-50.

VIII Investigating Upstream versus Downstream Decision-Making in
Software Product Management
Krzysztof Wnuk, Richard Berntsson Svensson,Björn Regnell
Third International Workshop on Software Product Management (IWSPM
2009), 2009

3

1 Setting the Context

1.1 Software and requirements engineering

In 1960s, when the term Software Engineering (SE) was introduced, soft-
ware was just a small, marginal part of an expensive computing machine.
Changes in hardware over the past forty years have been remarkable, re-
sulting in a situation where the software, not the hardware, is the main
cost of a computing machine. Over the last decades, software engineering
gained importance and is currently an engineering discipline that influ-
ences all aspects of software production, from the initial idea recognition
and its specification to the post development software maintenance activ-
ities. The fact that software engineering is an engineering discipline im-
plies that its products are things that work. As a result, software products
are produced by applying theories and tools where these are appropriate
(Sommerville 2007). The main focus of software engineering is the prac-
tical problems of producing software products. To build these software
products, software engineers use their knowledge of computers and com-
puting to solve problems. Therefore, the essential part in the definition of
software engineering, provided by Pfleeger, is understanding the nature of
the problem in order to be able to apply the right “computing machinery”
to solve it (Pfleeger 2001). Software engineering is also considered as a part
of a more general system engineering discipline (Sommerville 2007).

Today’s software solutions are often very large and complex. The size
and complexity explosion was partly responsible for establishing the soft-
ware engineering field at the NATO Software Engineering Conference in
1968 (Naur and Randell 1968). Since then, it has continued as a profession
and field of study dedicated to creating better quality software that is more
affordable, easier to maintain and quicker to build. As a result, it is pos-
sible today to produce software systems with millions lines of code that
can be robust, effective and secure. In a similar manner, it can be stated
that the Requirements Engineering (RE) field was established partly due
to extensively growing size of requirements specifications creating needs
to provide engineering means to activities related with discovering system
functionalities and constraints (Jacobs et al. 1994).

Producing large and complex software systems requires finding soft-
ware engineering methods and techniques that can demonstrate coping
with the scale and complexity of target systems. In this context, the scala-
bility can be defined as a possibility of using a certain method or technique
on a much bigger set of artifacts without an exponential, or other very sig-
nificant, increase of the cost of using this technique. The cost is defined here
both in terms of required effort and skills to tackle a given problem. Un-
surprisingly, computer science and programming scientific articles seem to
report scalable methods or paradigms more often than software engineer-
ing research literature. The main difference in the difficulty of successfully

4

researching scalable software engineering mechanisms lies in the human-
intense nature of software engineering tasks that limit automatic analysis
and transformation possibilities.

Producing a software system includes a set of activities and associ-
ated results which are called the software process. The high-level activi-
ties of software specification, development, validation and evolution are
parts of software processes. Software process models are ways of abstract-
ing, defining and connecting these activities. Figure 1 depicts the first
published software development model, called the waterfall model (Som-
merville 2007, Royce 1970). This model is still used in 40% of the com-
panies, according to the survey from 2003 (Neill and Laplante 2003). The
simplicity of this model is unquestionably one of its strong points (Pfleeger
2001). The five principal stages of the model contains the following activi-
ties (Sommerville 2007, Royce 1970):

Requirements
definitiondefinition

System and y
software design

Implementation
and unit testing

Integration and
system testing y g

Operation andOperation and
maintenance

Figure 1: The software life cycle waterfall model (Sommerville 2007, Royce
1970)

• Requirements analysis and definition - in this phase, high level goals,
constrains and functionality are discussed are agreed on with system
users. The resulting agreement on the content of the software system
is often documented in a document called a system specification

5

• System and software design - the initial set of high-level requirements
is mapped onto an overall system architecture comprising both hard-
ware and software elements. At this stage, the fundamental software
system abstractions and their relationships are also defined

• Implementation and unit testing - in this phase, software developers
realize the software design into working software units. The accor-
dance of the functionality of each working unit with the requirements
is verified in unit testing

• Integration and system testing - the previously produced software units
are integrated, and the integration correctness is tested as a complete
system to ensure that the software requirements have been met

• Operation and maintenance - in the final phase, errors that were not
discovered in earlier stages of the life cycle are addressed, improv-
ing the implementation of system units and enhancing the system’s
services when requirements are discovered

The waterfall model has also had many critics since being introduced.
Among them, McCraken and Jackson (1981) pointed out that the model
imposes a project management structure on system development. Further-
more, Curtis et al. (1987) noted that the waterfall model’s major shortcom-
ing lies in its inability to treat software as a problem-solving process and to
consider software development process as a manufacturing process rather
than a creation process. As a result, other models of the software devel-
opment process have been proposed. One of the proposed models is the
spiral model proposed by Boehm (1988), where the software development
process is represented as a spiral. A phase in this model is represented
as a loop in a spiral with four sectors: (1) objective setting, (2) risk assess-
ment and reduction, (3) development and validation and (4) planning. The
proposed model explicitly recognizes and analyzes risks stressing the im-
portance of continuous risk management. Another model, called the pro-
totyping model, allows all or part of the system to be constructed quickly
to understand or clarify issues, it has the same objective as an engineering
prototype. Blazer’s transformational model tries to reduce the opportunity
for error by eliminating several development steps (Balzer 1981). Finally,
new software development models that have recently emerged, such as
Agile (Cunningham 2001) and Software Product Lines (Pohl et al. 2005)
paradigms. According to the Agile manifesto, (1) individuals and interac-
tions should be put over processes and tools, and (2) the contract negotia-
tion should be sustained by a close customer collaboration (Cunningham
2001). Moreover, the Agile manifesto favors responding to change rather
than following a plan, and the value of delivering early prototypes to the
customer rather than a comprehensive documentation. On the other hand,
the Software Product Lines (SPL) paradigm provides a strategic reuse of

6

assets within an organization. This approach helps to cope with complex-
ity of today’s software-intensive systems by using platform and mass cus-
tomization during their development (Pohl et al. 2005).

The requirements analysis and definition phase has changed from be-
ing initially recognized as a simple planning phase where the requirements
are written down to a separated research field within software engineering.
Many definitions of requirements engineering have been proposed since
the field was established. The classical definition of requirements engineer-
ing given by Sommerville (2007) defines it as “the process of understand-
ing and defining what services are required from the system and identify-
ing the constraints of the system’s operation and development”. The use
of the term “engineering” implies that the techniques used to ensure that
system requirements are complete, consistent and relevant should be ap-
plied in a systematic way, and that the whole process should be repeatable.
Kotonya (1998) compares requirements engineering to “system analysis”
which is mainly concerned about analyzing and specifying business sys-
tems. However, system analysis is mainly focusing on business aspects,
while requirements engineering is often concerned with both business and
system concerns of a system to be developed. The importance of require-
ments engineering is stressed by Aurum and Wohlin (2005) as one of the
most crucial stages in software design and development when the critical
problem of designing the right software for the customer is tackled. Aurum
and Wohlin extend the definition given, by stating that requirements engi-
neering is concerned with the identification of goals for a proposed system,
the operation and conversion of these goals into services and constraints,
as well as the assignment of responsibilities for the resulting requirements
to agents as humans, devices and software (Aurum and Wohlin 2005, Som-
merville 2007). The initially proposed ways of grasping the requirements
engineering discipline need further extensions, for example in the Market-
Driven Requirements Engineering (MDRE) context described later in this
chapter.

There are many different views on what to include into the require-
ments engineering process (Sommerville 2007, Kotonya and Sommerville
1998, Neill and Laplante 2003, Berenbach et al. 2009). One of the presented
views, depicted in Figure 2, illustrates the requirements engineering pro-
cess in four high-level sub-processes, namely: (1) feasibility study, (2) re-
quirements elicitation and analysis, (3) requirements specification and (4)
requirements validation (Sommerville 2007). Another view on the require-
ments engineering process, provided by Kotonya (1998), consists a set of
three structured activities, namely: (1) requirements elicitation, (2) require-
ments analysis and negotiation and (3) requirements validation. Their
overall goal is to produce, validate and maintain a system requirements
document. The four main sub-processes of the process model provided
by Sommerville (2007) are complemented by the “feasibility study” sub-
process concerned with assessing whether the system is useful to the busi-

7

ness. Figure 2 illustrates also the relationships between these activities and
documents produced at each stage in the requirements engineering pro-
cess. The model presented in Figure 2 is one among many defined in the
requirements engineering discipline. Another example is the spiral model
that accommodates approaches to a development in which the require-
ments are developed to different levels of detail. The number of iterations
around the spiral can vary, so the spiral can be exited after some or all of
the user requirements have been elicited. These models often fall short on
capturing the inevitable complexity of requirements engineering processes
in large companies releasing their products to the open market.

Feasibility y
study

RequirementsRequirements
elicitation and

analysis

Requirements

Feasibility report

Requirements
specification

Requirements Feasibility report

System models

q
validation

User and system
requirements

Requirements
Document

Figure 2: A requirements engineering process example (Sommerville 2007).

1.2 Requirements management in a large-scale market driven
context

Changes to existing requirements and new requirements arriving to the
project are inevitable situations at all stages of the system development
process (Kotonya and Sommerville 1998). As pointed out by Kotonya (1998),
a common case is that a significant part of an initial system’s requirements
will be modified before it is put into service. This fact may often cause se-
rious problems for the development of the system. To cope with changes

8

to requirements, Requirements Management (RM) activities are necessary
to document and control these changes. Requirements management can
also be considered as a process of managing large amount of information
and ensuring that it is delivered to the right people at the right time. The
principal requirements management activities, according to Kotonya and
Sommerville (1998), are: (1) change control and (2) change impact assess-
ment. The change impact assessment comprises warrants that proposed
changes have a known impact on the requirements and software system.
The change control ensures that, if a change is accepted, its impact on de-
sign and implementation artifacts will be addressed (Kotonya and Som-
merville 1998). Also, managing requirements relationships and manag-
ing dependencies between the requirements can be considered as a part
of a requirements management context. Therefore, requirements manage-
ment activities are performed in parallel to the requirements engineering
activities and they play a supportive role for them. As already mentioned,
change management and change impact assessment are not the only con-
cerns of requirements management. According to Chrissis (2004), the pur-
pose of requirements management is to manage all post-elicitation results
in a project or product, and to identify inconsistencies between those re-
quirements and a project’s plans or outcomes. Berenbach et al. (2009) go
a step further and outline requirements management activities that take
place in most, if not all, projects. He lists tasks such as identifying volatile
requirements, establishing policies for requirements processes, prioritizing
requirements, establishing and updating the requirements baselines, docu-
menting decisions and allocating requirements to releases (Berenbach et al.
2009). Other concerns of requirements management involve management
of relationships between requirements, and management of dependencies
between requirements documents and other documents produced during
the software engineering process. This thesis is focusing on some require-
ments management activities along the requirements engineering life-cycle
as it is considered to be a crucial activity for the Market-Driven Require-
ments Engineering (MDRE) context described below in this section.

Software can in general be released in two modes. The first one is called
a customer specific mode (also called bespoke or contract-driven) when a
software product is built to fulfill the contract agreement. The other one
is called a market-driven mode (or packaged software or commercial off-
the shelf) when a software product is addressed to a certain market or
group of users. While the main objective in the bespoke mode is often
to fulfill a contract and to comply with a requirements specification, the
market-driven mode focus mainly to deliver the right product at the right
time to the targeted market (Regnell and Brinkkemper 2005). Moreover, in
the bespoke requirements engineering, the success of a software product
can be measured by its compliance to a previously agreed requirements
specification. In the market-driven mode, the situation is however much
more complex. Here, the success of the software product is mainly de-

9

pendent on the market response which can not be fully assumed ’a-priori’.
Therefore, the release time is also important (Chen et al. 2005, Wohlin et al.
1995, Sawyer 2000), or even for some cases even more important than the
functionality that the newly released product is providing. The previous
fact puts hard time constrains on the requirements engineering and man-
agement activities, demanding them to be more flexible, scalable and less
time consuming (McPhee and Eberlein 2002). For example, when setting
the scope in a bespoke software project includes time-consuming negotia-
tions and conflict mitigations, in the requirements engineering scenario the
scope of the project has to be set using prioritization techniques based on
market predictions and effort estimates (Carlshamre 2002b, Karlsson 1998,
Sawyer 2000). There is no consensus made between the customer and the
contractor of the system, which means that the responsibility for the selec-
tion process is only on the contractor who must venture its implications.
A company that is operating in a market-driven mode should continu-
ously monitor the market situation by checking competitors’ latest achieve-
ments, researching market needs and collecting all possible feedback from
the market in a chase for achieving or maintaining the cutting edge posi-
tion within its operational business. This chase after an optimal market
window, together with other reasons, creates a constant flow of new re-
quirements and ideas throughout the entire software product lifetime. As
a result, the volume of the requirements database has no chance to shrink
and continues to grow, putting requirements management techniques and
documentation systems to test. Moreover, the requirements process for
market-driven contexts needs to be enriched with procedures to capture
and analyze this constant flow of requirements (Higgins et al. 2003). Soft-
ware products in market-driven mode are evolving continuously and are
delivered in multiple releases. The release planning has to focus on time-
to-market and return of investment factors. On the contrary, bespoke re-
quirements engineering is focusing on one major release which follows the
maintenance period. Finally, the results of the effort put during the project
can be seen much quicker in the bespoke requirements engineering case
where validation is made continuously though the contract. In the market-
driven mode, the market is primarily verifying the final products (Regnell
and Brinkkemper 2005).

The complexity and size of software intense systems continues to grow,
which in turn gives increasingly large and complex sets of requirements.
At the same time, requirements engineering research literature provides
industrial examples (Natt och Dag et al. 2004; 2005, Regnell et al. 2006)
where current RE technology have a useful but partial effect. The amount
of embedded software is growing, and the amount of variability is grow-
ing even faster. The increased role and importance of software comes with
an increased number of requirements. The explosion of new ideas is par-
ticularly an inevitable part of a company that operates in MDRE. This flow
of new requirements is almost always delivering more requirements for

10

software products than the actual development resources can implement
during each project cycle. As a result, the size and complexity of the re-
quirements databases grow even faster than the size and complexity of
actual software products. In this thesis, this situation is named Large-Scale
Requirements Engineering (LSRE) or even Very-Large Scale Requirements
Engineering (VLSRE). These contexts are characterized in one of the re-
lated publications, Paper VI, while the definitions and descriptions also
are repeated in Section 3.1. The size of the requirements databases in this
case may exceed tens of thousands of requirements, which puts new ex-
pectations on requirements management tool support. Furthermore, as
development projects grow in complexity and new products with many
features are released to the market, the importance of good practices in
requirements management grows (Berenbach et al. 2009). Improving the
scalability of requirements engineering and management tools, processes
and methods is crucial for succeeding in VLSRE contexts. Most of the re-
search in this thesis, apart from the experiment study reported in Paper V,
has been conducted in a VLSRE context.

The concept of producing software by utilizing Software Product Lines
(SPL) has gained more and more importance, especially among very large
software companies. Moreover, the software product lines concept has al-
ready proven to be a successful approach in providing a strategic reuse of
assets within an organization (Pohl et al. 2005). The key for the reuse of the
common features between products is variability management. Variability
can be defined in this context as the possibility of more than one behavior
of a software artifact at some point in its lifecycle (Svahnberg 2003). The
increased importance of variability management is a result of a changing
nature of software product, from originally rather static systems to highly
extensible and dynamically changing contemporary software systems (van
Gurp et al. 2001). Another part of SPL concept is the process of selecting re-
quirements to implement in the forthcoming project, called scoping (Wohlin
and Aurum 2005, Greer and Ruhe 2004). Scoping is considered as as a
key activity for achieving economic benefits in product line development
(Schmid 2002). It is important to mention here that the software product
line concept can be applied to more than just the source code and extended
to a variety of other artifacts that are used to construct the software prod-
uct. As a result, the creation of new products is performed by reusing as
much software artifacts as possible. From an organizational point of view,
some of the benefits of using the SPL approach are: (1) decreased time-to-
market, (2) improved control over unpredicted growth, (3) improved qual-
ity of the product (Linden et al. 2007) or (4) achieved reuse goals (Clements
and Northrop 2002). The cost decreases, while the complexity of the sys-
tem when using SLP approach increases. Finally, SPL increases the pos-
sibility of flexibility within the organization, since the knowledge in the
organization is more widely deployed (Clements and Northrop 2002). The
industrial partner, where the research for this thesis has been conducted, is

11

using the SPL concept.

2 Research Focus

The main research focus of this thesis is requirements management in large
or very large-scale contexts. The main research goals are understanding
and supporting very large-scale requirements engineering. This goal was
later refined and further investigated in Paper I. Furthermore, Paper VI
provides three following areas of very large-scale requirements engineer-
ing, demanding further research efforts:

• Sustainable requirements architectures: fighting information over-
load. The term requirements architecture is here understood as the
underlying structure by which the requirements are organized, in-
cluding the data model of the requirements with their pre-conceived
attributes and relations. In very large-scale requirements engineer-
ing, see Section 3.1 for the precise definition of the VLSRE context,
the amount of information that must be managed is immense and
not possible to grasp in all its details by a single person. In order to
fight information overload, we need requirements architectures that
are sustainable in the sense that they allow for controlled growth and
help the requirements engineers in a large organization to keep track
of the myriad of issues that continuously emerge

• Effective requirements abstractions: fighting combinatorial explo-
sions. In VLSRE situations where interdependencies among require-
ments are critical, such as prioritization, resource estimation, and
change impact analysis, we inevitably stumble on combinatorial ex-
plosions, further fuelled by product line engineering that significantly
increases the complexity of the requirements architecture. A major
vehicle for fighting these combinatorial explosions may be the use of
abstraction mechanisms and experience-based heuristics

• Emergent quality predictions: fighting over-scoping. Given a com-
petitive market and a large and demanding set of stakeholders, there
seems to be an inevitable shortage of resources to meet quality ex-
pectations. The prediction of the system level quality aspects that
emerge from a myriad of details is very difficult. As a result, a sus-
tained risk of defining a too large scope for platform development
can be observed partly due to the inherent difficulty in understand-
ing quality requirements and predicting their impact on required de-
velopment resources

In order to increase the understanding of the large-scale requirements
engineering context, an empirical interview study was conducted and re-
ported in Paper I. The results from this study played an important role in

12

setting further goals for the research reported in this thesis. The results of
efforts published in the research literature regarding linguistic methods in
assisting requirements management activities (Natt och Dag et al. 2005),
provided basics for further investigation in this area. Computer linguistic
provides methods for automatic analysis of various aspects of natural lan-
guage documents, including natural language requirements. One of the
linguistic methods is calculating the similarity between two requirements.
This information can be further used as a help in the analysis of from cus-
tomers or proxy-customers incoming requirements against requirements
already present in the requirements repository. This process is called re-
quirements consolidation and is the central part of research question RQ5.
Supporting requirements consolidation has been recognized as a relevant
industrial problem by Natt och Dag et al. (2006) in a very large-scale re-
quirements management context, where the change management activity
gets particularly challenging and requires automatic support methods to
be successfully performed. The resulting main research questions investi-
gated in this thesis are as follows:

• RQ1: What are the challenging aspects of requirements management
processes in a very large-scale context?

• RQ2: How is variability managed in practice in a large-scale software
product line context?

• RQ3: How to characterize and visualize scope change dynamics in a
large-scale software development context?

• RQ4: How can multiple scope changes be characterized and visual-
ized in a large-scale software development context?

• RQ5: Can linguistic methods of finding similar requirements over-
perform searching and filtering methods for a task of requirements
consolidation?

The relationships between the research questions are depicted in Fig-
ure 3. Paper I addresses RQ1 which was posed in order to investigate
practices of requirements engineering in a very large-scale requirements
engineering context and to find areas for further investigations. In this pa-
per, an interview study at Sony Ericsson, where the investigation of the
current ways of working with very large sets of requirements was con-
ducted, issues and challenges were identified. These challenges played
a central role in the process of further refinement of goals, and provided
input to the rest of the studies. One of the identified challenges, namely
emergent quality predictions, is addressed by RQ3 and RQ4. RQ3 aims
at finding a new way to characterize and visualize the size and dynam-
ics of scope changes in large projects. As a result, the Feature Survival
Chart (FSC) concept is proposed and evaluated in Paper III. This concept

13

RQ4
(Multi project)

Paper I Paper IV
Result: Empirical

Investigation of a VLSRE
context, tasks and challenges

in VLRSE (Multi‐project)in VLRSE

Result: Feature
survival charts and
scope tracking

RQ1
(VLSRE)

RQ2
(Variability)

RQ3
(Scoping)

The need for
investigating

The need for
investigating

scope tracking
metrics

(VLSRE) (Scoping)

The ne
investiResult: Empirical

Paper IIIPaper II

Previous

eed for
gating

Result: Feature
survival charts and

scope tracking metrics

investigation of variability
management in VLSRE,

improvement proposals and
their evaluation

RQ5
(Similarity)

results about
large scale
contexts

Provides input

Paper V

Result: Linguistic support helps to miss
less links than searching and filtering

capabilities

Figure 3: The relationships between challenges, research questions and pa-
pers presented in this thesis.

is later extended in Paper IV which addresses RQ4. RQ4 aims for finding
optimal extensions to the in Paper III introduced visualization technique
to cover multiple project scope changes. As a result, the Feature Transi-
tion Chart (FTC) concept is presented and empirically validated in Paper
IV. RQ2 is addressing other challenge identified in Paper I, namely effec-
tive requirements abstractions. RQ2 provides empirical investigation of
how variability is managed in practice in a large-scale software product
line context. The results are reported in Paper II. The third challenge, the
need to improve the tool support for coping with large-scale requirements
sets, identified in Paper I and supported by the research literature, is re-
fined to RQ5. RQ5 aims at investigating whether linguistic methods can
provide a better support than searching and filtering functionalities in a
task of requirements consolidation. The results from the experiment are
summarized in Paper V.

The list of challenges, albeit derived from a very large company in an
empirical investigation, should not be considered as the only and closed
one list of issues in large-scale requirements engineering . Among other
challenges not investigated in this thesis are, for example: managing re-
quirements interdependencies (Carlshamre et al. 2001), managing quality

14

requirements (Berntsson Svensson 2009), resource allocation (Trautmann
and Philipp 2009), cost estimation (Magazinovic and Pernstȧl 2008) or defin-
ing scalable requirements management processes (Berenbach et al. 2009).

3 Related Work

In this section, the background of the context of the research in this thesis
is described. The research in this thesis relates to various aspects of soft-
ware engineering and requirements engineering and management. The
concepts that the research is mostly related to are large-scale software engi-
neering, market-driven requirements engineering, requirements manage-
ment with a special emphasis on requirements prioritization, release plan-
ning and roadmapping, and finally requirements visualization. These as-
pects, together with examples of scientific contributions, are presented in
the sub-chapters that follow.

3.1 Engineering and researching large-scale software sys-
tems

One of the interesting characteristics of the requirements engineering is the
ability to abstract large parts of the source code and pack them under a con-
cise name of the feature. Depending on the abstraction level, 50 000 lines of
the source code solution may be represented as a single market feature, or
as a set of 200 system level requirements related with 200 quality aspects.
This ability of compression may lead to the situation when requirements
engineering research reported in a large-scale context actually operates on
a small amount of high-level information, simplifying the problem of scala-
bility. As a result, reported methods do not have to be fully scalable, unless
they only operate on this high abstraction level.

While browsing requirements engineering research literature, it is tempt-
ing to make the statement that most research reported within the field fol-
lows the mentioned abstraction level simplification. A precise definition of
the context where the result of an inquiry applies, or have been performed,
is undoubtedly a proper, but rare, behavior. When the simplification of
the placement of the reported results on the abstraction ladder is made,
addressing the scalability of achieved results becomes difficult. As a step
towards clarifying the mentioned issue in one of the related publications
(Paper VI), the classification of the orders of magnitude in requirements
engineering is introduced and repeated here. Table 1 defines four orders of
magnitude in RE, based on the size of the set of requirements that are man-
aged by an organization that develops software-intensive systems. The
levels are inspired by the characterization of orders of magnitude in the
digital circuits integration field.

The number of requirements was chosen as a proxy for complexity, as it

15

Ta
bl

e
1:

O
rd

er
s

of
m

ag
ni

tu
de

in
re

qu
ir

em
en

ts
en

gi
ne

er
in

g
,b

as
ed

on
Pa

pe
r

V
I.

A
br

ev
.

Le
ve

l
O

rd
er

of
m

ag
ni

tu
de

Sa
m

pl
e

em
pi

ri
ca

l
ev

id
en

ce

In
te

rd
ep

en
de

nc
y

m
an

ag
em

en
t

co
nj

ec
-

tu
re

s
w

ith
cu

rr
en

tR
E

te
ch

no
lo

gy

SS
R

E
Sm

al
l-

Sc
al

e
R

eq
ui

re
-

m
en

ts
En

gi
ne

er
in

g
10

re
qu

ir
em

en
ts

M
an

ag
in

g
a

co
m

pl
et

e
se

t
of

in
te

rd
e-

pe
nd

en
ci

es
re

qu
ir

es
sm

al
le

ff
or

t.
M

SR
E

M
ed

iu
m

-S
ca

le
R

eq
ui

re
-

m
en

ts
En

gi
ne

er
in

g
10

0
re

qu
ir

em
en

ts
(F

ea
th

er
et

al
.2

00
0)

M
an

ag
in

g
a

co
m

pl
et

e
se

t
of

in
te

rd
e-

pe
nd

en
ci

es
is

fe
as

ib
le

bu
t

re
qu

ir
es

la
rg

e
ef

fo
rt

.
LS

R
E

La
rg

e-
Sc

al
e

R
eq

ui
re

-
m

en
ts

En
gi

ne
er

in
g

10
00

re
qu

ir
e-

m
en

ts
(P

ar
k

an
d

N
an

g
19

98
)

M
an

ag
in

g
a

co
m

pl
et

e
se

t
of

in
te

rd
e-

pe
nd

en
ci

es
is

pr
ac

ti
ca

lly
un

fe
as

ib
le

,
bu

t
fe

as
ib

le
am

on
g

sm
al

lb
un

dl
es

of
re

qu
ir

em
en

ts
.

V
LS

R
E

Ve
ry

La
rg

e-
Sc

al
e

R
e-

qu
ir

em
en

ts
En

gi
ne

er
in

g
10

00
0

re
qu

ir
e-

m
en

ts
(R

eg
ne

ll
et

al
.2

00
6)

M
an

ag
in

g
a

co
m

pl
et

e
se

t
of

in
te

rd
e-

pe
nd

en
ci

es
am

on
g

sm
al

l
bu

nd
le

s
of

re
qu

ir
em

en
ts

is
un

fe
as

ib
le

in
pr

ac
-

ti
ce

.

16

is believed in Paper VI that increased numbers of customers, end users, de-
velopers, subcontractors, product features, external system interfaces, etc.
come along with increased number of requirements generated in the RE
process as well as an increased complexity of requirements engineering.
Furthermore, Paper VI suggests that the complexity of a set of require-
ments is heavily related to the nature of interdependencies among require-
ments, see e.g. Carlshamre et al. (2001) for an empirical investigation of
interdependencies. With a realistic degree of interdependencies among n-
tuples of requirements, it can be hypothesized that the number of interde-
pendencies to elicit, document and validate increases dramatically with the
increased number of requirements. When shifting from MSRE to LSRE, a
typical heuristic for dealing with the complexity of interdependency man-
agement is to bundle requirements into partitions and thereby creating a
higher level of abstraction, where interdependencies among bundles can
be managed with reasonable effort. When shifting from LSRE to VLSRE,
the conjecture is that even the number of bundles gets too high and the size
of bundles becomes too large to allow for interdependency management
with desired effectiveness. If the number requirements bundles becomes
too large, the interdependency links loose practical usefulness as they re-
late to coarse grained abstractions.

SSRE and MSRE are a common scale in research papers that seek to
validate a proposed method or tool. For example, in Feather et al. (2000),
a specific tool is validated only with a set of 67 requirements. In this sit-
uation, it is possible to enumerate and manage complex relations among
requirements, even with dense relation patterns. However, it is believed in
Paper VI that few industrial situations in current system development can
avoid stretching beyond SSRE and even MSRE. Only a few examples in
RE literature that discusses LSRE, such as Park et al. (1998), can be found
whether the author believes that LSRE is common industrial practice, con-
firmed also by Brinkkemper (2004). The belief presented in Paper VI saying
that a significant number of companies that currently face LSRE will grow
into the situation of VLSRE is confirmed by Berenbach et al. (2009), who
report on large project with thousand of requirement that requirement en-
gineers and managers at Siemens work with. Berenbach et al. also mention
that one of the current misconceptions about requirements engineering is
the statement that processes that work for a small number of requirements
will scale whether, according to him, requirements engineering processes
do not scale well unless crafted carefully (Berenbach et al. 2009). Another
problem mentioned by Berenbach et al. (2009) is the requirements explo-
sion during a large project when the processes put in place at the beginning
of a project do not take into consideration the number of requirements that
may need to be managed as requirement definition nears completion. As
an example (also repeated in Figure 4), Berenbach et al. (2009) give a project
with 50 features to start that may not appear to be a large project. After a
not unreasonable explosion of each feature to 100 or more high-level re-

17

quirements the project can grow up to over 5000 high-level requirements.
Adding an additional explosion layer of detail needed to implement the
product in both its functional and quality aspects and create test cases can
wind up with a total of 50000 requirements and at least the same number
of traces. Such a number of requirements to manage and trace in unrea-
sonable for today’s large projects.

50 features
1. An initial set of 50
high level features
may not appear to

2. Each high level
feature is redefined

be a large project

to 100 or more high‐
level requirements

5000 high‐level
requirements

3. The project can
grow up to over
5000 high‐level
requirements

4 Adding an4. Adding an
additional explosion

layer of detail
needed for

implementation

50000 requirements + 50000 traces

implementation

5. A total of 50000 requirements and
at least the same number of traces

Figure 4: An example of an explosion of the number of requirements dur-
ing a project (Berenbach et al. 2009).

To illustrate the complexity in VLSRE, an industrial example outlined
in Paper VI is summarized here. This example provides a case descrip-
tion of embedded system engineering in the mobile phones domain, based
on experience at Sony Ericsson which has faced a transition from LSRE to
VLSRE in the last years, while remaining competitive on the market with
a growing number of around 6 000 employees. Mobile phones include
a wide range of features related to e.g. communication, business appli-
cations and entertainment. The technological content is complex and in-
cludes advanced system engineering areas such as radio technology, mem-
ory technology, software design, communication protocols, security, audio
and video, digital rights management, gaming, positioning etc. The com-
plexity of requirements engineering is driven by a large and diverse set of
stakeholders, both external and internal to the company. Table 2 gives ex-

18

Table 2: Examples of stakeholders that generate requirements (see Paper
VI for more details).

External Stakeholders Internal Stakeholders
Competitors Accessories
Consumers of different seg-
ments

Customer Services

Content providers Market research
Legislation authorities Marketing and customer relations
Operators Platform development (SW+HW)
Retailers Product, application and content

planning
Service providers Product development (SW+HW)
Share holders Product management
Standardization bodies Product management
Subcontractors and compo-
nent providers

Sourcing, supply and manufacturing

Technology and research develop-
ment
Usability engineering

amples of stakeholders that generate requirements. Some stakeholders are
counted in billions, such as consumers of different segments, while some
are counted in hundreds, such as operators. In the case of Sony Ericsson,
the requirements that are generated from internal and external stakehold-
ers amount to several tens of thousands. Figure 5 provides a simplified
picture of the different types of requirements and their relations. Similar to
the case provided by Feather et al. (2000), requirements originating from
external stakeholders, called market requirements, are separated from, but
linked to system requirements that are input to platform scoping in a Soft-
ware Product Line (SPL) setting. Market requirements are mainly gen-
erated by operators submitting specifications with thousands of require-
ments that require statements of compliance. The total number of market
requirements as well as platform system requirements at Sony Ericsson
each exceeds 10 000. In order to make scoping feasible, platform system re-
quirements are bundled into hundreds of features that represent the small-
est units that can be scoped in or out. In order to support product develop-
ment, the platform capabilities are organized into configuration packages
that improve over time, as more and more features are implemented for
each new version of a platform. Products are configured through assem-
blies of configuration packages according to the rules of how they can be
combined based on their interdependencies.

19

MR Market Requirement
PSR Platform System Req
P Product
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform
Versions ~10

Supplier
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component
Versions ~100

F2

F3

MR Market Requirement
PSR Platform System Req
P Product
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform
Versions ~10

Supplier
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component
Versions ~100

F2

F3

Figure 5: Orders of magnitude in different artifacts of a specific VLSRE
case (see Paper VI for more details).

The reported publications that focus on large-scale software or require-
ments engineering can be classified into: (1) empirical reports from large-
scale contexts that often provide a number of challenges, (2) papers that
literally evaluate or present a technique that is suitable for large contexts
and (3) vision papers, often written by senior members of the software en-
gineering community that provocatively bring the scalability issue to the
future research agenda. In the sub-chapters that follow, more detailed re-
sults from the literature investigation are presented in the mentioned cate-
gories.

3.1.1 Technical solutions or methods.

Among the papers that report a technique or solution suitable for large-
scale software engineering contexts, Carman et al. (1995) present a frame-
work for engineering software reliability that was proposed at a large com-
pany called Bellcore. The framework, together with different reliability
modeling tools, have been tested in pilot tests. On the other hand, com-
munication and coordination are considered by Garg (1989) as playing a
central role in any large-scale cooperative effort. The article presents an

20

active automation base design based on “Intelligent Software Hypertext
System” which: (1) supports a flexible and general purpose model for in-
formation management (hypertext) and (2) can support various software
life cycle models based on an agents-tasks-products perspective. Linger et
al. (2007) discuss “an emerging next-generation software engineering re-
search area: function extraction technology”. The technology is aiming to
extend the possibilities of automatic computation of software components
and their compositions into systems, meaning that it addresses only the
source code. On the other hand, Travassos et al. (2008) present and dis-
cuss an experimentation environment that was built to support large-scale
experimentation and scientific knowledge management in software engi-
neering. The presented “Software Engineering Environment Framework”
provides a set of facilities to allow geographically distributed software en-
gineers and researchers to accomplish and manage experimentation pro-
cesses as well as scientific knowledge concerned with different study types
through the web. The methodological viewpoint on large-scale software
engineering has also been taken by Kitchenham et al. (2007) who recom-
mend adopting a more systematic approach to accumulating and report-
ing large quantities of empirical evidence. The proposed solution is to use
quasi-experimental designs in improving the methodology used for per-
forming large-scale empirical studies in software engineering.

3.1.2 Empirical reports from large-scale contexts.

A significant fraction of empirical reports from large-scale contexts is writ-
ten by practitioners from large companies. One of the publications of this
type is the paper by Conrad and Gall (2008), which report on lessons learned
about requirements engineering in the development of large-scale systems
based on eight challenges faced in a large-scale industrial project. The list
of challenges comprises:

• Large number of customer requirements

• Formal interface to customer

• Management of customer expectations

• Changing technology

• Traceability

• Scope change and creep

• Resource fluctuation

The challenges were reviewed by many requirements engineering ex-
perts at Siemens Corporate Research, with the general agreement that simi-
lar challenges exist across projects with similar characteristics at numerous

21

companies. One of the mentioned lessons learned is to establish a trace-
ability model. Traceability management is the main research focus of Jane
Cleland-Huang’s et al. work (2005, 2009). Duan et al. use clustering tech-
niques to assist in the prioritization process. The techniques are evaluated
on an example of 202 requirements (Duan et al. 2009), and the other tech-
nique on an example comprising 180 requirements (Cleland-Huang et al.
2005) which places their work in the MDRE area according to Paper VI. The
example from Siemens Corporate Research is also presented in the book by
Berenbach et al. (2009), where the importance of requirements engineering
for large projects is stressed. Berenbach et al. also present a list of the com-
mon misconceptions about requirements engineering, where one of them
states that processes that work for a small number of requirements will
scale. According to Berenbach et al., requirements engineering processes
do not scale well unless crafted carefully, and therefore he puts this issue
on a list of industrial challenges in requirements engineering.

Another view on LSRE is presented by Bergman et al. (2002b). They
investigate the political nature of requirements for large systems and ar-
gue that requirements engineering theory and practice must become more
engaged with these facets. Requirements for large systems are, according
to Bergman et al. (2002b), constructed through a political decision process.
In this process, requirements emerge as mappings between solution space
and problem space. These solution spaces are “complex socio-technical
ensembles” that often exhibit non-linear behavior in expansion due to do-
main complexity and political ambiguity.

On the other hand, Ebert (2004) presents insight in techniques for prag-
matically dealing with non-functional requirements. He provides exam-
ples of dealing with four types of nonfunctional requirements in large telecom-
munication systems, namely performance, usability, reliability and main-
tainability requirements. Cleland-Huang et al. (2008) propose an elicita-
tion and prioritization process that utilizes data-mining and recommender
technologies to facilitate the active involvement of many thousands of stake-
holders. Their solution is claimed as scalable and capable to support elici-
tation and prioritization of requirements in very large systems.

3.1.3 Challenges and visions

Another significant part of articles about large or very large-scale software
and requirements engineering represents the future vision type of articles.
These articles are often written in a provocative way by senior researchers
within the field in order to stimulate the community to tackle some of the
research challenges and opportunities. Among them, Boehm (2006) iden-
tifies eight relatively surprise-free trends: (1) the increasing interaction of
software engineering and systems engineering, (2) increased emphasis on
users and end value, (3) increased emphasis on systems and software de-
pendability (4) increasingly rapid change, (5) increasing global connectiv-

22

ity and need for systems to interoperate, (6) increasingly complex “systems
of systems”, (7) increasing needs for COTS, reuse and legacy systems and
software integration and (8) computational plenty. For the increasingly
complex “systems of systems“ trend, Boehm (2006) states that traditionally,
and even recently for some forms of agile methods, system and software
development processes were recipes for “standalone stovepipe systems”
with high risk of inadequate interoperability with other stovepipe sys-
tems. The lack of a common denominator in such collections of stovepipe
systems may cause unacceptable delays, uncoordinated and conflicting
plans, ineffective or dangerous decisions and inability to cope with rapid
change. On the other hand, Herbsleb (2007) reflects on an increasing global
connectivity trend and describes a desired future for global development
together with the problems that stand in the way of achieving that vi-
sion. Herbsleb reviews research and outlines research challenges in four
critical areas: software architecture, eliciting and communicating require-
ments, environments and tools as well as orchestrating global develop-
ment. He calls large-scale software development, when teams are geo-
graphically distributed Global Software Development (GSD), and focuses
on technical coordination in this context. The key phenomenon of GSD
is the coordination over distance in a sense of managing dependencies
between the tasks. The geographical and temporal distance can be con-
sidered as an additional, more process oriented, dimension of large-scale
systems together with size and complexity. On the other hand, Damian
(2007) considers globalization to be one of the major research challenges
in requirements engineering. A global context makes it more difficult to
seek out and to integrate the necessary knowledge. Process mismatches,
differing technical and domain vocabularies, incompatible environments,
and conflicting assumptions can be particularly problematic in a GSD con-
text (Bhat et al. 2006). As another challenge, Curtis et al. mention that the
need to significantly improve the ability to support the ongoing negotia-
tion processes prevalent throughout the project lifecycle (Curtis et al. 1988,
Damian and Zowhgi 2003). Furthermore, the next challenge in Global Soft-
ware Development context is to understand, in a detailed way, what media
are suitable for the different kinds of communication among all the busi-
ness stakeholders, analysts and developers. Damian (2007) provides the
following challenges in stakeholders’ global interaction:

• Knowledge-acquisition and knowledge sharing processes that enable
the exploration of stakeholders’ needs

• Iterative processes that allow the reshaping of this understanding
throughout the entire project

• Effective communication and coordination processes that support the
first two types of processes listed

23

The Software Engineering Institute (SEI), together with U.S. Department of
Defense (DoD) established in 2006 a team of researchers and practitioners
in order to investigate very complex systems characterized by thousand of
platforms, sensors, decision nodes, weapons and war fighters connected
through heterogeneous wired and wireless network. The systems under
consideration were characterized as pushing far beyond the size of cur-
rent systems by every measure: number of lines of code, number of people
employing the system for different purposes, amount of data stored, ac-
cessed, manipulated and refined, number of connections and interdepen-
dencies among software component and number of hardware elements.
The systems were named as Ultra-Large-Scale (ULS) systems (Northrop
et al. 2006). Similarly to a biological ecosystem, a ULS system comprises
a dynamic community of interdependent and competing organisms in a
complex and changing environment. The concept of ecosystems includes
complexity, decentralized control, hard-to-predict effects of certain kinds
of disruptions, difficulty of monitoring and assessment, and the risks in
monocultures, as well as competition with niches, robustness, survivabil-
ity, adaptability, stability and health (Northrop et al. 2006). The charac-
teristics of ULS systems outlined by Northrop et al. (2006) are as follows
:

• Decentralization. The scale of ULS systems imposes their decentral-
ization in a variety of ways

• Inherently conflicting, unknowable, and diverse requirements. The
amount of stakeholders and the diversity of their needs in ULS sys-
tems will be immense. The inevitable result of this fact will be the
impossibility of solving all the conflicts between stakeholders needs

• Continuous evolution and deployment. There will be an increasing
need to integrate new capabilities into a ULS system while it is oper-
ating. The system will be evolving not in phases, but continuously

• Heterogeneous, inconsistent, and changing elements. A ULS sys-
tem will not be constructed from uniform parts causing many misfits
and incompatibilities especially in the extension phase

Today’s systems are constructed based on the idea that conflicts must be
addressed and resolved (Bergman et al. 2002b). The scale of ULS systems
will make it impossible to resolve all conflicts and to resolve conflicts cen-
trally. Instead, mechanisms will be proposed, or will automatically emerge
to resolve conflicts locally among those who have an immediate interest
in the issue. ULS systems will also encounter so-called wicked problems
when requirements are neither knowable in advance, because the final
agreement about the system’s functionality can not be reached due to its
changeable nature, nor stable, because each developed solution changes
the view on the problem and the problem itself, and no solution is consid-
ered to have "solved" the problem (Northrop et al. 2006).

24

3.2 Requirements prioritization, product management, re-
lease planning and roadmapping

Current state-of-the-art research in software engineering has established an
opinion that decision processes are the driving forces to organize corpora-
tions’ success (DeGregorio 1999). Researchers have contributed in creating
a better support for decision making based on their best knowledge and ex-
perience, computational and human intelligence, as well as a suite of meth-
ods and techniques (Ruhe 2003). The decision-making process has also
been addressed by researchers working in the requirements engineering
field, since it is considered as the dominant activity after the requirements
are captured, analyzed and specified on the way towards their implemen-
tation. Aurum and Wohlin (2002, 2003) investigated decision making in
requirements engineering by using classical decision making models, and
they also illustrated illustrate how to integrate these models with require-
ments engineering process models.

An integral part of market-driven requirements engineering contexts is
a constant flow of new requirements arriving from multiple sources. Mak-
ing decisions about which of these incoming requirements implement and
which not is a vital part of developing software systems that meet stake-
holders’ needs and expectations (Karlsson and Ryan 1997, Regnell et al.
1998). At the same time, it is almost impossible to involve all stakeholders
to prioritize requirements, and there are usually more requirements than
the company can implement within a given time and resources constraints
(Berander 2004). Thus, it is necessary to select a subset of requirements to
implement in the forthcoming project, and hence postpone the implemen-
tation of other requirements to a later point in time (Wohlin and Aurum
2005, Greer and Ruhe 2004). This selection process is often called scop-
ing, and is considered as a key activity for achieving economic benefits
in product line development (Schmid 2002). The requirements selection
and release planning process is supported by a requirements prioritiza-
tion, which can be defined as the activity during which the most important
requirements for a system are identified (Sommerville 2007). The crite-
ria that determine the priority of a requirement include: (1) importance to
users and customers, (2) implementation cost, (3) logical implementation
order and (4) financial benefit (Lethola and Kauppinen 2004). As a result,
prioritization techniques help to make the outcome of sometimes difficult
choices of which requirements to implement less surprising (Karlsson and
Ryan 1997).

There are several prioritization techniques introduced in the literature.
An important contribution in this topic has been made by Karlsson et al.
(1997) who provided a method based on pair-wise comparisons. The method,
utilizing the Analytical Hierarchical Process (AHP) (Saaty 1980), provides
a valuable assistance in the prioritization task. Others, such as Beck (2000),
introduced a planning game method for prioritization. The planning game

25

method uses ordinal scale for grouping and ranking requirements. The
grouping is usually based on cost, value and risk criteria. On the other
hand, Karlsson et al. (1996, 1997) introduced a numeral assignment tech-
nique that uses grouping requirements in for example three or five groups,
usually based on customer value. The result is presented on the ordi-
nal scale. Furthermore, Leffingwell and Widrig (2003) propose a method
called the 100$ test or cumulative voting. It has been proposed suitable
in distributed environments, and is based on assigning fictional money
to requirements and the results are presented on a rational scale. Finally,
Wiegers (2003) presents a method that combines the customer value, penalty
if the requirements is not implemented, implementation cost and risk.

Although a significant progress has been made and reported in the pri-
oritization techniques research, there are several issues related to this task.
Firstly, there may be conflicts among customers’ prioritization lists (Beran-
der 2004). In this situation, it is important to handle different stakehold-
ers in a structured way. Regnell et al. (2001) suggest that the most suit-
able strategy in the current market segment should be used to adjust each
stakeholder’s influence in the prioritization process. Secondly, it is often
the case that requirements arriving to the company are specified at differ-
ent levels of abstraction, impeding the requirements prioritization process
(Gorschek and Wohlin 2006). Thirdly, requirements dependencies can also
influence the prioritization outcome. Their significant impact on the prior-
itization process makes it even more complex. One of these dependencies
is the inevitable relation between functional and non-functional require-
ments which are often neglected during the prioritization task. Finally, as
mentioned in Section 4 and in Paper VI, the number of requirements to
prioritize also impedes the prioritization process. In small-scale or even
medium-scale requirements engineering, it is feasible to perform the pri-
oritization task on a low level of abstraction where, in large- or very large-
scale requirements engineering contexts the prioritization of low level re-
quirements may be very time consuming or even impossible (see Paper VI
for more details).

Releasing software to an open market brings a new potential of growth
comparing to the Bespoke Software Development. In order to use this po-
tential better, the software product development paradigm gains greater
acceptance (AlBourae and Ruhe 2006). As a result, a product manager role
emerged, bringing new types of tasks in MDRE context to cope with the
shift from primarily developing customized software to developing soft-
ware as a standard product (van de Weerd et al. 2006a). The special nature
of software creates specific challenges in product management for software
solutions, listed by van de Weerd (2006b):

• No cost for manufacturing and distributing extra copies

• The change to software product can be made rather easy by patches
and release updates

26

• The complexity of organizing requirements and tracing changes tasks
is high

• Software products are much more frequently released, partly due to
their changeable characteristics

• The software product manager’s responsibilities regarding the prod-
uct functionality do not go along with authority over the develop-
ment team.

The benefits of software products, as it can be seen from the list above,
come along with more complex requirements organization. Two integral
parts of software product management are product roadmapping and re-
lease planning. Roadmapping includes planning how to use available tech-
nological resources and scientific knowledge, and their relationships over
a period of time (Vähäniitty et al. 2002). Roadmapping is a form of fore-
casting a product or product family evolution overtime, including their
relationships (R. E. Albright 2003). Regnell and Brinkkemper (2005) de-
fine a roadmap document as a document including product releases plans
over a time frame of three to five years. The literature provides many
types of roadmap documents, (Schalken et al. 2001) where the one suitable
for MDRE contexts release planning is the Product-Technology Roadmap.
Roadmapping is a complex task, and it brings challenges in co-operation
in different layers of product development, continuous communication
(R. E. Albright 2003), dependencies handling between related products,
and coping with rapid technology changes (Carmel 1999).

Another important activity in software product management is release
planning, also called release management. Software release management
is the process of making software available to or obtained by its users (van
der Hoek et al. 1997). Core functions in this process are requirements pri-
oritization, release planning, constructing and validating a release require-
ments document and scope management. Various techniques have been
proposed or explored in order to support release planning, namely integer
linear programming (Abramovici and Sieg 2002), the analytical hierarchy
process (Saaty 1980), stakeholders’ opinions on requirements importance
(Ruhe and Saliu 2005) and linear programming techniques using require-
ments interdependencies (Carlshamre 2002a). The focus of this thesis is
on the scope management part of the release planning. The criteria identi-
fied as important by Wohlin and Aurun (2005) in selecting which require-
ments to include to the next project comprise: competitors, delivery date,
development cost and stakeholder priority of requirement. The last two
criteria are similar to the cost-value approach proposed by Karlsson and
Ryan (1997) and to the QUPER model (Regnell et al. 2008). Paper III ana-
lyzes the reasons for deciding what to remove from the scope of a project.
In that paper, the reasons identified are similar to outlined by Wohlin and
Aurum (2005).

27

Researchers have been investigating various aspects of MDRE for quite
some time, starting with Potts, who claimed that “during requirements
analysis one party does not always elicit requirements from another, nor
does it payback requirements so the other can accept, reject or refine them”.
Thus, requirements in MDRE context are actually proposed or invented,
rather than elicited (Potts 1995). This fact adds additional dimensions to
requirements engineering and requirements management process defini-
tions, and is often responsible for an immense increase of complexity of RE
and RM related activities. Regnell et al. (1998) present a specific industrial
requirements engineering process for packaged software, which helped
the studied company to achieve a measurable improvement in the deliv-
ery precision and product quality. The same author has researched the
requirements selection task for MDRE (Regnell et al. 2004) and explored
bottlenecks in MDRE processes (Höst et al. 2001). Others, such as Booth
(2001) or Karlsson (2002), have focused on reporting challenges in MDRE
based on empirical investigations, while Carlshamre et al. (2000) focused
on comparing two market driven requirements management models and
emphasizing the crucial task of managing requirements dependencies.

3.3 Visualization in software and requirements engineer-
ing

Customers of software products are often non-technical people. Therefore,
visualization in software engineering is a way of a more effective com-
munication with these customers (Avison and Fitzgerald 1998). Moreover,
diagrams have an advantage of more concisely conveying the information
(De Marco 1978) than the sentential representation of information (Larkin
and Simon 1987). Diagrams are scalable and can support a large number
of perceptual inferences, which can easily be analyzed by humans (Larkin
and Simon 1987). As a result, many visual notation conventions have been
proposed since Goldstine and von Neumann’s (1948) first flowcharts nota-
tion in 1948, and are currently used not only for supporting implementa-
tion and testing (Ball and Erick 1981, Knight and Munro 2000, Jones et al.
2000), but also other facets of software development (Ogawa et al. 2007,
Sellier and Mannion 2006, Tory and Moller 2004, Hornecker and Buur 2006,
Vasile et al. 2006, MacDonell 2005, Biffl et al. 2005, Koschke 2003, Gotel et al.
2008). The strengths of visual notations are also used to develop software
using the Model Driven Development (MDD) paradigm, where software
is automatically generated from a set of models (Beydeda et al. 2005).

The visual syntax of notations proposed in software engineering litera-
ture is treated with less attention than their semantics (Moody 2009). While
designing visual notations in software engineering, the decisions about se-
mantics (content) seam to be treated with great care. At the same time,
the visual representation issue (form) is considered a matter of aesthetics
rather than effectiveness (Hitchman 2002). However, the positive influence

28

of the visual forms of notations on their understandability by novices has
already been confirmed in a number of empirical studies (Purchase et al.
2002, Nordbotten and Crosby 2001, Masri et al. 2008). As a step towards es-
tablishing a scientific foundation for designing visual notations in software
engineering, Moody (2009) provides a set of design principles in order to
achieve a visually efficient notation. His analysis is focusing on achieving
cognitive effectiveness in terms of speed, ease and accuracy with which a
representation can be processed by the human mind (Larkin and Simon
1987).

As an early phase of software development, requirements engineering
is a communication intensive phase. Therefore, it requires intensive and
efficient communication among multiple stakeholders in order to agree
upon the needs for a new software system or its extension. Effective vi-
sualization techniques may significantly improve this communication by
unhiding the real value of communicated requirements. Following Gotel
(2007), it can be stated that visualization has mainly been used to support
three aspects of requirements engineering:

• Structure and relationships - visualizing the hierarchical structure of
requirements documents, or more complex graphs. Also, require-
ments traceability matrices are regularly created to convey linkage
between artifacts and support change impact analysis (Duan and Cleland-
Huang 2006, Ozakaya 2006, Sellier and Mannion 2006, Osawa and
Ohnishi 2007)

• Elicitation support - visual prototypes, story board, mock-ups used
to help stakeholders to explore requirements. If these initial draw-
ings are made using a software tool, then the role of this type of visu-
alization is more transient as they can be reused in later refinement
activities (Pichler and Humetshofer 2006, Feather et al. 2006, Zenebe
and Norcio 2007)

• Modeling - providing a visualization of requirements specified in
a formal language in order to facilitate validation activities. I* and
UML frameworks fall into this category and therefore it can be con-
cerned as the dominant focus of research efforts in requirements en-
gineering visualization (Teyseyre 2002, UML 2010, Konrad et al. 2006,
Evermann 2008)

When requirements and their attributes are represented in a textual
form, the resulting structure is a table or spreadsheet representation. In
this case, the access to multi-placed and spread information can be chal-
lenging and raising the question if it is really needed to document all this
information. Since visual notations offer more dimensions to represent in-
formation than text (Tufte 1990), they are more efficient in representing the
mentioned complex information structures. As an example, Gotel et al.
(2007) propose taking a set of requirements represented in this traditional

29

textual form, supplemented by the structured UML diagrams, and render-
ing them in a way that proposes shared comprehension of the full set of
a number of requirements-related questions like revealing unknown pat-
terns. Some situations where this approach may be useful are for example:
ensuring that the requirements are grounded in authoritative and repre-
sentative source or providing a quick glance of the risks, cost and effort
needed to implement requirements. In this thesis, visualizations are used
to provide an overview of scoping processes in a large-scale requirements
engineering context.

Recent research efforts in requirements visualization provide a variety
of new visualization techniques that aim for "getting to see" requirements
in new ways. Among proposed techniques, Lee at al. (2003) propose
an iconic technique that provides an excellent example of using both the
shape and the color as additional dimensions to achieve greater cognitive
dissonance. Another technique to visually represent requirements using a
metaphorical approach is the Volcanic World Visualization technique, pro-
posed by Gotel et al. (2007) .

3.4 Natural language processing techniques in requirements
management

Natural Language Processing (NLP) techniques provide new possibilities
of improving requirements management related tasks, even though as men-
tioned by Ryan (1993) the use of these techniques have to be supervised
by practitioners. These possibilities have been explored by a number of
researchers and reported in a number of publications. Among those publi-
cations that include some kind of empirical evaluations, the vast majority
of natural language processing techniques and tools built based on them
are used to examine the quality of requirements specifications. The qual-
ity of requirements specifications is analyzed, for example in terms of the
number of ambiguities (Fantechi et al. 2003) by using ambiguity rates of
sentences depending on the degree of syntactic and semantic uncertainty
(Macias and Pulman 1995), or detecting ambiguities by applying an inspec-
tion technique (E.Kamsties et al. 2001). Furthermore, Rupp et al. (2000)
produced logical forms associated with parsed sentences to detect am-
biguities. Among other quality attributes of requirements artifacts ana-
lyzed using natural language processing techniques, Fabbrini et al. (2001)
proposed a tool that is improving understandability, consistency, testabil-
ity and correctness of requirements documents. On the other hand, Ed-
wards et al. (1995) presented a tool that uses rule-based parsing to translate
requirements from natural languages and by that helping requirements
analysis and maintenance throughout the system life-cycle, and Gervasi
et al. (2000) presented natural language processing techniques to perform
a lightweight validation of natural language requirements which was ar-
gued to have low computational and human costs.

30

Apart from assisting with assessing the quality of requirements, NLP
techniques were also used for tasks such as extracting abstractions from
text documents (Aguilera and D.Berry 1991, Goldin and Berry 1997) or
synthesizing crucial requirements from a range of documents that includes
standards, interview transcripts, and legal documents (Sawyer et al. 2002).
On the other hand, the possibilities of applying statistical language pro-
cessing techniques in requirements engineering were explored, for exam-
ple by Sawyer et al. (2005) in supporting early phase requirements engi-
neering, or in helping to identify and analyze domain abstractions (Rayson
et al. 2000). Natt och Dag et al. (2004, 2005, 2006) also used statistical nat-
ural language processing methods to support the requirements consolida-
tion process. Finally, a different approach to requirements understanding
is taken by Gervasi (1999) who used lexical features of the requirements to
cluster them according to specific criteria, thus obtaining several versions
of a requirements document. The sectional structure of these documents,
and the ordering of requirements in each section, are optimized to facilitate
understanding for specific purposes.

4 Research Methodology

The research effort in software engineering is aiming for answering ques-
tions regarding the general phenomenon of developing, maintaining and
evaluating software. In the pursuit of answers to these questions certain
research methods are utilized. The research presented in this thesis has
mainly been conducted using an engineering approach, where situations
are observed and better solutions are proposed. This pragmatic approach
can also be characterized by a greater interest in obtaining practical rather
than theoretical knowledge as a more valuable source of information (East-
erbrook et al. 2007). The aims of the research effort summarized in this the-
sis are: (1) to explore, describe and provide empirical evidences towards
understanding the large-scale requirements engineering phenomenon, (2)
to discover what improvements are requested and (3) to decide which im-
provements that may be rewarding. This initial vision and research focus
were used to formulate research questions, presented in Section 2.

4.1 Research design

According to Robson (2002), there are two main approaches to research: the
fixed and the flexible research design. The fixed research design, also called
the quantitative research design, can be characterized by the fact that the
design is finished before the data collection phase starts. Because of that,
this approach can also be called “theory-driven” research design (Robson
2002). The fixed research design is often used to find which one of two or
more proposed solutions that in average can exhibit a different behavior

31

than the others. The results in this case are reported in terms of groups
rather than individuals (Robson 2002). Therefore, the weakness of the fixed
research design is an inability to capture the individual characteristics of
individual human behavior (Robson 2002). In contrast, the flexible research
design, also called the qualitative approach, evolves during the research
process when the data collection and analysis are intertwined. Qualita-
tive data is typically non-numerical, often focused on words, but may also
include numbers. Fixed and flexible research designs can further be clas-
sified into research strategies, described in the section that follows. The
research presented in this thesis uses both types of research designs (see
Table 3).

4.2 Research strategies used

In this section, only the strategies used in this thesis are described. The
choice of research strategy is an important step in research methodology
and it is limited by the prerequisites for the investigation to be performed
(Wohlin et al. 2000). On the other hand, Robson argues that it is virtually
impossible to cover all possible forms of inquiries, but at the same time he
gives an impressive list of widely recognized research strategies (Robson
2002). In this thesis, the following research strategies have been used:

Case study. This strategy can be categorized as a traditional flexible re-
search strategy. The reason why it is considered as a flexible design is the
fact that the details of the design typically “emerge” during data collec-
tion and analysis. The case study can be both quantitative and qualitative
(Wohlin et al. 2000). Case studies are recognized as appropriate methods
to understand complex social phenomena (Yin 2003). Software engineer-
ing is, in general, a complex social phenomenon which allows investigators
using the case study approach to preserve its holistic and meaningful char-
acteristics. Therefore, Runeson and Höst (2009) pointed out that the case
study methodology is well suited for many kinds of software engineering
research. The ability to understand the complexity of the analyzed prob-
lem rather than abstracting from it is a principal advantage of performing
qualitative case studies (Seaman 1999). Moreover, Wieringa and Heerkens
(2007) classified case study as a well suited research methodology for re-
quirements engineering research, even though the results of a case study
are more difficult to interpret and generalize than the results of an experi-
ment (Wohlin et al. 2000).

Action research. This strategy, because of its evaluative nature, serves a
different purpose than other strategies. The important part of this strat-
egy is to influence or change some aspects of whatever is in the focus of
the inquiry. As pointed our by Robson, improvement and involvement
are central to action research (Robson 2002). The collaboration between
researchers and those who are the focus of the research and their participa-
tion in the process, is typically seen as central to action research. The result

32

of using this strategy comprises: (1) an improvement of a practice of some
kind, (2) the improvement of the understanding of a practice by its prac-
titioners, and (3) the improvement of the situation in which the practice
takes place. According to Easterbrook et al. (2007), it could be argued that
a large part of the software engineering research is actually using this strat-
egy. It is a common scenario in software engineering research that ideas are
originally developed by trying them out on real development projects, and
reporting the experiences (Easterbrook et al. 2007). Moreover, Wieringa
and Heerkens (2007) put action research on the list of the methods that
can be used in requirements engineering research (Wieringa and Heerkens
2007).

Experimental strategy This strategy can be categorized as a traditional
fixed design research strategy (Robson 2002). In experimental strategy, the
researcher introduces a controlled change into the context of the experi-
ment in order to see the result of this change on the object of the experi-
ment. The measured effect of manipulation is then statistically analyzed to
confirm the significance of the effect (Wohlin et al. 2000). The details of the
design are fully pre-specified before the main data collection begins (there
is typically a “pilot” phase before this when the feasibility of the design is
checked and changes made if needed). The need to conduct experiments
in software engineering was for the first time emphasized in the middle of
the 1980’s by Basili and Rombach (1988) and stressed by many others later
on (Potts 1993, Basili 1996, Fenton et al. 1994, Glass 1994, Kitchenham et al.
1995). Experiments are mainly quantitative since they focus on measuring
different variables changing them and measuring them again (Wohlin et al.
2000).

4.3 Research methods used

After selecting the research strategy, a researcher should decide which data
collection techniques are the most suitable for gathering data (Easterbrook
et al. 2007). Selecting research methods is a necessary and imporant part
of the research methodology. Since requirements engineering, as a part of
software engineering, involves real people working in real environments,
researching requirements engineering is essential to study people-software
practitioners as they solve real problems in real environments. This means
that studies are conducted in a field setting (Lethbridge et al. 2005). Wrongly
selected data collection methods may not reveal all characteristics of the
data under analysis and may by that harm the analysis phase and even
the results of the study. There are many data collection methods available
(Robson 2002), meaning that the researcher who’s goal is to select suit-
able techniques must perform careful consideration of the research design
as well as the pragmatics of the research setting (Easterbrook et al. 2007).
Many aspects affect this selection process, where one of the most com-
mon is the degree of involvement of software engineers (Lethbridge et al.

33

2005). During the data collection, it is important to quantify the advan-
tages and disadvantages of the different techniques from the perspectives
of the experimenter, the participants, reliability and the generalizability of
the results. Therefore, multiple techniques can be used to overcome lim-
itations of each single technique, for example while gathering data from
multiple perspectives. This section focuses on the research methods used
in this thesis, with respect to the taxonomy of techniques based on the de-
gree of involvement of software engineers presented by Lethbridge et al.
(2005). Among the first degree techniques, where software engineers were
directly involved in the study, conceptual modeling and interviews were
used. Among the second degree techniques, the instrumenting systems
technique was used in this thesis. Among the third degree of involvement
techniques, the analysis of electronic databases of work performed was
used. Additionally, content analysis technique described by Robson (2002)
was also used in this thesis.

Interviews. Interviews are the most straightforward instrument for
data collection (Lethbridge et al. 2005). The interviews can be used in stud-
ies where the goal is to gain some general information, including opinions,
about the process or product (Lethbridge et al. 2005). In this case, the re-
searcher collects the mentioned information during the interview. The pre-
vious fact makes this technique flexible and inquisitive (Lethbridge et al.
2005). In spite of its time consuming nature, which is considered beeing
its disadvantage, it brings the possibility to follow up answers given by
participants of the study, interpret the tone of their voice, expressions and
intonations, which documents or written answers cannot reveal. This tech-
nique has been used in Papers I,II,III and IV. Depending on the resources
available, interviews can be used to collect small or large volumes of data.
According to Robson (2002), interviews can be classified into three types:
fully structured, semi-structured and unstructured. In this thesis, semi-
structured interviews were used. The semi-structured interview uses a set
of predetermined questions, but the order of how they are asked can be
modified based upon the interviewer’s perception of what seems most ap-
propriate. Questions wording can be changed and explanations given, for
example particular questions which seem inappropriate with a particular
interviewee can be omitted, or additional ones included. In this thesis, the
semi-structures interviews were performed in Papers I, II, III and IV.

Content analysis. Instead of, as previously mentioned, directly observ-
ing or interviewing for the purpose of the inquiry, content analysis tech-
nique is dealing with artifacts produced for some other purpose. It is clas-
sified as an “unobtrusive measure”, which means that collecting the data
does not affect collected documents (Robson 2002). The gathered informa-
tion, which in this case can be a variety of written information, is analyzed
and conclusions based on the content are reported. The indirect involve-
ment of software engineers in the data collection task makes this technique
suitable for large volumes of data, which is the case for the studies in Pa-

34

pers II, III and IV. It is also a useful technique to be utilized when the goal
of the study is to gather or propose a set of metrics (Lethbridge et al. 2005),
which is the case in Paper III. The content analysis can also be used as a
secondary or supplementary method (Robson 2002), and that was the way
of using it in Papers II, III and IV.

Instrumenting systems. The prerequisite of using this techniques is to
have access to the software engineer’s environment when they are work-
ing, but does not require direct contact between the participants and the
researchers. This indirect nature of this techniques make is suitable for col-
lecting large volumes of data (Lethbridge et al. 2005). In the instrumenting
systems technique, the researcher builds "instrumentation" into the soft-
ware tools used by software engineers (Singer et al. 2007). In this thesis,
the instrumentation technique is used in Papers III and IV to visualize in-
formation recorded in the requirements management tool. The visualiza-
tion technique provides process monitoring facilities not available by the
current requirements management tool set without time commitment from
requirements engineers. Since people tend to be poor judges of factors such
as relative frequency and duration of the various activities they perform,
this technique can be used to provide such information accurately (Singer
et al. 2007). On the other hand, it is difficult to analyze data from an instru-
mented system meaningfully, which is a disadvantage of this method that
may require, for example, a better understanding of the working environ-
ment.

Analysis of electronic databases of work performed. The work per-
formed by developers and software engineers is often stored and managed
in various types of electronic databases. The information and the records
how the information was created and managed are a rich source of infor-
mation for software engineering researchers (Singer et al. 2007, Lethbridge
et al. 2005). This data analysis technique has the advantage of analyzing
large amounts of data. The data is not influenced by the presence of re-
searchers. The disadvantage of this technique comprises low or sometimes
lack of control over the quality and quantity of the information gathered
(Lethbridge et al. 2005). This technique has been used in Papers III and
IV, where the decision logs were studied in order to calculate one of the
defined measurements.

4.4 Research classification

This section presents the classification of the research conducted in this
thesis. The attempt to classify conducted research has been made with the
help of the previously described research strategies and methods. Table
3 provides a mapping between the presented papers, research questions,
strategies, designs and methods.

A case study research strategy is used in Paper I. The reason behind
selecting this strategy is the goal of this study which was to understand

35

Ta
bl

e
3:

R
es

ea
rc

h
C

la
ss

ifi
ca

ti
on

Pa
pe

r
R

es
ea

rc
h

Q
ue

st
io

n
R

es
ea

rc
h

D
es

ig
n

R
es

ea
rc

h
St

ra
te

gy
R

es
ea

rc
h

M
et

ho
d

I
W

ha
t

ar
e

th
e

ch
al

le
ng

in
g

as
-

pe
ct

s
of

R
eq

ui
re

m
en

ts
M

an
ag

e-
m

en
tp

ro
ce

ss
in

a
ve

ry
la

rg
e-

sc
al

e
co

nt
ex

t?

fle
xi

bl
e

C
as

e
st

ud
y

In
te

rv
ie

w
s

II
H

ow
va

ri
ab

ili
ty

is
m

an
ag

ed
in

pr
ac

tic
e

in
la

rg
e-

sc
al

e
so

ftw
ar

e
pr

od
uc

tl
in

e
co

nt
ex

ts
?

fle
xi

bl
e

C
as

e
st

ud
y,

ac
ti

on
re

se
ar

ch
an

d
su

r-
ve

y

In
te

rv
ie

w
s

an
d

an
al

ys
is

of
el

ec
tr

on
ic

da
ta

ba
se

s
of

th
e

w
or

k
pe

rf
or

m
ed

II
I

H
ow

to
ch

ar
ac

te
ri

ze
an

d
vi

su
al

-
iz

e
sc

op
e

ch
an

ge
s

dy
na

m
ic

s
in

a
la

rg
e-

sc
al

e
so

ftw
ar

e
de

ve
lo

pm
en

t
co

nt
ex

t?

fle
xi

bl
e

A
ct

io
n

re
se

ar
ch

A
na

ly
si

s
of

el
ec

tr
on

ic
da

ta
ba

se
s

of
th

e
w

or
k

pe
r-

fo
rm

ed
an

d
in

te
rv

ie
w

s

IV
H

ow
ca

n
m

ul
tip

le
sc

op
e

ch
an

ge
s

be
ch

ar
ac

te
ri

ze
d

an
d

vi
su

al
iz

ed
in

a
la

rg
e-

sc
al

e
so

ftw
ar

e
de

ve
lo

p-
m

en
tc

on
te

xt
?

fle
xi

bl
e

A
ct

io
n

re
se

ar
ch

A
na

ly
si

s
of

el
ec

tr
on

ic
da

ta
ba

se
s

of
th

e
w

or
k

pe
r-

fo
rm

ed
an

d
in

te
rv

ie
w

s

V
C

an
lin

gu
is

tic
m

et
ho

ds
of

fin
d-

in
g

si
m

ila
r

re
qu

ir
em

en
ts

ov
er

-
pe

rf
or

m
se

ar
ch

in
g

an
d

fil
te

ri
ng

m
et

ho
ds

fo
ra

ta
sk

of
re

qu
ir

em
en

ts
co

ns
ol

id
at

io
n?

fix
ed

Ex
pe

ri
m

en
t

M
ea

su
ri

ng
th

e
ef

fe
ct

of
m

a-
ni

pu
la

ti
ng

in
de

pe
nd

en
t

va
ri

-
ab

le
s

on
de

pe
nd

en
t

va
ri

ab
le

s
th

ro
ug

h
gi

ve
n

ta
sk

s
an

d
da

ta
co

lle
ct

io
n

fo
rm

s
us

ed
by

su
b-

je
ct

s

36

the large-scale requirements engineering practice in an industrial exam-
ple. It can be argued here that a literature review, which most research
efforts starts with, could have been used instead. However, due to a lim-
ited number of publications within the requirements engineering field that
exclusively addresses issues related to the scalability of requirements man-
agement techniques, an interview study about current practices in work-
ing with large-scale requirements repositories has been performed as the
introductionary step of understanding the problem area and defining fur-
ther research questions. The study focuses on a senior requirements engi-
neering role at the case of the company under study, called requirements
architect, being responsible for quality and coordination of large require-
ments repositories. The interview method is also suitable here because of
the exploratory character of this study, since it brings brings possibilities to
interpret tone of the voice, expressions, and intonations of the interviewee.
Finally, during the interviews researchers should explain misunderstood
questions and follow up answers.

In Paper II, a case study is chosen as a research strategy. The main
reason to use this strategy is the nature of the research questions that this
study is addressing. The phenomenon under investigation, in this case the
process of managing variability, has been studied in its natural environ-
ment (Yin 2003). Therefore, a case study strategy was used in this study.
Moreover, the in-depth analysis of a single case helps to understand the
surrounding context of the investigated phenomenon. One of the issues
defined in Paper II, which the participants of this study reported as es-
pecially challenging, was handling the complexity in large-scale contexts
in terms of multi-projects and multi-products coexisting together often as
a derivation of the same code base. In this study, both direct and indi-
rect methods of data collection were used. First, the interviews were per-
formed to understand how variability requirements and variability points
are managed in practice in software product lines, and what the problems
are with large-scale variability management. Then, the analysis of the vari-
ability documentation database has been performed in order to address
the third question stated in Paper II. Finally, to assess the usefulness of
proposed improvements, the survey strategy has been used.

The aims for Papers III and IV were accordingly: to present a method
for visualizing the scoping process in platform-based development of em-
bedded systems complemented with scope tracking measurements (Paper
III), and to extend this method by a cross-project scope changes visualiza-
tion technique (Paper IV). The overall goal for both studies is to improve
the understanding and provide techniques for analysis and control over
scope management in a large project, where many scope changes occur and
where current requirements management tools can not cope with the paste
and complexity of them. Both studies utilize mixed case study and action
research strategies, using multiple methods for data collection. In both Pa-
pers III and IV, researchers have been involved in several steps towards im-

37

plementing the visualization technique, applying the technique and scope
tracking measurements on an empirical set of data, and finally using find-
ings from the previous steps to influence and improve the scoping practice
at the case company. In Paper III, the instrumentation tool in terms of a
data exporter has been built into the requirements management tool used
by requirements engineers in the case company. The exported data pro-
vides input for the implementation of the visualization technique which
produces visual representations of scoping decisions over time. Then, the
analysis of visual representation of the work performed in the scoping pro-
cess has been done. Three large product lines projects, each with hundreds
of features, were analyzed in Paper III, and two in Paper IV. Furthermore,
in both studies meetings with practitioners and informal interviews have
been conducted while developing the visualization technique in order to
collect feedback and suggestions about the solution. The more formal ap-
proaches of collecting evaluation data have been used as the final step of
research in both projects. In Paper IV, interviews with practitioners have
been conducted in order to discuss the results from applying the technique
as well as its usefulness. The critique of the solution and suggestions for
further improvements have also been collected during interviews. In Pa-
per III, researchers collected practitioners feedback regarding the solution
along the study in a continuous matter, mostly in a form of meetings and
unstructured interviews. As the final, step researchers asked practitioners
to rank the usefulness of proposed scope tracking measurements.

Finally, the aim of Paper V was to experimentally assess whether a tool
enriched by a natural language processing functionality can provide a bet-
ter assistance in a task of finding similar requirements than the searching
and filtering functionalities implemented in most commercially available
requirements management tools. Due to the fact that two treatments were
compared in this study, the experiment research strategy has been used.
The effect of the manipulation was measured on students, who played the
role of practitioners in this case. The details of the design were fully pre-
specified before the data collection began. Finally, statistical methods have
been used to assess if the hypotheses stated a priori can be rejected.

4.5 Validity

Even though selecting proper research strategies and methods is an im-
portant step of conducting meaningful research, it does not imply that the
results should be trusted without any doubts or questions. Therefore, the
results of any research effort should be interpreted in the light of the threats
to the validity. A thorough and upstanding criticism of the results is the
only way of enabling or rejecting possibilities of generalization or repli-
cation. Thanks to threats of validity, researchers can distinguish which
results corroborate under which conditions, making them more useful for
building up knowledge. These criteria are useful for evaluating all pos-

38

itivistic studies, including controlled experiments, most case studies and
survey research (Easterbrook et al. 2007). In this thesis, threats to valid-
ity are presented in respect to their classification outlined by Wohlin et al.
(2000).

Internal validity concerns the question about the issues that may af-
fect the causal relationship between treatment and outcome (Wohlin et al.
2000). In experiments, the internal validity questions whether the effect is
caused by independent variables or by other factors. If a researcher incor-
rectly concludes that the treatment affects the outcome without knowing
that a third factor has caused or significantly influenced the outcome, then
the study has a low degree of internal validity (Yin 2003). Internal validity
threats have been given the greatest attention in experimental and quasi-
experimental research. In case studies, it should only be a concern for a
causal type of studies where an investigator is trying to determine whether
there is a casual relationship between events x and y without knowing that
some third factor z may actually have caused y. This logic is not applicable
to descriptive or exploratory studies which are not concerned with mak-
ing causal claims (Yin 2003). In this thesis, multiple techniques were used
to address internal validity threats including: (1) continuous validation of
emerging results and techniques for Papers II, III and IV, (2) sending tran-
scripts back to interviewees to validate the correctness of derived causal
relationships in Paper I, (3) performing a replication on an experiment to
show the range of conditions under which experimental results hold in
Paper V or (4) performing multiple studies on the phenomenon of scope
visualization in Papers III and IV.

Conclusion validity arises from the ability to draw correct conclusions
about the relation between the treatment and the outcome (Wohlin et al.
2000). Conclusion validity is related to the repeatability of the study, such
as data collection procedures. In this case, the typical criticism of a single
interview case study is the fact that a follow-up interview study may pro-
duce different results, even if the same research procedures are followed.
If the same study is repeated and the same results are obtained, then the
study has a high degree of reliability (Yin 2003). In this thesis, the follow-
ing techniques were used to address threats to the conclusion validity: per-
forming multiple case studies on the topic of scope dynamics visualization
in Papers III, IV and the related Paper VII, and replication of an experiment
in Paper V.

Construct validity is concerned with the relation between theories be-
hind the research and the observations (Wohlin et al. 2000). The use of
multiple sources of evidence and a chain of evidences may increase the
construct validity (Yin 2003) in order to ensure that the result is an effect of
the treatment. Case studies have often been criticized for using "subjective"
judgments to collect the data (Yin 2003). This type of threats is addressed
in Paper III, which proposes a set of scope tracking measurements that are
targeted for other case studies reuse.

39

External validity is related to establishing the domain to which a study’s
findings can be generalized. Results obtained in the context of a unique
environment, or with a specific group of subjects, may not be fully trans-
ferable to other contexts and environments. The ways of minimizing this
type of validity treats are using theory in single-case studies or using repli-
cation logic in multiple-case studies (Yin 2003). Moreover, if a case study
is focusing on explaining or understanding a phenomenon in its natural
setting, then the attempt to generalize from the study is outside its aims.
Due to the fact that all studies were performed in the same industrial con-
text, the transferability of achieved results to other domains may only be
addressed in a form of hypotheses.

5 Research Results

In this section, the main contributions of this thesis in relation to each re-
search question are presented. For each addressed research question, the
main threats to validity of the research results are summarized. More de-
tailed contributions and threats to the validity of each paper in this thesis
can be found in the respective paper.

Main contribution of RQ1. The main contribution is an increased un-
derstanding of very large-scale requirements engineering practices. The
main focus in this study was put on understanding the diversity and com-
plexity of very large- scale requirements engineering in a given industrial
example. The first detailed contribution comprises a set of tasks related to a
role at the case company called "requirements architect", which is working
with large and complex requirements repositories. The second contribu-
tion of Paper I is the practitioners’ views on the notion of "requirements
architecture" and its desired quality attributes. This study contributes also
by presenting the list of further research opportunities in VLSRE that has
been addressed in RQ2, RQ3, RQ4 and RQ5. To summarize, Paper I can be
considered as an exploratory study where more specific issues and chal-
lenges were defined.

Main validity issues of RQ1. One major treat to the validity in this case
is the number of companies involved in this study. It is obviously risky to
draw more general conclusions from a single-company case study in terms
of issues and challenges, as they may be company- or even domain-specific
instances. However, due to the lack of publications that characterize the
large-scale requirements management phenomenon when the study was
performed, the focus of this study was to explore this phenomenon on a
given case company example and to report findings with the respect to
the case study context. In this way, no attempt to present the findings
as generally applicable for all large-scale requirements management con-
texts has been made. However, it is planned to extend the initial study by
inviting more companies from other domains so that the initial results can

40

be confirmed or rejected in the light of new evidences. The second threat
related to construct validity is the way how subjects were selected to be
interviewed. This treat is addressed in two ways: firstly by inviting all re-
quirements architects from one department of the company responsible for
a certain number of products dedicated to a specific market segment, and
secondly by asking practitioners for recommendations of which persons
to interview so that the risk of getting a subjective picture can be mini-
mized. The final major threat to validity in this study is related to the list
of the quality attributes of a good requirements architecture. Although the
reported quality attributes may be considered more general, the confirma-
tion of derived results requires additional interview studies (see Section 6
for more details).

Main contribution of RQ2. The contributions of RQ2 are threefold: (1)
the results from an empirical interview study, (2) the improvement pro-
posals of managing variability at the case company and (3) their evalua-
tion. The first research contribution is the result from an interview study,
were the processes of product derivation (Deelstra et al. 2000) and the con-
cept of managed variability (Pohl et al. 2005) were investigated. During
the interview study, 29 persons working with requirements engineering,
implementation and testing were interviewed in order to understand how
the variability is represented, implemented, specified and bound during
the product configuration. The results contribute in an improved under-
standing of large-scale variability management for software product lines
in the mobile handset domain which is addressing RQ1 in Paper II. The
second detailed result that contributes to RQ2 is a set of challenges in man-
aging variability in large-scale software product lines projects. The last
result that comprises to RQ2 is the improvement proposal to the current
way of working and its evaluation. The proposal includes a new structure
of variability information that aims for enabling linking product config-
uration to the initial requirements by splitting the configuration into two
levels of granularity. The proposal has been empirically tested by applying
it to the existing configuration structure in a pilot study and performing a
survey about its potential benefits and drawbacks.

Main validity issues of RQ2. One major threat to validity is the research
strategy utilized in this study. The case study strategy is often criticized
for offering poor basics for generalizing (Yin 2003). However, the focus of
this study is to increase the understanding of large-scale variability man-
agement in a given large-scale company example, and not to draw gen-
eral conclusions that certain issues and experiences in this case also will
be present in other cases, especially in other domains. The second threat to
validity is the way and number of persons that were asked to participate in
the interview study. This threat to construct validity is always problematic
in case study interview research, since the "subjective" judgments are used
to collect the data. This treat is addressed in two ways. Firstly, researchers
asked practitioners for recommendations to which persons to interview so

41

that the risk of getting a subjective picture decreased. Secondly, to cover
the entire process of variability, researchers invited representatives from
all groups of specialists that were involved in the process of variability
management including both management and development sites. A more
detailed analysis of threats to validity is presented in Paper II.

Main contribution of RQ3 and RQ4. The main contributions of RQ3
and RQ4 are visualization techniques for showing scope changes over time
in a project or across projects. These contributions are addressing one of
the challenges defined in Paper I, namely analysis methodology and vi-
sualization models for large-scale requirements management. This issue
is investigated in Papers III and IV. Firstly, in Paper III a technique called
Feature Survival Charts (FSC) for visualization of scoping change dynam-
ics is implemented and evaluated in three projects. The results of this em-
pirical evaluation demonstrate that the charts can effectively help in in-
vestigating reasons behind scoping decisions. Furthermore, Paper III con-
tributes to RQ3 by providing a set of scoping measurements, theoretically
analyzed and applied to the empirical data given by the case company. Fi-
nally, the last contribution in Paper III is the integration of the visualization
techniques with the current requirements management analysis and mea-
surement practices. The main contribution of Paper IV is a visualization
technique called Feature Transition Charts (FTC) that gives an overview
of scoping decisions involving changes across multiple projects. The tech-
nique is an extension of the in Paper III presented FSC concept. FTC is ini-
tially validated using industrial data from the embedded systems domain
in a multi-project product line engineering context in dialogue with prac-
titioners. The additional contribution of Paper IV, which addresses RQ4, is
the results of the analysis of the symbols that can be used in providing an
effective overview of the timing and magnitude of feature transitions.

Main validity issues of RQ3 and RQ4. In the two scope visualization stud-
ies in Papers III and IV, the major threat is concerned with external valid-
ity. The visualization techniques, both feature survival charts and feature
transition charts, have been designed with the requirements management
process of the case company in mind. This fact is especially important for
the feature transition charts, since the company utilizes the concept of soft-
ware product lines where many consecutive releases of the common code
base coexist (Pohl et al. 2005). However, the author believes that the in
Papers III and IV presented visualization techniques can provide means of
describing complex scoping processes also for other software management
and requirements management process models. The second major threat
to the external validity is concerning the general application of both FSC
and FTC. Both concepts have been tested on the empirical data from the
same company, making the results or evaluation, although positive, falling
short on the attempt of generalization. However, since visualization tech-
niques are generally recognized as useful in increasing the understanding
of complex and rapidly changing datasets, the questions regarding this

42

threat can be limited to details of presented visual techniques rather than
their general usefulness. The decisions on which projects the visualiza-
tion techniques should be tested on were made together with practition-
ers, minimizing the the construct validity threat. Finally, the solution has
been accepted to be implemented as a part of a requirements management
measurement and assessment tool, extending its usefulness over the par-
ticipants involved in the evaluation.

Main contribution of RQ5. The last contribution of this thesis is the re-
sults of an experiment performed to assess if a linguistic method for find-
ing similar requirements can over-perform searching and filtering meth-
ods. The experiment was a replicated experiment. The results from the
original experiment are confirmed in five out of six tested hypotheses. The
second contribution of this study is the result of the cross-experimental
hypotheses testing. The final contribution is the discussion of the reasons
behind results discrepancy.

Main validity issues of RQ5. The first main threat, related to the exter-
nal validity of this study, is the number of analyzed requirements during
the experiment. Since only a relatively small number of requirements is
analyzed during the experiment, it is hard to generalize the results on a
very big set of requirements, which often is the case in industrial settings.
The second main threat is related to the conclusion validity, since on the
contrary to the original study, where subjects worked independently in the
replication case were asked to form pairs. This threat has been addressed
by performing the analysis of a pre-study questionnaires filled in by all ex-
periment participants. During this analysis, the differences in knowledge
of English, industrial experience and experience from the courses have
been compared to assess the degree of heterogeneity of pairs. The third
main threat is the difference in user interface of compared tools, which
may result in a performance difference. This threat has been addressed by
giving subjects that used the more complicated tool more time to get fa-
miliar with the user interface. The fourth main threat, the compensatory
rivalry, may be a problem in this case, since the group that used the ’open-
source’ solution or the commercial solution may try to perform much better
to make their favor type of software win. This threat is addressed by ex-
plicitly stating in the beginning of the experiment that there is no favor or
assumingly better method. Finally, the last main threat to construct valid-
ity is related to the awareness of subjects about their own errors. This may
have influenced the number of correct and faulty links. Also, when sub-
jects knew that the time was measured, it is possible that they were more
aware of the time spent and therefore effecting the performance results.
This threat has been addressed by explicitly mentioning that the subjects
can not gain anything from performing better or worse with the task, and
also by mentioning that the correct answer in not known.

43

Table 4: Further research plans and ideas.

Further
Research

Description Research Approach

FR1 Interview study with more
companies involved

Interviews, content
analysis and surveys

FR2 Additional empirical studies
of variability management in
large-scale contexts

Interview and docu-
ment studies for data
collection

FR3 Extending the proposed visual-
ization techniques on the sys-
tem requirements level visual-
ization. Improving the user in-
teraction. Additional empirical
evaluations.

Building a tool sup-
port that can be
reused in other com-
panies.

FR4 Additional investigations of
possible usage of linguistic and
machine learning tool support
for Requirements Management
related tasks

Literature study and
prototype tools for
data collection.

6 Further Research

In this section, a research plan for the future is presented. The overall re-
search plan is intended to continue with the same general focus as pre-
sented in this thesis, namely to increase the understanding of various as-
pects of large and very large-scale requirements engineering and to sup-
porting some aspects with new methods or tools. The important aspect of
further research effort is to provide results that can demonstrate scalability
to large or very-large scale requirements engineering contexts. Therefore,
further efforts are required to provide scalable methods and tools to assist
requirements management in the mentioned scale context. Furthermore, it
is also important to continue the empirical investigation of VLSRE contexts
to more precisely understand their nature. These goals are planned to be
realized through more empirical studies with both quantitative and qual-
itative approaches. A more detailed plan for further research is presented
below, while being summarized in Table 4.

FR1. Further empirical investigations of large-scale requirements en-
gineering contexts. The interview study presented in Paper I presents a
single company example of tasks related to large-scale requirements man-
agement and coordination. This purposive sampling strategy (Easterbrook

44

et al. 2007) hinders drawing more general conclusions from the study. Thus,
in order to make a possible distinction between an extreme and typical
nature of results derived in Paper I, a multiple case follow-up study is
planned to be conducted to increase the validity. In the follow-up interview
study, researchers are planning to assess, focusing on the tasks, whether
issues and challenges derived from the original study are caused by the
size factor or not. This approach can hopefully provide an in-depth under-
standing of what can be considered as large-scale specific tasks, issues or
challenges. The results are also planned to be confronted with recent pub-
lications touching upon challenges in large and very large-scale require-
ments engineering contexts (Berenbach et al. 2009, Konrad and Gall 2008,
Northrop et al. 2006, Herbsleb 2007, Bergman et al. 2002a, Boehm 2006).
Additionally, the in Paper VI and in Section 3.1 presented orders of magni-
tude classification in requirements engineering are planned to be extended
to achieve a taxonomy of RE techniques and approaches that were success-
fully applied in practice or provided a strong scientific evidence to cope
with the size and complexity of VLSRE.

As a part of further research within this area, it is also planned to con-
tinue conceptual and empirical investigation of the notion of requirements
architectures. The author believes that a better understanding of the role
of requirements architectures in large-scale requirements management can
help in tackling problems of this context. That is also why the additional
investigation of the organizational and process aspects in relation to the
requirements architecture is planned for further research. Furthermore,
the research plan includes investigating features of computer-aided tools
for managing requirements architectures and also visualizing these archi-
tectures in large-scale product line engineering. Finally, it is planned to
develop assessment instruments for requirements architecture quality and
competence certification of requirements architects, but only after a better
understanding of the notion of the requirements architecture quality.

FR2: Additional empirical studies of variability management in large-
scale contexts. As provided in Paper II, the inevitable cost for a greater de-
gree of reuse and increased productivity of Software Product Lines (SPL)
is an increased complexity of coexisting product variants and an increased
cost of managing them (Pohl et al. 2005). Thus, more efficient methods and
tools for specifying and managing variability are aims for further research.
It is planned to conduct additional empirical studies at other companies.
In these planned studies, the already derived results can be compared and
confronted with new cases in terms of way of working, issues, challenges
and research opportunities. Furthermore, additional studies can enable
possibilities to evaluate in Paper II proposed improvements and to assess
their transferability to other empirical environments.

FR3: Extending the proposed visualization techniques on the system
requirements level visualization. Improving the user interaction. Ad-
ditional empirical evaluations. It is rather clear that a carefully designed

45

visualization could assist with for example a typical requirements compre-
hension problem of gaining a quick assessment on the ”health” of a set of
requirements, which usually is impeded by the need to browse through
disjoint textual requirements documentation and accompanying models
(Gotel et al. 2007). The visualizations presented in Papers III and IV bring
a quick and clear assessment on the scoping process for large projects, but
can also be a base for more in-depth analysis while envisioning details
about the scoping process. Thus, additional studies on finding effective
visual means of scope dynamics visualization are in the agenda of fur-
ther research. Especially, the research is planned to be focusing on pro-
viding useful visual means that can help project and product managers to
quickly assess the efficiency of the scoping process in terms of resource sit-
uation and scope capacities. In parallel, it is planned to focus the further
research steps on an enhanced tool support that utilizes various zooming
algorithms together with extended interaction capabilities. Furthermore,
a more in-depth study that aims for defining additional scope tracking
measurements and applying them into the case company context data, is
planned. Finally, additional studies on finding optimal visual explanations
for complementary aspects of scoping not mentioned by the current visu-
alization technique and for other requirements management related tasks
are planned as further research topics.

FR4: Additional investigations of possible usage of a linguistic tool
support for requirements management related tasks. Paper V presents
the results from an evaluation of linguistic support for identification of
similar requirements. The natural language processing field can provide
a vast number of other techniques that automatically can analyze natural
language documents. Therefore, it is planned to test other techniques for
other relevant tasks in large-scale requirements management. In particu-
lar, the further research should focus on unsupervised natural language
processing methods, for example clustering (Duan et al. 2009) or searching
methods, that may provide valuable help with impact analysis or trace-
ability.

46

REFERENCES

References

M. Abramovici and O. J. Sieg. Status development trends of product life-
cycle management systems. In Proceedings of International Conference In-
tegrated Product and Process Development, pages 55–70, 2002.

C. Aguilera and D.Berry. The use of a repeated phrase finder in require-
ments extraction. Journal of Systems and Software, 13:209–230, 1991.

T. AlBourae and G. Ruhe. Lightweight replanning of software product
releases. In Proceedings of the 1st International Workshop on Software Product
Management (IWPSM 2006), pages 27–34, 2006.

A. Aurum and C. Wohlin. Applying decision-making models in require-
ments engineering. Information and Software Technology, 45(14):2–13, 2002.

A. Aurum and C. Wohlin. The fundamental nature of requirements engi-
neering activities as a decision-making process. Information and Software
Technology, 45(14):945–954, 2003.

A. Aurum and C. Wohlin. Engineering and Managing Software Requirements.
Springer, 2005.

D. E. Avison and G. Fitzgerald. Information systems development methodolo-
gies techniques, and tools. John Wiley, 1998.

T. Ball and S. G. Erick. Software visualization in the large. IEEE Computer,
29(4):3–14, 1981.

R. Balzer. Transformational implementation: An example. IEEE Transac-
tions on Software Engineering, 7(1):3–14, 1981.

V. R. Basili. The role of experimentation in software engineering: Past,
current and future. In Proceedings of the 18th International Conference on
Software Engineering (ICSE 96), pages 442–449, 1996.

V. R. Basili and D. H. Rombach. The tame project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineer-
ing, 14(6):758–773, 1988.

K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2000.

P. Berander. Using students as subjects in requirements prioritization. In
Proceedings of the 2004 International Symposium on Empirical Software Engi-
neering, pages 167–176, 2004.

B. Berenbach, D. J. Paulish, J. Kazmeier, and A. Rudorfer. Software & Sys-
tems Requirements Engineering: In Practice. Pearson Education Inc., 2009.

47

REFERENCES

M. Bergman, J. L. King, and K. Lyytinen. Large scale requirements anal-
ysis as heterogeneous engineering. Scandinavian Journal of Information
Systems, 14(4):37–55, 2002a.

M. Bergman, J. L. King, and K. Lyytinen. Large-scale requirements anal-
ysis revisited: The need for understanding the political ecology of re-
quirements engineering. Requirements Engineering Journal, 7(3):152–171,
2002b.

R. Berntsson Svensson. Managing quality requirements in software prod-
uct development. Licentiate Thesis, April 2009. ISSN 1652-4691.

S. Beydeda, M. Book, and V. Gruhn. Model-Driven Software Development.
Springer-Verlag, 2005.

J. M. Bhat, M. Gupta, and S. N. Murthy. Overcoming requirements engi-
neering challenges: Lessons from offshore outsourcing. IEEE Software,
23(5):38–44, 2006.

S. Biffl, B. Thurnher, G. Goluch, D. Winkler, W. Aigner, and S. Miksch. An
empirical investigation on the visualization of temporal uncertainties in
software engineering project planning. In Proceeding of the International
Symposium on Empirical Software Engineering (ISESE 2005), pages 437–446,
2005.

B. Boehm. Some future trends and implications for systems and software
engineering processes. Systems Engineering, 9(1):1–19, 2006.

B. W. Boehm. A spiral model of software development and enchancement.
Computer, 22(5):61–72, 1988.

R. Booth, B. Regnell, A. Aurum, R. Jeffrey, and J. Natt och Dag. Market-
driven requirements engineering challenges: An industrial case study
of a process performance declination. In Proceedings of the 6th Australian
Workshop on Requirements Engineering (AWRE 2001), pages 41–47, 2001.

S. Brinkkemper. Requirements engineering research the industry is and
is not waiting for. In Proceedings of 10th Anniversary International Work-
shop on Requirements Engineering: Foundation for Software Quality (REFSQ
2004), pages 41–54, 2004.

P. Carlshamre. Release planning in market-driven product development:
Provoking an understanding. Requirements Engineering Journal, 7(3):139–
151, 2002a.

P. Carlshamre. A usability perspective on requirements engineering – From
methodology to product development. PhD thesis, Linköping University,
Sweden, 2002b.

48

REFERENCES

P. Carlshamre and B. Regnell. Requirements lifecycle management and
release planning in market-driven requirements engineering processes.
In Proceedings of the 11th International Workshop on Database and Expert
Systems Applications, pages 961–965, 2000.

P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An
industrial survey of requirements interdependencies in software prod-
uct release planning. In Proceedings of the Fifth IEEE International Sympo-
sium on Requirements Engineering (RE 2001), pages 84–91, 2001.

D.W. Carman, A.A. Dolinsky, M.R. Lyu, and J.S. Yu. Software reliability en-
gineering study of a large-scale telelcommunications software system. In
Proceedings of the International Symposium on Software Reliability Engineer-
ing, pages 350–359, 1995.

E. Carmel. Global software teams: collaborating across borders and time zones.
McGraw-Hill, New york, 1999.

J. Chen, R. R. Reilly, and G. S. Lynn. The impacts of speed-to-market on
new product success: the moderating effects of uncertainty. IEEE Trans-
actions on Engineering Management, 52(2):199–212, 2005.

M. B. Chrissis, M. Konrad, and S. Shrum. CMMI: Guidelines for Process
Integration and Product Improvement. Pearson Education Inc., 2004.

J. Cleland-Huang and B. Mobasher. Using data mining and recommender
systems to scale up the requirements process. In Proceedings of the 2nd
international workshop on Ultra-large-scale software-intensive systems, pages
3–6, 2008.

J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou. Utilizing supporting
evidence to improve dynamic requirements traceability. In Proceedings of
the 13th IEEE International Conference on Requirements Engineer (RE 2005),
pages 135–144, 2005.

P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

Ward Cunningham. Manifesto for agile software development. http://

agilemanifesto.org/, December 2001.

B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems. Communications of the ACM, 31(11):1268–1287,
1988.

W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On building software pro-
cess models under the lamppost. In Proceedings of the 9th international
conference on Software Engineering (ICSE 1987), pages 96–103, 1987.

49

REFERENCES

D. Damian. Stakeholders in global requirements engineering: Lessons
learned from practice. IEEE Software, 24(2):21–27, 2007.

D. Damian and D. Zowhgi. Requirements engineering challenges in multi-
site software development organizations. Requirements Engineering Jour-
nal, 8(3):149–160, 2003.

T. De Marco. Structured Analysis and System Specification. Yourdon Press,
1978.

S. Deelstra, M. Sinnena, and J. Bosch. Product deriviation in software prod-
uct families: a case study. The Journal of Systems and Software, 74(2):173–
194, 2000.

G. DeGregorio. Visual tool support for configuring and understanding
software product lines. In Proceedings of the 9th International Symposium
of the International Council on System Engineering, pages 1–7, 1999.

C. Duan and J. Cleland-Huang. Visualization and analysis in automated
trace retrieval. In Proceedings of the First International Workshop on Require-
ments Engineering Visualization (REV 2006), pages 54–65, 2006.

C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski. Towards au-
tomated requirements prioritization and triage. Requirements Engineering
Journal, 14(2):73–89, 2009.

S. M. Easterbrook, J. Singer, M. Storey, and D. Damian. Guide to Advanced
Empirical Software Engineering, chapter Selecting Empirical Methods for
Software Engineering Research, pages 285–311. Springer, 2007.

C. Ebert. Dealing with nonfunctional requirements in large software sys-
tems. Annals of Software Engineering, 3(1):367–395, 2004.

M. L. Edwards, M. Flanzer, M. Terry, and J. Landa. Recap: a requirements
elicitation, capture and analysis process prototype tool for large complex
systems. In Proceedings of the First IEEE International Conference on Engi-
neering of Complex Computer Systems, 1995. Held jointly with 5th CSESAW,
3rd IEEE RTAW and 20th IFAC/IFIP WRTP, pages 278–281, 1995.

E.Kamsties, D.M. Berry, and B. Paech. Detecting ambiguities in require-
ments documents using inspections. In Proceedings of the First Workshop
on Inspection in Software Engineering (WISE 2001), pages 68–80, 2001.

J. Evermann. A cognitive semantics for the association construct. Require-
ments Engineering Journal, 13(3):167–186, 2008.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An automatic quality eval-
uation for natural language requirements. In Proceedings of the 7th In-
ternational Workshop on Requirements Engineering Foundation for Software
Quality (REFSQ 2001), pages 4–5, 2001.

50

REFERENCES

A. Fantechi, S. Gnessi, G. Lami, and A. Maccari. Applications of linguistic
techniques for use case analysis. Requirements Engineering Journal, 8(3):
161–170, 2003.

M. S. Feather, S. L. Cornford, and M. Gibbel. Scalable mechanisms for re-
quirements interaction management. In Proceedings of the Fourteen Inter-
national Conference on Requirements Engineering (RE 2000), pages 119–129,
2000.

M. S. Feather, S. L. Cornford, J. D. Kiper, and T. Menzies. Experiences
using visualization techniques to present requirements, risks to them,
and options for risk mitigation. In Proceedings of the First International
Workshop on Requirements Engineering Visualization (REV 2006), pages 80–
89, 2006.

N. Fenton, S. L. Pfleeger, and R. Glass. Science and subscience: A challenge
to software engineers. IEEE Software, 11(4):86–96, 1994.

P. K. Garg. On supporting large-scale decentralized software engineering
processes. In Proceedings of the 28th IEEE Conference on Decision and Con-
trol, pages 1314–1317, 1989.

V. Gervasi. Environment support for requirements writing and analysis. PhD
thesis, University of Pisa, 1999.

V. Gervasi and B. Nuseibeh. Lightweight validation of natural language re-
quirements: A case study. In Proceedings of the 4th International Conference
on Requirements Engineering, pages 113–133. Society Press, 2000.

R. Glass. The software research crisis. IEEE Software, 11(6):42–47, 1994.

L. Goldin and D. M. Berry. Abstfinder, a prototype natural language text
abstraction finder for use in requirements elicitation. Automated Software
Engineering, pages 375–412, 1997.

H. H. Goldstine and J. von Neuman. Planning and coding of problems for
an electronic computing instrument. Technical report, The Institute of
Advanced Study Princeton, New Jersey, 1948.

T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering Journal, 11:79–101, 2006.

O. C.Z. Gotel, F. T. Marchese, and S.J. Morris. On requirements visualiza-
tion. In Proceedings of the Second International Workshop on Requirements
Engineering Visualization (REV 2007), pages 80–89, 2007.

O. C.Z. Gotel, F. T. Marchese, and S.J. Morris. The potential for synergy be-
tween information visualization and software engineering visualization.
In Proceedings of the 12th International Conference Information Visualisation,
pages 547–552, 2008.

51

REFERENCES

D. Greer and G. Ruhe. Software release planning: an evolutionary and
iterative approach. Information and Software Technology, 46(4):243–253,
2004.

J. D. Herbsleb. Global software engineering: The future of socio-technical
coordination. Future of Software Engineering, 1(1):188–198, 2007.

S.A. Higgins, M. Laat, P.M.C. Gieles, and E.M. Geurts. Managing require-
ments for medical it products. IEEE Software, 20(1):26-33, 2003.

S. Hitchman. The details of conceptual modeling notations are important -
a comparison of relationship normative language. Communication AIS, 9
(10):188–198, 2002.

E. Hornecker and J. Buur. Getting a grip on tangible interaction: A frame-
work on physical space and social interaction. In In Proceeding of the
SIGCHI Conference on Human Factors in Computing Systems, pages 437–
446, 2006.

M. Höst, B.Regnell, J.Natt och Dag, J. Nedstam, and C.Nyberg. Explor-
ing bottlenecks in market-driven requirements management. Journal of
Systems and Software, 59(3):323–332, 2001.

S. Jacobs, M. Jarke, and K. Pohl. Report on the first international ieee sym-
posium on requirements engineering. Automated Software Engineering, 1
(1):129–132, 1994.

J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to
assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pages 198–205, 2000.

J. Karlsson. A Systematic Approach for Prioritizing Software Requirements. Doc-
torial Dissertation,. PhD thesis, Linköping University, Sweden, 1998.

J. Karlsson. Software requirements prioritizing. In Proceedings of the 2nd
International Conference on Requirements Engineering (ICRE 96), page 110,
1996.

J. Karlsson and K. Ryan. A cost-value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for pri-
oritizing software requirements. Information and Software Technology, 39
(14-15):939–947, 1997.

Lena Karlsson, Åsa G. Dahlstedt, Johan Natt Och Dag, Björn Regnell, and
Anne Persson. Challenges in market-driven requirements engineering -
an industrial interview study. In Proceedings of the Eighth International
Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ 2002), 2002.

52

REFERENCES

B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case studies for method and
tool evaluation. IEEE Software, 12(4):52–62, 1995.

B. Kitchenham, D. Budgen, P. Brereton, M. Turner, S. Charters, and
S. Linkman. Large-scale software engineering questions - expert opin-
ion or empirical evidence? IET Software, 1(5):161–171, 2007.

C. Knight and M. Munro. Virtual but visible software. In Proceedings of the
IEEE International Conference on Information Visualization, pages 198–205,
2000.

S. Konrad and M. Gall. Requirements engineering in the development of
large-scale systems. In Proceedings of the 16th International Requirements
Engineering Conference (RE 2008), pages 217–222, 2008.

S. Konrad, H. Goldsby, K. Lopez, and B. H.C. Cheng. Visualizing require-
ments in uml models. In Proceedings of the First International Workshop on
Requirements Engineering Visualization (REV 2006), pages 1–10, 2006.

R. Koschke. Software visualization in software maintenance, reverse engi-
neering, and re-engineering: a research survey. Journal of Software Main-
tenance and Evolution Research and Practice, 15(2):87–109, 2003.

G. Kotonya and I. Sommerville. Requirements Engineering. John Wiley &
Sons, 1998.

J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science, 11(1):65–100, 1987.

M. D. Lee, R. E. Reilly, and M. A. Butavicius. An empirical evaluation of
chernoff faces, star glyphs and spatial visualization for binary data. In
Proceedings of the Australian Symposium on Information Visualization, pages
1–10, 2003.

D. Leffingwell and D. Widrig. Managing Software Requirements: A Unified
Approach. Addison-Wesley, 2003.

T. C. Lethbridge, S. E. Sim, and J. Singer. Studying software engineers:
Data collection techniques for software field studies. Empirical Software
Engineering Journal, 10(3):311–341, 2005.

L. Lethola and M. Kauppinen. Empirical evaluation of two requirements
prioritization methods in product development projects. In Proceedings
of the 11th European Conference EuroSPI, pages 161–170, 2004.

F. J. Linden, K. van der Schmid, and E. Rommes. Software Product Lines in
Action The Best Industrial Practice in Product Line Engineering. Springer-
Verlag, 2007.

53

REFERENCES

R. C. Linger, M. G. Pleszkoch, L. Burns, A. Hevner, and G. H. Walton. Next-
generation software engineering: Function extraction for computation of
software behavior. In Proceedings of the 40th Annual Hawaii International
Conference on System Sciences (HICSS 2007), pages 9–17, 2007.

S. G. MacDonell. Visualization and analysis of software engineering data
using self-organizing maps. In Proceeding of the International Symposium
on Empirical Software Engineering (ISESE 2005), pages 115–124, 2005.

B. Macias and S. G. Pulman. A method for controlling the production of
specifications in natural language. The Computer Journal, 48(4):310–318,
1995.

A. Magazinovic and J. Pernstȧl. Any other cost estimation inhibitors? In
Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 233–242, 2008.

K. Masri, D. Parker, and A. Gemino. Using iconic graphics in entity-
relationship diagrams: The impact on understanding. Journal of Database
Management, 19(3):22–41, 2008.

D. D. McCracken and M. A. Jackson. A minority dissenting opinion. In
W.W. Cotterman, et al. (Eds.). Systems Analysis and Design - A Foundation
for the 1980s., pages 551–553, 1981.

C. McPhee and A. Eberlein. Requirements engineering for time-to-market
projects. In Proceedings Ninth Annual IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems, pages 17–24, 2002.

D. Moody. The “physics” of notations: Towards a scientific basis for con-
structing visual notations in software engineering. IEEE Transactions on
Software Engineering, 35(6):756–779, 2009.

J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. Speeding up
requirements management in a product software company: Linking cus-
tomer wishes to product requirements through linguistic engineering.
In Proceedings of the 12th International Requirements Engineering Conference
(RE 2004), pages 283–294, 2004.

J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. A linguistic
engineering approach to large-scale requirements management. IEEE
Software, 22(1):32–39, 2005.

J. Natt och Dag, T. Thelin, and B. Regnell. An experiment on linguistic
tool support for consolidation of requirements from multiple sources
in market-driven product development. Empirical Software Engineering
Journal, 11(2):303–329, 2006.

54

REFERENCES

P. Naur and B. Randell. Software engineering: Report of a conference spon-
sored by the nato science committee. Technical report, NATO Scientific
Affairs Division, 1968.

C. J. Neill and P. A. Laplante. Requirements engineering: the state of the
practice. IEEE Software, 20(6):40-45, 2003.

J. C. Nordbotten and M. E. Crosby. The effect of graphic style on data
model interpretation. Information Systems Journal, 9(2):139–155, 2001.

L. Northrop, P. Felier, R. P Habriel, J. Boodenough, R. Linger, M. Klein,
D. Schmidt, K. Sullivan, and K. Wallnau. Ultra-Large-Scale Systems: The
Software Challenge of the Future. Software Engineering Institute, 2006.

M. Ogawa, K. L. Bird, C. Deyanbu, and A. Gourley. A visualization so-
cial interaction in open source software project. In Proceedings of the 6th
International Asia-Pacific Symposium on Visualization (APVIS 2007), pages
25–32, 2007.

K. Osawa and A. Ohnishi. Similarity map for visualizing classified sce-
narios. In Proceedings of the Second International Workshop on Requirements
Engineering Visualization (REV 2007), pages 80–89, 2007.

O. Ozakaya. Representing requirements relationships. In Proceedings of
the First International Workshop on Requirements Engineering Visualization
(REV 2006), pages 75–84, 2006.

S. Park and J. Nang. Requirements management in large software system
development. In Proceedings of the IEEE International Conference on Sys-
tems, Man and Cybernetics, pages 2680–2685, 1998.

S.L. Pfleeger. Software Engineering – Theory and practice. Prentice–Hall, 2001.

M. Pichler and H. Humetshofer. Business process-based requirements
modeling and management. In Proceedings of the First International Work-
shop on Requirements Engineering Visualization (REV 2006), pages 20–29,
2006.

K Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag, 2005.

C. Potts. Invented requirements and imagined customers: requirements
engineering for off-the-shelf software. In Proceedings of the Second IEEE
International Symposium on Requirements Engineering (RE 95), pages 128–
130, 1995.

C. Potts. Software engineering research revisited. IEEE Software, 10(5):18–
28, 1993.

55

REFERENCES

H. C. Purchase, D. Carrington, and J-A. Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering Journal, 7
(3):233–255, 2002.

T. A. Kappel R. E. Albright. Roadmapping in the corporation. Research-
Technology Management, 46(1):31–40, 2003.

P. Rayson, L. Emmet, R. Garside, and P. Sawyer. The revere project: Exper-
iments with the application of probabilistic nlp to systems engineering.
In Proceedings of the 5th International Conference on Applications of Natural
Language to Information Systems, pages 288–300, 2000.

B. Regnell and S. Brinkkemper. Engineering and Managing Software Require-
ments, chapter Market–Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

B. Regnell, P. Beremark, and O. Eklundh. A market–driven requirements
engineering process – results from an industrial process improvement
programme. Requirements Engineering Journal, 3(2):121–129, 1998.

B. Regnell, M. Höst, J. Natt och Dag, and A. Hjelm. Case study on dis-
tributed prioritization in market-driven requirements engineering for
packaged software. Requirements Engineering Journal, 6(1):51–62, 2001.

B. Regnell, B. Ljungquist, T. Thelin, and L. Karlsson. Investigation of re-
quirements selection quality in market-driven software processes using
an open source discrete event simulation framework. In Proceedings of
the 5th International Workshop on Software Process Simulation and Modeling,
pages 89–93, 2004.

B. Regnell, H. O. Olsson, and S. Mossberg. Assessing requirements com-
pliance scenarios in system platform subcontracting. In Proceedings of the
7th International Conference on Product Focused Software Process Improve-
ment, pages 362–376, 2006.

B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmap-
ping of quality requirements. IEEE Software, 25(2):42–47, 2008.

C. Robson. Real World Research. Blackwell Publishing, 2002.

W. W. Royce. Managing the development of large software systems: con-
cepts and techniques. In Proceedings of the IEEE WESTCON Conference,
pages 328–338, 1970.

G. Ruhe. Software engineering decision support - a new paradigm for
learning software. Lecture Notes in Computer Science, 2640(1):104–113,
2003.

G. Ruhe and M.O. Saliu. The art and science of software release planning.
IEEE Software, 22(6):47–53, 2005.

56

REFERENCES

P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering
Journal, 14(2):131–164, 2009.

C. Rupp. Linguistic methods of requirements engineering (nlp). In Pro-
ceedings of the EuroSPI 2000, pages 68–80, 2000.

K. Ryan. The role of natural language in requirements engineering. In Pro-
ceedings of the IEEE International Symposium on Requirements Engineering,
San Diego California, pages 240–242. IEEE Computer Society Press, 1993.

T.L. Saaty. The Analytic Hierarchy Process, Planning, Piority Setting, Resource
Allocation. McGraw-Hill, New york, 1980.

P. Sawyer. Packaged software: Challenges for re. In Proceedings of the Sixth
International Workshop on Requirements Engineering: Foundations of Soft-
ware Quality (REFSQ 2000), pages 137–142, 2000.

P. Sawyer, P. Rayson, and R. Garside. Revere: Support for requirements
synthesis from documents. Information Systems Frontiers, 4(3):343–353,
2002.

P. Sawyer, P. Rayson, and K. Cosh. Shallow knowledge as an aid to deep
understanding in early phase requirements engineering. IEEE Transac-
tions on Software Engineering, 31(11):969–981, 2005.

J. Schalken, S. Brinkkemper, and H. Vliet. Assessing the effects of facilitated
workshops in requirements engineering. In Proceedings of the 8th Confer-
ence on Evaluation and Assessment in Software Engineering (EASE 2004),
pages 135–144. Press, 2001.

K. Schmid. A comprehensive product line scoping approach and its vali-
dation. In Proceedings of the 24th International Conference on Software Engi-
neering (ICSE 2002), pages 593–603, 2002.

C. B. Seaman. Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on Software Engineering, 25(4):557–572, 1999.

D. Sellier and M. Mannion. Visualizing product line requirements selec-
tion decision inter-dependencies. In Proceedings of the Second International
Workshop on Requirements Engineering Visualization (REV 2007), pages 20–
29, 2006.

J. Singer, S. E. Sim, and T .C. Lethbridge. Guide to Advanced Empirical Soft-
ware Engineering, chapter Software Engineering Data Collection for Field
Studies, pages 9–34. Springer, 2007.

I. Sommerville. Software Engineering. Addison–Wesley, 2007.

57

REFERENCES

M. Svahnberg. Supporting Software Architecture Evolution - Architecture Se-
lection and Variability. PhD thesis, Blekinge Institute of Technology, 2003.

A. Teyseyre. A 3d visualization approach to validate requirements. In
Proceedings of the Congreso Argentino de Ciencias dela Computacion, pages
1–10, 2002.

M. Tory and T. Moller. Rethinking visualization: A high-level taxonomy.
In Proceedings of IEEE Symposium on Information Visualization, (INFOVIS
2004)., pages 151–158, 2004.

N. Trautmann and B. Philipp. Resource-allocation capabilities of commer-
cial project management software: An experimental analysis. In Proceed-
ings of the 2009 International Conference on Computers and Industrial Engi-
neering (CIE 2009), pages 1143–1148, 2009.

G. H. Travassos, P. S. M. dos Santos, P. G. M. Neto, and J. Biolchini. An en-
vironment to support large scale experimentation in software engineer-
ing. In Proceedings of the 13th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS 2008), pages 193–202, 2008.

E. Tufte. Envisioning Information. Graphics Press LLC, 1990.

UML. The unified modeling language webpage. http://www.uml.org,
January 2010.

J. Vähäniitty, C. Lassenius, and K. Rautiainen. An approach to product
roadmapping in small software product business. In Proceedings of the
7th European Conference Software Quality, pages 56–65, 2002.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. On the creation of a reference framework for software product
management. In Proceedings of the First International Workshop on Software
Product Management (IWSPM 2006), pages 3–12, 2006a.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. Towards a reference framework for software product manage-
ment. In Proceedings of the 14th IEEE International Requirements Engineer-
ing Conference (RE 2006), pages 319–322, 2006b.

A. van der Hoek, R. S. Hall, D. Heimbigner, and A. L. Wolf. Software
release management. In Proceedings of the Sixth European Software Engi-
neering Conference (ESEC/FSE 97), pages 159–175, 1997.

J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in
software product lines. In Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, pages 45–55, 2001.

58

REFERENCES

S. Vasile, P. Bourque, and A. Abran. Visualization - a key concept for mul-
tidimensional performance modeling in software engineering manage-
ment. In Proceeding of the S2006 IEEE International Conference on Automa-
tion, Quality and Testing, Robotics (AQTR 2006), pages 334–339, 2006.

K. Wiegers. Software Requirements: Practical Techniques for Gathering
and Managing Requirements Throughout the Product Development Cycle.
Addison-Wesley, 2003.

R. Wieringa and H. Heerkens. Designing requirements engineering re-
search. In Proceedings of the 5th International Workshop on Comparative
Evaluation in Requirements Engineering, pages 36–48, 2007.

C. Wohlin and A. Aurum. What is important when deciding to include
a software requirements in a project or release? In Proceedings of the
International Symposium on Empirical Software Engineering (ISESE 2005),
pages 246–255, 2005.

C. Wohlin, X. Min, and A. Magnus. Reducing time to market through opti-
mization with respect to soft factor. In Proceedings of the 1995 IEEE Annual
International Engineering Management Conference, pages 116–121, 1995.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering An Introduction. Kluwer Aca-
demic Publishers, 2000.

R.K. Yin. Case Study Research: Design and Methods. Sage Publications, 2003.

A. Zenebe and A. F. Norcio. Visualization of item features, customer pref-
erence and associated uncertainty using fuzzy sets. In Proceedings of the
Annual Meeting of the North American Fuzzy Information Processing Society,
pages 7–12, 2007.

59

REFERENCES

60

Paper I

Architecting and Coordinating Thousands of
Requirements - An Industrial Case Study

Krzysztof Wnuk2, Björn Regnell1,2, Claes Schrewelius1

1Sony Ericsson Mobile Communication, Lund, Sweden
{claes.schrewelius,bjorn.regnell}@sonyericsson.com

2Dept. of Computer Science, Lund University, Sweden
{krzysztof.wnuk,bjorn.regnell}@cs.lth.se

In Proceedings of the 15th International Working conference on
Requirements Engineering: Foundation for Software Quality (REFSQ09),

June 2009, Amsterdam, The Netherlands

ABSTRACT

[Context and motivation] When large organizations develop
systems for large markets, the size and complexity of the work
artefacts of requirements engineering impose critical challenges.
[Problem] This paper presents an industrial case study with the
goal to increase our understanding of large-scale requirements
engineering practice. We focus on a senior requirements en-
gineering role at our case company, called requirements archi-
tect, responsible for quality and coordination of large require-
ments repositories. [Results] Based on interviews with 7 re-
quirements architects, we present their tasks and views on ar-
chitecture quality. [Contribution] Our results imply further re-
search opportunities in large-scale requirements engineering.

Keywords: Large-scale requirements engineering; Empiri-
cal study; Requirements repositories; Requirements dependen-
cies; Requirements architect

1. INTRODUCTION

1 Introduction

Large software companies are often confronted with large and complex re-
quirements repositories. The requirements originate from multiple sources
and address multiple customers and market segments. This paper presents
an industrial case study of the tasks involved in managing large and com-
plex requirements repositories. The investigated tasks are related to a role
called Requirements Architect that has recently been introduced at the case
company. The requirements architects are responsible for the scope of large
platform projects that products are based on (Pohl et al. 2005). Our motiva-
tion to perform this study was to understand current practices in working
with large-scale requirements repositories and to find issues for future re-
search. In this study, we have conducted interviews with requirements ar-
chitects in order to address the following questions: (1) What are the tasks
related to working with large-scale complex requirements repositories on
multiple products platform projects? (2) How do practitioners perceive
the notion of requirements architecture and how do they describe good
requirements architectures?

The second question is related to sustainable requirements architec-
tures (Regnell et al. 2008). With the term requirements architecture we
mean the underlying structure of requirements, including the data model
of requirements with their preconceived and emerging at-tributes and re-
lations. By sustainable architectures we mean structures that allow for con-
trolled growth while allowing requirements engineers to keep track of the
myriad of issues that continuously emerge. Practitioners facing a transfor-
mation to large-scale requirements engineering (RE) may use this research
to gain insights in what may come, and researchers may use the results to
inform their choices of future re-search directions.

The paper is organized as follows: Section 2 describes the industrial
context at the case company. Section 3 provides the methodology descrip-
tion. Section 4 and 5 highlights the result of interviews. Section 6 concludes
the paper.

2 Industrial case context

The interview study was performed at Sony Ericsson. Due to the techno-
logical complexity of the domain, the case company is working in paral-
lel in many advanced system engineering areas such as radio technology,
audio and video, and positioning. The complexity of requirements engi-
neering is driven by a large and diverse set of stakeholders, both exter-
nal to the company and internal. Different stakeholders have different de-
mands on the future functionality of the mobile phone which they express
by different types of requirements. Requirements originating from external
stakeholders are called market requirements. They are mainly supplied by

63

PAPER I: ARCHITECTING AND COORDINATING THOUSANDS OF
REQUIREMENTS - AN INDUSTRIAL CASE STUDY

mobile operators, which usually submit specifications with thousands of
requirements that require gap analysis. Other sources of requirements are
the Application Planning and Product Planning departments. The plat-
form and market requirements also have to be checked against supplier
requirements to ensure that certain functionality can be delivered by a cor-
responding platform project, including integration of subcontracted parts.
Currently, the case company’s requirements database contains around 30
000 platform system requirements and a few thousands supplier require-
ments. The platform system requirements are organized into features that
represent the smallest units that can be scoped into or out from the plat-
form project (Clements 2002). The case company develops products using
a product line engineering approach, where one platform project is the ba-
sis for many products that reuse the platform project’s functionality and
qualities (Pohl et al. 2005). Within the platform project, the case company
has defined a number of requirements engineer groups called Technical
Working Groups (TWGs). They are responsible for elicitation, specification
and prioritisation of high-level requirements within a specific sub-domain.
Within this industrial context, requirements architects work mainly with
platform system requirements and features. Their main responsibility is
the management of the scope of platform projects by helping TWGs to
specify requirements and project management to see all implications of
the scoping decisions. The scoping decisions are made by a Change Con-
trol Board (CCB).

3 Research Methodology

To study individual perceptions of requirements architect role at the case
company, we conducted seven semi-structured interviews (Robson 2002).
Before conducting interviews, a brainstorming and planning meeting was
conducted. During this meeting, the scope of the study was agreed upon
and an interview instrument was developed with a set of questions, where
the wording could be changed and the order could be modified based upon
the interviewer’s perception (Robson 2002). The third author, acting in his
role as manager for requirements architects at the case company, partici-
pated in the development of the interview instrument and invited seven in-
terviewees with various experience within the requirements architect role.
These persons were chosen from three sub-organizations within the case
company, each responsible for products for different market segments. It
was sent out via email to all the participants in advance and also discussed
at the beginning of each interview to ensure that the scope of the inter-
view was understandable. The interviews were held during the autumn
of 2007 and varied in length between 60 and 110 minutes. All interviews
were attended by two interviewers and one interviewee. Questions were
kept simple and effort was put on avoiding leading or biased questions

64

4. TASKS OF THE REQUIREMENTS ARCHITECT IN THE CASE COMPANY

(Robson 2002). All interviews were transcribed. After transcription, each
of the interviewees received the transcripts for validation. Interviewees
analysed their transcripts in order to ensure that the interviewers heard
and understood the recordings and notes correctly. In case of misinter-
pretations, corrections and comments were sent back to the researchers.
The data was then imported to a spreadsheet program to perform a con-
tent analysis (Patton 2002) based on categorisation. The categories such
as tasks or notion of requirements architecture quality, were chosen based
on the interview instrument topics and other emerging topics in the in-
terviews. Additionally, for each category notes describing problems and
improvements were added. Finally, the results were validated by two in-
terviewees that gave independent comments to the proposal of the tasks
derived from the inter-views.

4 Tasks of the Requirements Architect in the case
company

Based on the analysis of interviews, we have identified six tasks, listed
in Table 1.1, that represent what is considered to be important obligations
of the requirements architect role when acting as a senior coordinator in
a large-scale setting. Several tasks (T1, T4, and T5) are directly related to
change management. In order to cope with the initial definition of the plat-
form projects scope and later incoming change proposals to the platform
projects, requirements architects facilitate communication across different
groups of requirements engineers. This may indicate that the complex-
ity in both requirements inter-dependencies and organisational structure
in the large-scale case imply hard challenges in communicating decisions
about changes. The analysis of gaps between market requirements and
what is offered by technology suppliers (T2) is increasingly complicated
as the number of stakeholders on the market increases and the number of
technical areas that are covered gets larger.

Also, for a basic and common task such as checking the quality of re-
quirements (T3), interviewees express challenges related to the cohesion
of complex multilayered requirements structures that originate from mul-
tiple sources. In our case, requirements architects have to drive complex
changes (T4) that span over many technical areas and may impact many
product releases in one platform. Another challenge related to these in-
vestigations is the ability to ensure that investigations are made by the
right persons with the right competence and that the full impact picture
will be ready be-fore CCB decision meetings. Missing some of the aspect
may have a great impact on the whole platform project. In a large scale
case, the task of presenting the current scope (T5) is especially demanding
as the requirements architect must understand both technical aspects as
well as the business and market impact of all features in order to conclude

65

PAPER I: ARCHITECTING AND COORDINATING THOUSANDS OF
REQUIREMENTS - AN INDUSTRIAL CASE STUDY

Table 1.1: The tasks and goals for requirements architect in the case com-
pany

Task Goal
T1: Scope management Ensure that the platform project

scope changes are ad-dressed and
that the change proposals are pre-
pared.

T2: Gap analysis Ensure that misalignments between
market requirements and supplier re-
quirements are addressed.

T3: Enforce requirements
quality improvements

Check the quality of requirements.
Alert if requirements quality im-
provements are needed.

T4: Drive CCB investiga-
tions

Drive change proposal investigations
in order to gain understanding of the
impact of the scope changes.

T5: Present the scope Present the scope of the platform
project at milestones.

T6: Request requirements
architectures improvements

Ensure that the requirements struc-
ture is maintained ac-cording to de-
fined rules.

66

5. VIEWS ON REQUIREMENTS ARCHITECTURE AND ITS QUALITY

them in a way that is meaningful to high-level management and market-
ing. Finally, we report that in a case like the one we have examined, where
several parallel large platform projects coexist, there is an expressed need
for a per-son with a holistic view that has a mandate to request require-
ments architecture im-provements (T6). In this case, the responsibility for
ensuring architectural consistency of requirements is not delegated to the
projects, but is managed across projects by requirements architects.

5 Views on requirements architecture and its qual-
ity

In our interviews with practitioners we have confirm our preunderstanding
that the concept of requirements architecture is complex and include many
aspects. We have deliberately not imposed a preconceived, closed defi-
nition of the concept on our interviewees, as we wanted to base our un-
derstanding of the requirements architecture on empirical data. We cannot
say that a single, generally accepted definition of requirements architecture
has emerged, but our findings indicate that all interviewed practitioners
included some of the following aspects in their views on requirements ar-
chitecture: (1) the requirements entities themselves (such as features, sys-
tem requirements, detailed requirements, functional requirements, qual-
ity requirements, etc) and their relationships; (2) the information structure
(meta-model) of requirements entities including (a) attribute types of enti-
ties, and (b) the relationship types including different types of dependen-
cies to other entities; (3) the evolution of the information structure (a) over
time and (b) across abstraction levels as entities are refined both bottom-
up and top-down; (4) the implications of organisational structures on re-
quirements structures; (5) the implications of process and methodology on
requirements structures; (6) the implementation of tool support and its re-
lation to requirements structures, organisation, process, methodology etc.;
(7) the scalability of the requirements structures as the number of entities
increase and the interrelated set of entities gets more complex.

In our interviews with requirements architects, we also discussed the
notion of quality of requirements architectures. We started the discussion
based on the analogy of how system architecture quality supports good de-
sign and implementation of systems, and transferred this analogy to how
requirements architecture quality sup-ports good requirements engineer-
ing. The following quality issues were identified when analysing interview
transcripts:

Understandability and cohesion. Responders expressed the opinion
that a good requirements architecture should be easy to understand and
designed to enable a holistic view of different types of modules and ab-
straction levels in order to enable easy identification of vital information.
Furthermore, the way how the structure of requirements information is

67

PAPER I: ARCHITECTING AND COORDINATING THOUSANDS OF
REQUIREMENTS - AN INDUSTRIAL CASE STUDY

visualized was also mentioned by our responders as an important factor
influencing mentioned quality issues.

Robustness, integrity and enforcement of policies. An established
process for managing and architecting requirements can result in a consis-
tent, reliable and robust requirements architecture. Lack of clear policies
and working rules may result in low reliability of requirements as well as
discrepancies in usage of the architectural policies across projects.

Extensibility, flexibility and efficient traceability. According to our
responders, a good requirements architecture should allow for controlled
growth by being extensible and flexible without endangering the previ-
ously mentioned qualities of robustness and integrity. Cost-efficient trace-
ability among requirements at different levels of abstraction when contin-
uous growth and refinement occur is important. A good balance between
extensibility, flexibility and traceability on one hand and the complexity
driven by these qualities on the other hand has to be achieved in order to
avoid the risk of ending up with an unmanageable repository.

6 Conclusions

This paper presents tasks related to a role called requirements architect,
which is working with large and complex requirements repositories at the
case company. We also present practitioners views on quality attributes
of the artefact called requirements architecture. Efficient management of
large sets of information is considered to be crucial in many disciplines.
Similar to software architecture, the information model is considered to be
not only a technical blueprint for a software-intensive system, but it also
includes social, organisational, managerial and business aspects of the soft-
ware architecture (Bass et al. 2003). At our case company, the requirements
architecture is an artefact that is managed separately, but in relation to the
system architecture, and interviewees express a range of issues that need
to be addressed, both soft issues such as organisation and business models
as well as technical aspects.

The requirements architect role at our case company is motivated by
a perceived need of special attention to cross-cutting issues, and inter-
disciplinary communication across sub-domains and technical areas. We
found several tasks of normal requirements engineering practice, such as
change management, scoping and specification quality enforcement that is
viewed as particularly challenging in the studied large-scale setting, and
therefore included in the responsibilities of requirements architects acting
as senior coordinators of the requirements engineering process. We also
found expressions for specific quality aspects of the requirements architec-
ture itself that are viewed as important to support an effective and efficient
management of an increasingly large and complex repository.

In relation to the concept of requirements architecture, we highlight the

68

6. CONCLUSIONS

following areas to be considered in further research:

• Continued conceptual and empirical investigation of the notion of
requirements architecture

• Investigations on features of computer-aided tools for managing re-
quirements architectures

• Studies of the organisational and process aspects in relation to re-
quirements architectures

• Development of assessment instruments for requirements architec-
ture quality and competence certification of requirements architects

• Analysis methodology and visualisation models for requirements ar-
chitectures in large-scale product line engineering

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special thanks to the anonymous in-
terviewees for their valuable time and knowledge. Thanks also to Thomas
Olsson and Lena Karlsson for the initial input on a draft version of this
paper, and to Lars Nilsson for valuable language comments

69

PAPER I: ARCHITECTING AND COORDINATING THOUSANDS OF
REQUIREMENTS - AN INDUSTRIAL CASE STUDY

70

REFERENCES

References

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice Second
Edition. AddisonWesley, 2003.

P. Clements. Being proactive pays off. IEEE Software, 19(4):28-30, 2002.

M. Q. Patton. Qualitative Research & Evaluation Methods. Sage Publication
Ltd, 2002.

K Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag, 2005.

B. Regnell, R. Berntsson Svensson, and K. Wnuk. Can we beat the com-
plexity of very large-scale requirements engineering? In Lecture Notes in
Computer Science, volume 5025, pages 123-128, 2008.

C. Robson. Real World Research. Blackwell Publishing, 2002.

71

REFERENCES

72

Paper II

An Industrial Case Study on Large-Scale
Variability Management for Product Configuration

in the Mobile Handset Domain

Krzysztof Wnuk, Björn Regnell, Jonas Andersson and Samuel Nygren
Dept. of Computer Science, Lund University, Sweden

{krzysztof.wnuk,bjorn.regnell}@cs.lth.se

In Proceedings of the Third International Workshop on Variability
Modelling of Software-intensive Systems(VaMoS2009),

January 2009, Sevilla, Spain

ABSTRACT

Efficient variability management is a key issue in large-scale
product line engineering, where products with different propo-
sitions are built on a common platform. Variability manage-
ment implies challenges both on requirements engineering and
configuration management. This paper presents findings from
an improvement effort in an industrial case study including the
following contributions: problem statements based on an inter-
view study of current practice, an improvement proposal that
addresses the challenges found, and an initial validation of the
proposal based on interviews with experts from the case com-
pany.

1. INTRODUCTION

1 Introduction

Software Product Lines have already proven to be a successful approach
in providing a strategic reuse of assets within an organization (Pohl et al.
2005). In this context, variability management is considered as one of the
key for successful product lines and concerns in all phases of the soft-
ware product line lifecycle (Bosch et al. 2002). We experience considerable
growth of the amount of variability that has to be managed and supported
in software assets. Inspired by the previous fact, we have conducted an
industrial case study focusing on the process of variability management at
one of our industrial partners in the mobile phone domain. The topic of our
investigation was an established product line engineering process (Pohl
et al. 2005) in a company that sells over 50 products every year worldwide
in millions of exemplars. Our goal for this study is to increase the knowl-
edge of how the products are configured by studying current issues and if
possible proposing and evaluating improvements. To address the goal we
have formulated three research questions:

• Q1: How are variability requirements and variability points man-
aged in software product lines in practice?

• Q2: What are the problems with managing variability requirements
and product derivation?

• Q3:What improvements can be made in managing variability?

The first two questions were addressed by an interview study, were we
have investigated the process of product derivation (Deelstra et al. 2000)
and the concept of managed variability (Pohl et al. 2005). By using man-
aged variability we refer to defining and exploiting variability throughout
the different life cycle stages of a software product line (Pohl et al. 2005). In
total 29 persons working with requirements engineering, implementation
and testing were interviewed in order to understand how the variability is
represented, implemented, specified and bound during the product con-
figuration. As a result, a set of challenges is defined and presented in this
paper.

To address Q3, we have proposed and evaluated improvements to the
current way of working. Our main proposal includes a new structure of
variability information that aims at enable linking product configuration
to the initial requirements. It includes splitting the configuration into two
levels of granularity. Additionally, we propose to use a main product speci-
fication with entities that can be consistently applied throughout the whole
organization and will address current documentation issues.

Finally, we have empirically evaluated our improvement proposals by
applying them to the existing configuration structure in a pilot study. Ad-
ditionally, we have conducted a survey by sending questionnaires about
the potential benefits and drawbacks of our proposal. 28 out of 34 persons

75

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

have answered our questionnaire. Most of the respondents expressed pos-
itive opinions about the proposal and did not express any major obstacles
that may apply to it.

The reminder of this paper is organized as follows. In Section 2, we
describe the industrial context of the case study. In Section 3, we provide
a description of research methodology. In Section 4, we discuss identified
problems and issues. In Section 5, we describe improvement proposals,
which we evaluate in Section 6. Section 7 presents related work and the
paper is concluded in Section 8.

2 Industrial Context

The case study was performed at the company that has more than 5 000
employees and develops embedded systems for a global market. The com-
pany is using a product line approach (Pohl et al. 2005). Each product
line covers different technologies and markets. The variability of the soft-
ware product lines in our case are organized in two dimensions. The first
dimension represents product segments or product technologies, and the
second represents the code base that evolves over time. In each of the clus-
ters there is one lead product built from the platform representing most
of the platform functionality. The lead product is scaled down to create
sub-products and new variants for other markets and customers. Some of
the sub-products originating from the main product contain new features
(Pohl et al. 2005). The platform development process is separated from the
product development process as described by Deelstra et al. (2000).

Organization. There are three groups of specialists working with the
requirements part of the platform project: Requirements Engineers, Require-
ments Coordinators and Product Requirements Coordinators. Each technical
area in the products domain has a requirements engineers group respon-
sible for covering the progress in the focused field. Their involvement in
the projects is mainly focused on the platform project where they supply
high level requirements derived from roadmaps, product concepts and
customer requirements. They are also main responsible for the scoping
process of the platform. Requirements coordinators work between require-
ments engineers and developers. Their main role is to communicate re-
quirements to the developers and assist with creating detailed design doc-
uments and requirements. Product requirements coordinators are respon-
sible for the communication of the requirements between the product plan-
ner and requirements engineers on the specific product level.

The Development Teams are responsible for implementing the software in
the platform. They review the requirements and estimate the effort needed
for implementation. Each new functionality is assigned to a primary devel-
opment team which is responsible for its implementation in the software
modules. Newly implemented functionality is later tested before final de-

76

2. INDUSTRIAL CONTEXT

livery to the platform. The different modules need to be integrated and
compiled to a full system. This stage is done by the Product Configuration
Managers (PCMs) team which manages the different variants and versions
of the products created from the platform. The compiled system is tested
by a product focused testing organization, Product Software Verification.

Requirements Management Process. The company is using two types
of containers to bundle requirements for different purposes: Features and
Configuration Packages (CPs). As a feature we consider in this case a bundle
of requirements that we can estimate market value and implementation
effort and use those values later in the project scoping and prioritization.
Configuration packages are used to differentiate the products by selecting
different packages for different products. The company is using the similar
approach to CPs as described in (Bosch 2000), where a configuration pack-
age is a set of requirements grouped to form a logical unit of functionality.
Every requirement has to be associated with one or more CPs. The require-
ments engineers list the changes and CPs in their area of expertise in the
Configuration Package Module. These modules have dependencies between
each other and some of them are mutually exclusive (Bosch 2000). CPs that
are common for all products in a product line are marked with an attribute
stating that these packages cannot be removed from a product configura-
tion. Hardware dependencies, which make individual requirements valid
or invalid for different products, are also specified by the use of Configu-
ration Dependencies on the requirements level. The model is similar to the
Orthogonal Variability Model proposed by Pohl et al. (2005).

Product Planning. Product Planners are responsible for defining prod-
ucts from the platform available in a product line. They belong to the mar-
keting division in the company so their task is to create an attractive prod-
uct offer (Linden et al. 2007) rather than to perform the actual configuration
of it. The product planers establish a concept of a new product which in-
duces commercial overview, price range, competitor analysis and gives an
overview of the high level requirements. This document serves as a basis
for the Product Configuration Specification, which specifies the product based
on capabilities offered by the platform. The product configuration speci-
fication specifies the configuration of a product concerning both software
and hardware using the configuration packages defined in the configura-
tion package modules including configuration dependencies. This model
is also similar to the Orthogonal Variability Model proposed by Pohl et al
(2005). The product configuration specification corresponds to the applica-
tion variability model of the Orthogonal Variability Model.

Product Configuration Management. Product Configuration Manage-
ment teams are responsible for integrating, building and managing vari-
ants in the product line. When configuring a new product from the product
line, the product configuration manager uses hardware constraints derived
from a hardware specification for each product in a cluster to set and con-
figure the software. At this stage, the traceability from the configuration

77

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

parameters to the requirements is crucial. This part of the context is the
subject for the improvement proposal in Section 5.

3 Research Methodology

In order to get a comprehensive picture of how variability management
is performed at our case company, we decided to conduct a set of inter-
views with various employees in various positions within the company.
The requirements management tool architecture was also explored to un-
derstand how variability is defined at the requirement level. During this
phase the persons involved in process improvement for the requirements
process were interviewed and consulted with during the exploration of the
requirements management process.

Figure 2.1: Research methodology.

The next step was to select key personnel to interview in order to get
as many different perspectives how variability is managed and how prod-
ucts are configured as possible. By analyzing the case company’s product
configuration interface, the amount of variation for different development
groups was established. One group with a large amount of product varia-
tions and one group with a small amount were selected for further investi-
gation. To cover the whole process of variability, we have involved Product

78

4. RESULTS

Planners, Requirements Engineers, Requirements Coordinators, Develop-
ers and System Testers in our study.

The interviewed persons were selected based on their position in the
company. Some persons were recommended by already interviewed. In
some cases the person that was asked to participate in our study suggested
a colleague as a replacement with the motivation that he was more famil-
iar with the area. In total, 27 persons were interviewed. The interviews
were semi-structured in order to allow the interview to change direction
depending on the interviewee’s answer, and adapted for the different roles
and the progress of the interview study. This approach balances between
early interviews that were more focused on the general aspects with later
more specific interviews. The interviews took approximately one hour.
During this time interviewers took notes continuously which were later
summarized. During summarization, discrepancies between interviewers
interpretation were discussed and, if needed, formulated as questions that
were later sent to the interviewee. Apart from the summary, the intervie-
wee also received a model of how he or she perceived the process of vari-
ability management. After interviewee approval, which sometimes was
done after some minor changes, the data was ready to be analyzed. After
interviewing 27 persons, it was decided that the received overview of the
current process was satisfactory to proceed with analysis and propose im-
provements. Sample questions used at the interviews and distribution of
interviewed personnel can be accessed at (Wnuk 2010c).

4 Results

In this section we present the results from our interview study. We describe
the different perspectives on the configuration process, configuration activ-
ity measurements, and finally the problems that were identified.

4.1 Perspectives on the Configuration Process

Most of the stakeholders have a common view of how products are cre-
ated. The product projects create a product concept, which is then used
by requirements engineers in defining platform requirements. Later in the
process the product planners are involved in creation and configuration of
new products by creating change requests issues regarding both new and
existing functionality. When previously created formal change request is
accepted, it is send to the assigned developers team which performs imple-
mentation or configuration changes. The differentiation achieved in this
manner is not explicitly documented in product specification but only in
the minutes from the change board meetings. In the next section, the devi-
ation from this common view is described, as well as the differences from
the documented process model.

79

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

Product requirements coordinators, requirements coordinators and re-
quirements engineers have limited knowledge about how variability is
achieved due to their focus on the platform. They also state that developers
do receive most of the configuration instructions through bug report issues
from product planners, customer responsible and testers. We discovered
that some variability is stated in the requirements’ text in an implicit way
creating problems with recognition and interpretation at the development
phase. Product planners’ knowledge about configuration packages is lim-
ited and they have not experienced the need for a better product documen-
tation than what is delivered in the concept definition.

The developers express the opinion that information regarding vari-
ability is not communicated in a formal way. Instead, they get information
about variability through their team leaders in a form of change requests
at the late stages of development. These change requests are often used
to configure products. The creation of new variation points is done in the
platform project, and is therefore often based on assumptions made by the
developers out of the previous experiences and informal communication
with people involved in the process. The main opinion is that the infor-
mation about what value that should be assigned to a variation point is
possessed by individuals. The information is also not documented suffi-
ciently in formal documents. Requests for new variation points or values
are forwarded to the product configuration managers.

Product Configuration Management Perspective. We discovered that
the product derivation process is iterative and similar to the one described
by Deelsta et al. (2000). When a main product for a product line is created
from the platform, it is based on the existing configuration of the previous
similar product. This configuration is adjusted to the new hardware spec-
ification for the platform. Since the amount of configuration parameters
in the configuration file has increased significantly, and they are not suf-
ficiently documented product configuration managers are unable to keep
track of all changes.

When a new product has been set up, it is built and sent to the prod-
uct testers. Their task is to test the product and to try to discover software
errors and functionality that might be missing. At this stage it is often
difficult for the testers to determine whether errors depend on faulty con-
figuration or software errors. Therefore they create a bug report towards
the developers to initiate investigation of the reason of the failure. The er-
rors are corrected by developers and new source code is later sent back to
the product configuration manager, which is merging the delivered code
from all development groups.

When the sub-product is created, the most similar product configura-
tion is copied from the previous products. Next, the configuration man-
ager responsible for the sub-products is trying to configure the product by
checking product structure documentation and other relevant information.
The required information is gained from multiple sources, which leads to

80

4. RESULTS

the double maintenance problem described by (Babich 1986), where uncer-
tainties about the values of variation points are concluded by comparing
with other projects. As a result a time consuming investigations have to be
perform and very often influences the speed and correctness of the product
configuration.

Figure 2.2: Accumulated changes to the configuration over milestones.

4.2 Configuration Activity Measurements

In order to understand how the configuration is changed over time, change
related measurements were defined. The configuration file was chosen for
each label of the code base in the product line. Labels are used to tag revi-
sions of files produced by developers that are to be used by product con-
figuration manager. The differences between each configuration file were
calculated in order to get measurements describing how many parameters
that were added, deleted or changed. The results are visualized in Figures
2.2 and 2.3. Note that over 60% of the configuration changes are done after
the software has been shipped to the testers (MS Alfa).

The results support our previous observations derived from interviews,
where developers admit that they configure the products based on bug
reports and change requests. At the time this study was performed, the

81

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

configuration had over one thousand different parameters available at the
product level, spread across a configuration file of thousands of lines. These
parameters were controlling over 30 000 variation points in the source code
with different levels of granularity. Further analysis showed, that one con-
figuration parameter controls an average of 28 variations points, which
suggests that most of the variability is quite fragmented. The source code
consists of millions of lines of code in more than 10 000 files, giving an
average 250 lines of code per variation point.

Figure 2.3: Changes to the configuration over milestones.

4.3 Problems Identified

According to Van Der Linden et al. (2007), the configuration manager
should be responsible for maintaining the configuration of all variants and
ensuring that the functionality for all products is covered. In our case it
remains unclear who is responsible for binding the variation points of the
platform to create a specific products. As a result, we experience creation
of variation point that have no specific owner. Furthermore, since most
of the development and architectural activities are platform focused and
a role such as Application Architect or Product Architect responsible for
binding variation points of the platform to create specific products is not

82

4. RESULTS

present in the current organization (Pohl et al. 2005). The lack of clear re-
sponsibilities results in an absence of clear, specific and strategic goals and
long term improvements.

The configuration of new products is achieved in an iterative manner
between developers, configuration management and testers (Deelstra et al.
2000). Due to the lack of a specific ownership, the configuration is not al-
ways properly reviewed, which is often a reason for missing functionality.
As a result, testing and maintenance efforts may increase. The knowledge
about product derivation and variability is not formalized (Deelstra et al.
2000, Bosch 2000).

As mentioned previously, the unrestricted rules for creating and man-
aging variation points results in their excessive creation. Many variation
points become obsolete either due to the fact that they were not created for
product configuration purposes or because of the complex dependencies.
It is undefined who is responsible for removing these obsolete variation
points from the configuration file. This fact makes the configuration file
hard to manage and overview.

In our case, the flexibility that needs to be copied by standardization
of the product line (Pohl et al. 2005), in the sense of amount of variation
points is too great and offers many more configuration capabilities than
is needed for product configuration and differentiation. The number of
variation points, and their structure is too complex to be managed by the
people responsible for the product configuration and differentiation. The
variability capabilities need to be more standardized and less detailed to
handle the costs associated with the flexibility.

The biggest challenge throughout the organization turned out to be the
lack of complete product specifications, which may lead to the following
problems:

• Time consuming d̈etectiveẅork where information is gathered through
informal communication and unofficial documents

• Faulty bug reports.

• Double maintenance of fragmented product information that exists
in different documents and versions throughout the organization

• Faulty configuration

• Critical knowledge about variability configuring products possessed
by individuals

• Increased effort in verifying the configuration of a product

These problems is tackled by the use of unofficial documents specify-
ing the product characteristics for both hardware and software. The docu-
ments are created in an informal way and are neither reviewed nor a part

83

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

of the formal approval process, but still used throughout the organization.
These documents and the related process can be improved with respect
to configuration management, as uncontrolled documentation procedures
may result in unintended product configurations.

5 Improvement Proposal

In order to improve the issues presented in Section 4.3, we have developed
a set of improvements regarding variability documentation, granularity
and management.

Improved traceability between requirements and variants. Our pro-
posal will reuse the configuration package concept, described in Section 2,
to associate the configuration parameters with the requirements. The con-
figuration packages should be used by the product planners to configure
the products. By associating the configuration packages with the config-
uration parameters, traceability links to both requirements and configura-
tion parameters will be established. The division into configuration pack-
ages should be done in cooperation between developers and requirements
engineers to fully capture all possible aspects of variability. Newly cre-
ated variation points should be explicitly documented and spread across
all stakeholders. This approach will result in a more complete traceability
between the configuration packages and the configuration interface, and
can be a step towards the automatic generation of a product configuration
directly from the product configuration specification in the future.

Abstraction layer. The overview of the proposed abstraction level is
described in Figure 2.4. In the current structure the configuration file con-
tains all detailed feature configuration on a very low level for all products
defined. The file is edited by both product configuration managers and
developers and because of its size and granularity it is vulnerable and sub-
ject to merge conflicts. Our proposal introduces a new abstraction layer,
CP-Conf, between the product configuration interface and the software
modules. The low level configuration is moved into the lower layer, and
a high level product configuration based on the configuration packages is
used on the product configuration level. In this solution, the developers
are becoming responsible for the CP-Conf layer and the modules associ-
ated with it. The product configuration manager is only responsible for
the high level product configuration. To be able to introduce an abstrac-
tion level, configuration parameters in the configuration file need to be
moved to a separated files where a parameters belonging to a certain de-
velopment team reside. The specification of selected modules needs to be
in these separated files too, since it depends on the selected configuration
packages. Also, when this abstraction layer is introduced and the param-
eters are named according to the configuration packages, there should be
no need to change the existing variation point naming since the parame-

84

5. IMPROVEMENT PROPOSAL

Proposed structure

Current structure

If (ProductA)
 CPM_ GeneralPlayer=On

If (CPM_ GeneralPlayer)
PLAYER_TYPE = GeneralPlayer
AUDIOVISUALIZER = On
 METADATA TAG ALBUMART = On

If (ProductA)
PLAYER_TYPE = GeneralPlayer
AUDIOVISUALIZER = On
 METADATA TAG ALBUMART = On

Product configuration

CP‐Conf CP‐Conf CP‐Conf

M M M M M M M M M

Product configuration

M M M M M M M M M

Figure 2.4: Overview of the proposed abstraction layer.

ters will be moved out from the main configuration file. The solution is
described in Figure 2.5.

New configuration parameters. Today the naming of the configuration
parameters includes a feature description indicating what functionality the
parameter affects. However, the features in the configuration parameters
are not mapped to the requirements by including an identifier connected to
a specific requirement. Since the feature names originate from two sources,
traceability is based only on human reasoning. We propose a new standard
for configuration parameters where four types of parameters are available:

• The existing low level parameters which are presently used for prod-
uct configuration. To remove or change these parameters is an infea-
sible work

• The existing parameters which define the hardware properties of the
product should be assigned a prefix CFG_HW. Today many of the
parameters created are hardware dependent and could therefore be
removed by using the hardware properties instead of creating new
parameters. The syntax of the parameters should include the serial
number from the hardware requirements specifying its value.

• A new type of parameter for configuration dependencies. The name

85

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

Figure 2.5: Configuration is distributed into configuration files according
to the concept of Configuration Packages.

should include the dependency type (HW/FormFactor/Customer/-
Market). The syntax can e.g. be CD_<TYPE>_<NAME>.

• An internal binding should be used when software varies non-significantly

Documenting variability. Currently, the documentation of variation
points is not mandatory and resulting in its incompleteness. Since devel-
opers in our proposal will be responsible for the lower levels of variability,
the documentation process will be simplified by responsible stakeholders’
constraining. By introducing traceability between the product level con-
figuration interface and the configuration packages, no further documen-
tation is needed on the higher level. The name standard will be descriptive
and in line with the configuration packages. It will enable stakeholders to
find more information in the requirements management system, where the
configuration packages are defined, described and associated with require-
ments.

Managing obsolete configurations. Many parameters in the configu-
ration file are obsolete. Because of that we propose that the configuration
file should be locked for changes. Parameters that do change but have the
same value for all products should be moved to the development team’s

86

6. EVALUATION OF THE PROPOSALS

specific file, and should not be a part of any configuration package. Similar
to the configuration parameters, obsolete configuration packages that are
not used in any product should be moved out from the software product
line. If a configuration package is used in any product it should be incor-
porated into the platform and removed from the set of CPs. In the same
fashion as the configuration packages, the high level hardware parameters
should be left at the product configuration level, while its associated low
level parameters should be moved to the proposed low abstraction layer
and owned by the developers.

Availability of product specifications.All available configuration pack-
ages in the platform should be included in the product configuration spec-
ification, and a connection to the previously mentioned abstraction layer
should be made. By applying this approach, the task of configuring a new
product will be simplified and could possibly be automated in the future.
The automatic configuration file generation can be based on the configura-
tion packages defined in the requirements management tool.

6 Evaluation of the Proposals

The evaluation of the implemented proposals was carried out as a desk-
top pilot (Glass 1997), where the new structure was applied to the exist-
ing structure. The desktop pilot was run on a subset of the configurations
belonging to two development teams. Two developers from each team,
chosen based on their knowledge about configuration parameters, have
participated in the redefinition part of the evaluation. The configuration
packages defined by requirements engineers were used to group the exist-
ing low level configuration parameters, as described in the proposal. This
was done in cooperation with the developers. When parameters could
not be linked to a certain existing configuration package, the developers
had to consider defining a new configuration package, configuration de-
pendencies or hardware requirements. From these lessons learned we can
conclude that:

• Packages need to be complemented with a more complex version for
greater differentiation possibilities

• Some packages need to have defined dependencies to other packages

• The differences between some of the similar configuration packages
need to be described by requirements engineers

• One package may in the future need to be split into several packages
that contain end-user functionality and one common package that
does not offer any end-user benefits. This one package is dependent
on others previously described.

87

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

• Problems may arise when new configuration packages need to be cre-
ated instantly. In this case the bottleneck will be the communication
with requirements engineers.

• There are packages that can be removed from the product due to
strong dependencies. In this case, product planners should not be
allowed to de-select these packages.

After the redefinition of the configuration, the developers were asked to
fill in the evaluation form (Wnuk 2010a), answering questions concerning
the improvement proposal and its possible benefits and drawbacks. To get
as many answers as possible, the information was held short and concise.
The evaluation form was also sent out to all members in the first develop-
ment group and to half of the members in the second group, totaling with
34 persons. 28 out of 34 persons have answered and the detailed results
are accessible in (Wnuk 2010b).

From the evaluation it can be seen that the participants have been in-
volved in the product configuration. They also see problems with how it
is handled today. The proposal was considered as easy to understand and
implement.

Some responders mentioned that customer specifications were not ad-
dressed enough. One participant also addressed a need for training in
variability management. Most of the participants thought that the respon-
sibilities and the separation of product and feature configuration is easy to
understand. In the qualitative part of the results, it was confirmed that the
workload will be reduced by improved division of responsibilities.

Most responders strongly agreed to that our proposal should increase
the quality of products. On the other hand, a few responders claimed that
the quality of the products is now high enough and that our proposal will
not make any significant difference. The question addressing improve-
ment in the configuration efficiency scored above average, which indicates
that this proposal would have a significant effect on efficiency in the way
of working rather than end-product quality. This was emphasized by some
people who stated that the configuration would become more manageable
and less time consuming.

On the question regarding drawbacks there were concerns that the con-
figuration packages may get too large and fail to offer the needed from
market perspective detailed level of configuration. It was also mentioned
that there will be a stabilization period until the CPs are clearly defined.
One responder expects that quick fixes will be hard to handle using CPs,
and that there therefore could lead to the "quick and dirty" solutions which
are hard to maintain. There is a risk that the number of CPs will increase
and that the same problems will arise again. Some responders were also
worried about customer specific configurations, which the proposal does
not specify in detail. Most participants stated that their work will not be af-
fected negatively. Moreover, they stated that there will be less work for the

88

7. RELATED EMPIRICAL WORK

developers with the proposal. The developers would have fewer respon-
sibilities and for some participants their responsibility for product config-
uration will be completely removed. Overall, the proposal was considered
as a better solution than the current way of working.

In the evaluation with the configuration management strategists the
responses were positive. Among the positive comments were the pos-
sibilities to define a clear process with unambiguous responsibilities, to
automate product derivation and verification and to improve the product
derivation process. The concerns regarded the need for a streamlined pro-
cess for managing the configuration packages, including exception han-
dling. Possible dependency problems when a configuration package spans
many development teams were also discussed. The overall impression was
very positive.

Threats to validity. The way how people were chosen to participate
in the interviews can lead to insufficient results. By getting recommenda-
tions to which people to interview the risk of getting a subjective picture
increases.

The results can be biased by continuous communication with the con-
tact person in the company or by the fact that some concerned stakeholders
might have been overlooked in different parts of the case study.

When performing these kind of evaluations, it is difficult to cover all as-
pects. We are aware that this evaluation only takes a few of the affected de-
velopment teams into account, and therefore some important information
may not be reached. Furthermore, the amount of variation points that each
development team is responsible for or shares with other groups varies.
Therefore, the scale of affection of the proposal on each development team
may vary.

We have not yet performed any evaluation among other stakeholders,
like product planning and requirements engineers. Although they are not
involved in the technical parts of the proposal, they are part of the process
associated with the proposal and it is therefore a drawback not to have
these stakeholders represented in the evaluation.

We also see some challenges concerning the ability to maintain the new
way of working. It is important that the configuration packages only re-
flect the current needs for variability and that the configuration packages
are not created proactively in the same manner as variation points are cre-
ated today. It is also important to educate people in order to consistently
convince them of the gains achieved about the new praxis.

7 Related Empirical Work

Industrial case studies in existing literature (Brownsword and Clements
1996, Jaaksi 2002, Linden et al. 2007, Clements and Northrop 2002a;b, Deel-
stra et al. 2000) describe the process of introducing product lines. These

89

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

studies report similar problems to those reported in this paper appear. For
example, in the Thales case (Deelstra et al. 2000) documentation of the
platform has deviated from the actual functionality as the platform has
evolved. In other cases, (Brownsword and Clements 1996, Clements and
Northrop 2002a) the enormous amount of low level variability in software
was reported. Clements et al. (2002b) reported that the variability was
present only on the files and folders level. In the Philips case (Linden et al.
2007), the problem of too many dependencies between components, result-
ing in much time spent on integration problems, was reported. Patzke et
al. (2006) discovered that many of the differentiation point were actually
obsolete and not used any more. The company was also struggling with
outdated documentation that was not updated regularly.

In most cases a product line approach was introduced in an evolution-
ary way, apart from one example (Clements and Northrop 2002a), where
all ongoing projects were paused and the resources were moved to the
introduction of the product line project. In some cases, the product line
was developed around a new architecture, while assets were derived from
an existing base e.g. (Linden et al. 2007). Sometimes, a new product line
was based on the most similar product from the most recent project. Some
cases, like Brownsword and Clements (1996), claim that their main success
was achieved in the architecture and reorganization, and resulted in the
change of the hardware to software cost ratio from 35:65 to 80:20.

The issue of improved traceability between requirements models and
variant has been addressed in the literature. For example, Clotet et al.
(2008) present an approach that integrates goal-oriented models and vari-
ability models while Alfarez et al. (2008) present a traceability meta-model
between features and use cases. Both example cases seem to be domain
independent but are evaluated on relatively small examples which leaves
the question of applicability in a large-scale industrial context open.

8 Conclusions

As mentioned in Introduction, software product lines improves the qual-
ity of the products and reduces the time spent on a product development.
However, managing a product line and its variation points efficiently re-
quires a consistent way of working and clear responsibilities. In this case
study it has been found that new products are derived by copying the most
similar configuration from previous products and iteratively configuring
the product between developers, CM and testers. The variability is neither
clearly specified nor documented. The responsibilities are unclear. There
is no connection between the requirements and the configuration possibil-
ities in the product line. These aspects affect negatively the possibilities to
verify the configuration and the time spent on product configuration.

To be able to cope with these issues, improvement consisting of an ab-

90

8. CONCLUSIONS

straction layer in the configuration interface have been proposed. This ab-
straction separates the low level feature configuration from the high level
product configuration, and establishes a traceability from requirements to
configuration. To clarify the product configuration and ensure that every-
one is working consistently, we propose that a product specification, based
on these configuration packages, is used throughout the company. Below,
we summarize identified problems and corresponding possible improve-
ments:

• Large number of variation points with an unmanageable granular-
ity. Variation points are encapsulated into configuration packages,
separating the high level configuration from the low level configura-
tion, and resolving the granularity issues.

• Unclear responsibilities and unstable process for the product con-
figuration. By dividing the configuration into different layers and
proposing responsibilities are clarified.

• No clear traceability between configuration parameters and initial
requirements. By introducing an abstraction layer based on config-
uration packages, the configurations are directly linked to the initial
requirements.

• No complete product specification available. A new and managed
product specification based on configuration packages are spread through-
out the organization and used by all stakeholders.

• Products are configured in an inefficient and iterative process with-
out using the initial requirements. By the use of a complete product
specification and a configuration interface based on the same config-
uration packages, the configuration can be done at early stage.

The evaluation of our proposal shows that the developers are coher-
ently positive to the suggested improvements. To validate out proposals,
the changes were simulated together with two development teams. The
results showed no major obstacles, but emphasized the importance of co-
operation between the requirements engineers and the developers in the
definition of the configuration packages. The expectations of this proposal
are as follows:

• To reduce effort and time spent on iterative configuration

• To ensure a higher product quality by improved product verification

• To state more clear responsibilities among stakeholders

• To make the information concerning variability within the company
more accessible

91

PAPER II: AN INDUSTRIAL CASE STUDY ON LARGE-SCALE VARIABILITY
MANAGEMENT FOR PRODUCT CONFIGURATION IN THE MOBILE
HANDSET DOMAIN

It is stated in (Pohl et al. 2005) that explicit documentation of variabil-
ity can help to improve making decisions, communication and traceability.
Following Pohl et al. (2005) we can also conclude that introducing abstrac-
tion levels for variation points and variants improves understanding and
management of software product line variability. As a result, we conclude,
that our improvement proposals may be relevant for other contexts by ad-
dressing the general issue of variability in software product lines with ab-
straction mechanisms on both requirements and realization level (Bosch
et al. 2002).

This paper contributes in a detailed investigation on product derivation
from a large software product line, which addresses research question Q1.
Question 2 is addressed in Section 4.3 as a set of challenges in practice. Fi-
nally, Q3 is addressed by the improvement proposals, described in Section
5 that may increasing product quality and decreasing the effort needed for
product derivation.

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special acknowledgments to Per Ȧsfält
for valuable contributions on problem statements and research direction.

92

REFERENCES

References

M. Alfarez, U. Kulesza, A. Moreira, J. Araujo, and V. Amaral. Tracing be-
tween features and use cases: A model-driven approach. In Proceedings
of the Second International Workshop on Variability Modelling of Software-
intensive Systems, pages 81–88, 2008.

W. A. Babich. Software configuration management: coordination for team pro-
ductivity. Addison-Wesley Longman Publishing, 1986.

J. Bosch. Design and Use of Software Architectures Adopting and evolving a
product-line approach. ACM Press/Addison-Wesley, 2000.

J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink, and Klaus Pohl.
Variability issues in software product lines. In Lecture Notes in Computer
Science, volume 2290, pages 303–338, 2002.

L. Brownsword and P. Clements. A case study in successful product line
development. Technical Report CMU/SEI-96-TR-016, Carnegie-Mellon
Software Engineering Institute, Pittsburgh, 1996.

P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002a.

P. Clements and L. Northrop. A software product line case study. Technical
Report CMU/SEI-2002-TR-038, Carnegie-Mellon Software Engineering
Institute, Pittsburgh, 2002b.

R. Clotet, D. Dhungana, X. Franch, P. Grunbacher, L. Lopez, J. Marco, and
N. Seyff. Dealing with changes in service-oriented computing through
integrated goal and variability modelling. In Proceedings of the Second In-
ternational Workshop on Variability Modelling of Software-intensive Systems,
pages 43–52, 2008.

S. Deelstra, M. Sinnena, and J. Bosch. Product deriviation in software prod-
uct families: a case study. The Journal of Systems and Software, 74(2):173–
194, 2000.

R. L. Glass. Pilot studies: What, why and how. The Journal of Systems and
Software, 36(1):85–97, 1997.

A. Jaaksi. Developing mobile browsers in a product line. IEEE Software, 19
(4):73-80, 2002.

F. J. Linden, K. van der Schmid, and E. Rommes. Software Product Lines in
Action The Best Industrial Practice in Product Line Engineering. Springer-
Verlag, 2007.

93

REFERENCES

T. Patzke, R. Kolb, D. Muthig, and K. Yamauchi. Refactoring a legacy com-
ponent for reuse in a software product line: a case study. Journal of Soft-
ware Maintenance and Evolution: Research and Practice, 18(2):109–132, 2006.

K Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag, 2005.

Krzysztof Wnuk. Evaluation form can be accessed at. http://www.cs.

lth.se/home/Krzysztof_Wnuk/VaMoS_2009/EvaluationForms.pdf,
January 2010a.

Krzysztof Wnuk. Results of evaluation can be accessed at.
http://www.cs.lth.se/home/Krzysztof_Wnuk/VaMoS_2009/

ResultsOfTheEvaluation.pdf, January 2010b.

Krzysztof Wnuk. The interview’s instrument and participants distribution
can be accessed at. http://www.cs.lth.se/home/Krzysztof_Wnuk/

VaMoS_2009/InterviewInstumentAndDistribution.pdf, January
2010c.

94

Paper III

What Happened to Our Features? Visualization
and Understanding of Scope Change Dynamics in

a Large-Scale Industrial Setting

Krzysztof Wnuk1, Björn Regnell1, Lena Karlsson2

1Dept. of Computer Science, Lund University, Sweden
{krzysztof.wnuk,bjorn.regnell}@cs.lth.se

2Det Norske Veritas, Sweden
lena.karlsson@dnv.com

In Proceedings of the
17th International Requirements Engineering Conference (RE09),

September 2009, Atlanta, USA

ABSTRACT

When developing software platforms for product lines, de-
cisions on which features to implement are affected by factors
such as changing markets and evolving technologies. Effective
scoping thus requires continuous assessment of how changes
in the domain impact scoping decisions. Decisions may have
to be changed as circumstances change, resulting in a dynamic
evolution of the scope of software asset investments. This pa-
per presents an industrial case study in a large-scale setting
where a technique called Feature Survival Charts for visualiza-
tion of scoping change dynamics has been implemented and
evaluated in three projects. The evaluation demonstrated that
the charts can effectively focus investigations of reasons behind
scoping decisions, valuable for future process improvements.
A set of scoping measurements is also proposed, analyzed the-
oretically and evaluated empirically with data from the cases.
The conclusions by the case company practitioners are positive,
and the solution is integrated with their current requirements
engineering measurement process.

1. INTRODUCTION

1 Introduction

Deciding which requirements to include into the scope of an upcoming
project is not a trivial task. Requirements for complex systems may be
counted in thousands, and not all may be included in the next develop-
ment project or next release. This means that it is necessary to select a
subset of requirements to implement in the forthcoming project, and hence
postpone the implementation of other requirements to a later point in time
(Wohlin and Aurum 2005, Greer and Ruhe 2004). This selection process
is often called scoping and is considered as a key activity for achieving
economic benefits in product line development (Schmid 2002). While its
importance has already been reported in several studies, research has not
yet put broad attention to the issues of product line scoping. In particular,
following Schmid (2002), we agree that existing work in domain engineer-
ing in software product lines focus mainly on the identification aspect of
scoping e.g. (Kishi et al. 2002, Savolainen et al. 2007). On the other hand,
some researchers have already addressed the issue of understanding un-
derlying reasons for the inclusion of certain requirements in a specific re-
lease (Wohlin and Aurum 2005), while others investigated one of the root
causes for changing requirements, namely requirements uncertainty (Ebert
and Man 2005).

The problem with many changes in the scoping process for product line
projects has recently been identified by one of our industrial partners from
the embedded systems domain. This issue has been particularly challeng-
ing for the case company, since their current requirements management
tool could not provide a sufficient method to visualize and characterize this
phenomena. As a remedy, the Feature Survival Chart (FSC) concept was
proposed by the authors and acknowledged by the practitioners as a valu-
able support. This paper extends the contributions of (Wnuk et al. 2008)
with (1) findings from industrial application in three projects and (2) scope
tracking measurements. The proposed visualization shows the decision
process of including or excluding features that are candidates for the next
release. Our technique can spot the problem of setting too large a scope
compared to available resources as well as increase the understanding of
the consequences of setting a limited scope early. By using graphs, we can
identify which features and which time frames to analyze in order to find
scoping issues related to uncertainties in the estimations that decisions rely
on. The charts have also shown to be useful in finding instabilities of the
scoping process.

The proposed set of scope tracking measurements complements the
proposed visualization technique, and they aim at further increasing the
understanding of the rationale and dynamics of scope changes. The mea-
surements are analyzed both theoretically and empirically using data from
three large industrial projects that contain hundreds of high-level features
related to thousands of system requirements. We also present findings

97

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

from discussions on the results with practitioners that ranked the useful-
ness of the proposed measurements and expressed their opinions about
their value in scope management.

The paper is structured as follows: Section 2 provides background in-
formation about the context of our industrial case study. Section 3 de-
scribes the methodology used in this study. Section 4 explains our visu-
alization technique. Section 5 describes the results from applying our tech-
nique to three industrial projects. Section 6 defines and evaluates the pro-
posed measurements. Section 7 provide conclusions and discusses their
limitations.

2 The case company

Our results are based on empirical data from industrial projects at a large
company that is using a product line approach (Pohl et al. 2005). The com-
pany has more than 5000 employees and develops embedded systems for
a global market. There are several consecutive releases of the platform,
a common code base of the product line, where each of them is the basis
for one or more products that reuse the platform’s functionality and qual-
ities. A major platform release has approximately a two year lead time
from start to launch, and is focused on functionality growth and quality
enhancements for a product portfolio. Minor platform releases are usu-
ally focused on the platform’s adaptations to the different products that
will be launched with different platform releases. This approach creates an
additional requirements flow, which in our case company is handled as a
secondary flow, and arrives to the platform project usually in the middle of
its life cycle. This flow enables flexibility and adaptation possibilities of the
platform project, while the primary flow is dedicated to address functional-
ity of the highest importance.

There are several groups of specialists associated with various stages
of the requirements management process in the case company. For this
case, the most essential groups are called Requirements Teams (RTs) that elicit
and specify high-level requirements for a special technical area, and Design
Teams (DTs) that design and develop previously defined functionality.

The company uses a stage-gate model with several increments (Cooper
1990). There are Milestones (MSs) and Tollgates (TGs) to control the project
progress. In particular, there are four milestones for the requirements man-
agement and design before the implementation starts: MS1, MS2, MS3, and
MS4. For each of these milestones, the project scope is updated and base-
lined. The milestone criteria are as follows:

MS1: At the beginning of each project, long-term RT’s roadmap doc-
uments are extracted to formulate a set of features for an upcoming plat-
form project. A feature in this case is a concept of grouping requirements
that constitute a new functional enhancement to the platform. At this stage

98

3. RESEARCH METHODOLOGY

the features usually contain a description, its market value and effort esti-
mates. The level of details for the features should be set up in a way that
enables judgment of its market value and effort of implementation. Both
values are obtained using a cost-value approach (Karlsson and Ryan 1997).
The cost for implementation and the market value of features are the ba-
sis for initial scoping inclusion for each technical area. The features are
reviewed, prioritized and approved. The initial scope is decided and base-
lined per RT, guided by a project directive and based on initial resource
estimates in the primary receiving DT. The scope is then maintained in a
document called Feature List, that is regularly updated each week after a
meeting of the Change Control Board (CCB). The role of the CCB is to decide
upon adding or removing features according to changes that happen. The
history of scope changes is the input data for the visualization technique
described in this paper.

MS2: Features are refined to requirements which are specified, reviewed
and approved. One feature usually contains ten or more requirements
from various areas in the products. The features are assigned to DTs that
will take responsibility for designing and implementing the assigned fea-
tures after MS2. The DTs also allocate an effort estimate per feature.

MS3: The effort estimates are refined and the scope is updated and
baselined. DTs refine system requirements and start designing.

MS4: The requirements work and design are finished, and ready to
start implementation. The final scope is decided and agreed with the de-
velopment resources.

According to the company guidelines, most of the scoping work should
be done before reaching the second milestone of the process. The sec-
ondary flow starts approximately at MS2 and is connected to the start of
product projects. Both primary and secondary flows run in parallel under
the same MS criteria until they are merged together when the secondary
flow reaches its MS4. The requirements are written in domain-specific
natural language, and contain many special terms that require contextual
knowledge to be understood. In the early phases, requirements contain
a high-level customer-oriented description while being refined to detailed
implementation requirements at a late stage.

3 Research Methodology

The development of the FSC chart and corresponding scope tracking mea-
sures was performed in an interactive manner that involved practition-
ers from the case company. The persons that participated in the constant
evolution and evaluation include one process manager, two requirements
managers and one KPI (Key Performance Indicators) manager. This ap-
proach involves a set of meetings and discussion points between the re-
searchers and the practitioners that helped to guide the research. As a part

99

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

of the discussion, the important need to measure the dynamics and the na-
ture of the scope changes emerged. After proposing and theoretically vali-
dating the measurements, it was decided to apply them to the real scoping
data to empirically confirm the perceived usefulness of the metrics. All
ongoing projects in the case company were investigated for possible usage
of our technique. Our criteria of interest in analyzing a particular project
include (1) the length of analyzed project, (2) the number of features con-
sidered in the scope of the project and (3) the possibility to visualize and
analyze significant scope changes in the analyzed project. As a result, the
three most interesting ones were selected. Furthermore, we have used our
technique to define a set of scoping quality measurements that we evalu-
ated by practitioners and validated using empirical data. Finally, we have
performed an interview study with platform project requirements man-
agers in order to understand the rationale and implications for scoping
decisions.

To gather data for this study, we have implemented an exporter to re-
trieve the data from the scope parameter of each feature in the Feature
List document. This information was later sorted so that each feature is
mapped into one row and each value of the scope attribute is mapped to
an integer value. After creating graphs, a meeting with practitioners was
held in order to present and discuss results as well as address issues for
future work. As a result of this meeting, it was decided to introduce and
evaluate a set of scope tracking measurements that may give a better in-
sight into the scoping process practices and may help to assess their qual-
ity. As one of the measurements, it was decided to include a non-numerical
reason for scope exclusion to understand their nature and implications on
the stability of the requirements management process. All measurements
were calculated on an industrial set of three large platform projects.

4 Feature Survival Charts

In this section, we briefly describe our visualization technique. The Feature
Survival Chart (FSC), exampled in Figure 3.1, shows scope changes over
time which is illustrated on the X-axis. Each feature is positioned on a spe-
cific place on the Y-axis so that the complete lifecycle of a single feature can
be followed by looking at the same Y-axis position over time. The various
scope changes are visualized using different colors. As a result, each scope
change can be viewed as a change of the color. Based on discussions with
practitioners we decided to use this coloring scheme: green for features
considered as a part of the scope, red for features considered as de-scoped
and, if applicable, different shades of green for primary and secondary
flows. After sorting the features according to how long they were present
in the scope, we get a graph where several simultaneous scope changes
can be seen as ’steps’ with areas of different colors. The larger the red areas

100

5. EVALUATION RESULTS

Figure 3.1: Feature Survival Chart for project A.

are, the more features are de-scoped in the particular time of the project. At
the top of the graph we can see features that we called ’survivors’. These
features represent functionality that was included early while lasting until
the end of the scoping process. An FSC is also visualizing overall trends in
scoping. In Figure 3.1 we can see that most of scoping activity happened
after MS2 in the project. (Rn.m denotes formal releases.) Since most of
the de-scoping was done rather late in the project, we can assume that a
significant amount of effort might have been spent on features that did not
survive. Thanks to the graphs, we can see which decisions have been made
when and how large impact on the scope they had. The five areas marked
in Figure 3.1 are further discussed in Section 6.3.5. The FSC gives a starting
point for investigating why the decisions were made, and enables defini-
tion of measurements that indicate quality aspects of the scoping process.

5 Evaluation results

In this section, we present results from evaluating our visualization tech-
nique. We present FSCs for three large platform projects in the case com-

101

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

Figure 3.2: FSC for project B.

pany. The data was gathered during autumn 2008 when all three projects
were running in parallel and were targeted for product releases in 2008
or 2009. Each project was started at different points in time. At the time
when this study was performed one of them had already passed MS4, one
had launched the first platform release and the third had passed MS3. In
Figures 3.1, 3.2 and 3.3 we present one FSC respectively for three projects
denoted A, B and C. Additional information about the projects is presented
in Table 3.1.

All analyzed projects have more than 100 features ever considered in
the scope. For projects B and C, the significant feature number difference is
a result of running these two projects in parallel targeted to be released the
same year. The technical areas are similar for all projects. We can assume
that the projects affect similar groups of requirements analysts, but differ in
size, time of analysis and complexity. Project A was analyzed during a time
period of 77 weeks, during which period two releases of the platform were
launched. The total number of scope changes in the projects is calculated
from MSA and onwards.

Results indicate that we in average experience almost one scope deci-

102

6. SCOPE TRACKING MEASUREMENTS

Figure 3.3: FSC for project C.

sion per feature for each project. This fact indicates the need for a better
understanding of the scoping process, e.g. by visualizing scope changes.
A qualitative analysis of the graphs indicates that for all analyzed projects
the dominant trend is de-scoping rather than scope increases. We name
this phenomena negative scoping. For all analyzed projects we can ob-
serve negative scoping all through the analyzed period.

6 Scope tracking measurements

According to Basili et al. (1988), measurement is an effective mechanism
for characterizing, evaluating, predicting and providing motivation for the
various aspects of software construction processes. The same author states
that most aspects of software processes and products are too complicated
to be captured by a single metric. Following this thread, we have formu-
lated questions related to external attributes of the scoping process, which
in turn is related to internal attributes and a set of five measurements di-
vided into time related measurements and feature related measurements,
as described subsequently.

103

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

Table 3.1: Characteristics of analyzed projects

Project Nbr. of
features

Nbr. of
technical
areas

Time
Lenght
(weeks)

Total number of
scope changes

A 223 22 77 237
B 531 23 39 807
C 174 20 20 43

6.1 Definition of measurements

The goal with the measurements is to characterize volatility and velocity
of the scoping process, as well as clarity of the reasons behind them. To ad-
dress this goal, we have defined a set of five scope tracking measurements,
which are presented subsequently. Four out of five measurements can be
calculated based on the scope attribute value in the feature list document
and time stamps for this document, while the last measurement needs a
more qualitative approach that requires additional information that com-
plements the graphs.

6.1.1 Time-related scope tracking measurements:

In this category we have defined one measurement:
Number of positive and negative scope changes per time stamp/base-

line (M1). We define a positive scope change as an inclusion of a feature
into the scope of the project, while a negative change indicates exclusion
from the project. We assume that the scope ideally would stabilize in the
late phase of the project in order to avoid expensive late changes.

6.1.2 Feature related measurements:

In this category we have defined the following measurements that also can
be averaged for the whole platform project:

Time to feature removal (M2) - the time from the feature was intro-
duced until it was permanently removed. The measurement can of course
only be calculated for the features that have not survived until the end
of the requirements management process. The interpretation of this mea-
surement can be as follows: it is a matter of quality of the requirements
management process to remove features that will not be included into the
projects due to various reasons as early as possible. This approach saves
more resources for the features that will be included into the scope, and
increases the efficiency of the scoping process. The pitfall related to this
measurement is the uncertainty whether features included into the scope

104

6. SCOPE TRACKING MEASUREMENTS

at the end of the requirements management process will not be excluded
later due to various reasons. On the other hand, even taking this fact into
consideration, we still believe that we successfully can measure M2 and
get valuable indications of the final scope crystallization abilities.

Number of state changes per feature (M3) - this measurement is a re-
flection of the measurement M1. By calculating this measurement for all
features and visualizing results in the form of a distribution, we can see
the fraction of complex decisions among all decisions. The interpretation
of this measurement is that the fewer changes per feature in a project, the
more ’stable’ the decision process is and less extra effort has to be spent
on complex decisions making the project less expensive to manage. As al-
ready mentioned, high values for this measurement indicate complex and
frequently altered decisions.

Time to birth (M4) - for each feature that has not yet appeared in the
scope, we calculate the delay time which is proportional to the number of
baselines of the scope document. In our calculations, we took into consid-
eration the fact the feature list document was baselined irregularly, and we
based our calculations on the number of days between the baselines. This
measurement describes the activity of the flow of new features in time.
Here, similarly to M1, we have to decide what is our starting point in the
project. Our interpretation assumes that we take MS1 as a starting point.
In an ideal situation we expect few features with a long time to birth, since
late additions to the scope create turbulence in the project.

Reason for scoping decision (M5) - as the last measurement described
in this study, we define reasons for scoping decisions. This measurement
will be calculated as a non-numerical value and it can not be automatically
derived from our graphs. As already mentioned in M1, inclusion of a new
functionality is a different change compared with an exclusion of a func-
tionality. Due to limited access to practitioners, we focused on analyzing
removal of functionality. To calculate M5, we mapped each feature to its
reason for inclusion, reason for exclusion and existing CCB records.

6.2 Theoretical analysis of measurements

In this section, we present results from a theoretical analysis of the pro-
posed measurements. We have used two approaches: "key stage of formal
measurement" (Fenton and Pfleeger 1996) and the theoretical validation
(Kitchenham et al. 1995). By following the key stages of formal measure-
ment, we constructed empirical and mathematical systems and defined a
mapping between these two systems. The attributes of an entity can have
different measurements associated to them, and each measurement can be
connected to different units. Some properties, for example mapping be-
tween real world entities to numbers and the fact that different entities can
have the same attribute value, are by intuition satisfied for all defined mea-
surements. In Table 3.2 we present defined attributes and relations. We also

105

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

relate defined measurements with internal and external attributes of the re-
quirements decision process. As we can see in Table 3.2, the defined set of
measurements is addressing stability, velocity, volatility and understand-
ability of the scoping process for platform projects. Although four out of
five defined measurements are realized as objective numbers, conclusions
drawn from them about subjective attributes of requirements management
decision process are a matter of interpretation. The subjective interpreta-
tion of the results derived by our measurements is a complex task which
requires a deep domain knowledge and additional information about the
history of the project. We have extended our knowledge by interacting
with requirements managers working with platform projects in order to
derive values for M5.

6.3 Empirical application of measurements

In this section, we present results from an empirical evaluation of mea-
surements defined in Section 6.1. We have evaluated M1-M4 in three large
platform projects described in Section 5, and M5 in one large project. To in-
crease the possibilities of drawing conclusions, we have decided to present
time-related measurements as a function of time, while feature-related mea-
surements are presented in the form of distributions for each evaluated
project.

6.3.1 Number of positive and negative scope changes per time stam-
p/baseline (M1).

All three projects turned out to have many scope changes over time. In Fig-
ure 3.4 we can see many fluctuations of M1 values both on the positive and
negative side rather late in analyzed projects. This result can be explained
by a stage-gate model for requirements management projects resulting in
high peaks of changes around project milestones. On the other hand, we
experience more than four peaks for each project, which is more than the
number of milestones in the requirements management process. The dis-
tinction of positive and negative changes makes it possible to see in Figure
3.4 that inclusions of new functionality into the project may be correlated
with exclusions of some other functionality. The baseline number repre-
sents the version of the scope document. The best example is the peak of
inclusions for Project A around baseline 38, which immediately resulted in
a peak of exclusions. In this example we can also see that the magnitude
of the change in both directions is similar.

6.3.2 Time to remove a feature (M2).

For this measurement, we present results in the form of distributions. The
distribution presented in Figure 3.5 is showing that many features were

106

6. SCOPE TRACKING MEASUREMENTS
Ta

bl
e

3.
2:

R
es

ul
ts

fr
om

a
th

eo
re

ti
ca

la
na

ly
si

s
of

pr
op

os
ed

m
ea

su
re

m
en

ts
,b

y
#

w
e

m
ea

n
’n

um
be

r
of

’
M

ea
su

-
re

-
m

en
t

En
ti

ty
In

te
rn

al
at

tr
ib

ut
e

Ex
te

rn
al

at
tr

ib
ut

e
M

ea
su

re
D

om
ai

n
Sc

al
e

Em
pi

ri
ca

l
re

-
la

ti
on

M
at

he
m

at
ic

al
re

la
ti

on

M
1

Fe
at

ur
e

Li
st

Si
ze

an
d

di
re

c-
ti

on
of

sc
op

e
ch

an
ge

s
ov

er
ti

m
e.

St
ab

ili
ty

of
th

e
sc

op
in

g
pr

oc
es

s

#
sc

op
e

in
cl

u-
si

on
s

at
th

e
ti

m
e

st
am

p
#

of
sc

op
e

ex
cl

us
io

ns
at

th
e

ti
m

e
st

am
p

Fe
at

ur
e

Li
st

R
at

io
ne

ga
ti

ve
,

po
si

ti
ve

,
bi

g-
ge

r
sm

al
le

r,
eq

ua
l

to
,

ad
di

ti
on

,
su

bt
ra

ct
io

n,
di

vi
si

on

<,
>,

=,
+,

-,
et

c.

M
2

Fe
at

ur
e

Th
e

ti
m

e
th

at
w

as
ne

ed
ed

to
re

-
m

ov
e

th
e

fe
at

ur
e

fr
om

th
e

sc
op

e

Ve
lo

ci
ty

of
th

e
fin

al
sc

op
e

cr
ys

-
ta

lli
za

ti
on

pr
oc

es
s

#
da

ys
ne

ed
ed

to
m

ak
e

a
fin

al
de

-
ci

si
on

ab
ou

t
fe

a-
tu

re
ex

cl
us

io
n

Fe
at

ur
e

R
at

io
bi

gg
er

,
sm

al
le

r,
eq

ua
l

to
,

ad
di

ti
on

,
su

bt
ra

ct
io

n,
di

vi
si

on

<,
>,

=,
+,

-,
et

c.

M
3

Fe
at

ur
e

N
um

be
r

of
sc

op
e

de
ci

si
on

s
pe

r
fe

a-
tu

re

Vo
la

ti
lit

y
an

d
dy

na
m

ic
s

of
th

e
sc

op
e

de
-

ci
si

on
s.

#
sc

op
e

ch
an

ge
s

fo
r

no
n-

su
rv

iv
or

s
ne

ed
ed

to
re

-
m

ov
e

th
em

fr
om

th
e

sc
op

e.

Fe
at

ur
e

R
at

io
bi

gg
er

,
sm

al
le

r,
eq

ua
l

to
,

ad
di

ti
on

,
su

bt
ra

ct
io

n,
di

vi
si

on

<,
>,

=,
+,

-,
et

c.

M
4

Fe
at

ur
e

Ti
m

e
w

he
n

a
fe

at
ur

e
w

as
in

-
cl

ud
ed

in
to

th
e

sc
op

e
of

th
e

pr
oj

ec
t

Vo
la

ti
lit

y
of

th
e

sc
op

e
de

ci
si

on
s.

#
da

ys
fr

om
th

e
be

gi
nn

in
g

of
th

e
pr

oj
ec

t
un

ti
l

a
fe

at
ur

e
w

as
in

cl
ud

ed

Fe
at

ur
e

R
at

io
bi

gg
er

,
sm

al
le

r,
eq

ua
l

to
,

ad
di

ti
on

,
su

bt
ra

ct
io

n,
di

vi
si

on

<,
>,

=,
+,

-,
et

c.

M
5

C
ha

ng
es

to
fe

at
ur

e
R

at
io

na
le

fo
r

re
-

m
ov

in
g

fe
at

ur
es

fr
om

th
e

sc
op

e

C
la

ri
ty

of
th

e
re

as
on

s
fo

r
sc

op
e

de
ci

si
on

s

R
ea

so
ns

fo
rs

co
pe

ex
cl

us
io

ns
Sc

op
e

ch
an

ge
s

N
om

in
al

eq
ua

l
an

d
di

ff
er

en
t

<>
,=

107

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

‐25

‐15

‐5

5

15

25

35

0 10 20 30 40 50 60 70

N
um

be
r
of
 in
cl
us
io
ns
 a
nd

 e
xc
lu
si
on

s

Baseline number of the scope document

Number of inclusions and exclusions of over baselines

Project A ‐ Inclusions Project A ‐ Exclusions Project B ‐ Inclusions

Project B ‐ Exlusions Project C ‐ Inclusions Project C ‐ Exclusions

Figure 3.4: Number of positive and negative changes as a function of a
baseline number (M1).

removed after a certain number of days in the scope. Our results reveal
three different approaches for removing the features from the scope. For
Project A we can see an initial scope reduction rather early, then a quite
constant number of removed features, and suddenly, after about 300 days
from the project start, large scope reductions. For Project B we can see that
many features were removed in rather short intervals in time, and also
that some significant scope reductions that occurred after 150 days in the
project. On the other hand, Project C is behaving more stable in this matter,
having only one large peak of removed features around 60 days from the
project launch. This type of graph can be useful in assessing how good the
process is in crystallizing the final scope of the platform project.

6.3.3 Number of state changes per feature (M3).

For this measurement, we present the results in the form of distributions.
As we can see in Figure 3.6, most features required only one decision in
the project. This decision usually was an exclusion from the project scope,
but in some cases more than one decision per project was needed. This
fact indicates that features were shifted between the primary and the sec-

108

6. SCOPE TRACKING MEASUREMENTS

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

N
um

be
r
of
 re

m
ov
ed

 fe
at
ur
es

Number of days

Time to remove the feature distributions for analyzed
projects

Project A Project B Project C

Figure 3.5: Distributions of time to remove the feature (M2).

ondary flow of requirements, or that the management had to reconsider
previously made commitments. For a better understanding of more com-
plex decisions, this measurement can be limited to the number of scope
changes needed to remove the feature from the scope of the project. This
measurement may give valuable insights about the complexity of decision-
making. We have calculated a derived measurement, and the results are
available online (Wnuk 2010).

6.3.4 Time to birth (M4).

Empirical application of M4 presented as a distribution over time revealed
that some projects have a large peak of new functionality coming into the
scope of the project after 100 days from the beginning. In two out of three
analyzed cases we experienced large scope extensions at various points in
the project timeline. The biggest limitation of this measurement is the fact
that the used process allows for a secondary flow of requirements which
automatically can create large peaks of births at a certain time. We can no-
tice this fact in Figure 3.7 as a peak of births around day 150 day for Project
B, and around day 220 for Project A. Although the mentioned peaks are
not necessarily revealing any unplanned behavior, Figure 3.7 reveals that

109

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9

N
um

be
r
of
 f
ea
tu
re
s

Number of changes

Number of scope changes per feature

Project A Project B Project C

Figure 3.6: Distribution of number of changes per feature (M3).

smaller but still significant scope inclusions appeared for project B both
before and after the biggest peak of incoming features.

6.3.5 Reason for scoping decision (M5).

Since M5 is defined as a non-numerical measurement in order to apply it
to our industrial data set and gather results, we held a meeting with two
requirements managers responsible for managing project scoping informa-
tion. Each of the requirements managers was responsible for one scoping
project. In this paper, we focus on Project A since it was the most inter-
esting in terms of late scope changes. Before the meeting, we prepared
five scope-zones which we assumed to be the most interesting to analyze,
see Figure 3.1. During the interview, a responsible requirements manager
checked the reasons for a particular scope change. The reasons were ana-
lyzed both per individual feature, as well as per set of changes in order to
identify possible dependencies between various decisions.
Results for scope changes for project A. As we can see in Figure 3.1, we
decided to include changes from both before and after MS4. The results
are presented below:

Zone 1 - A significant scope reduction after MS3: This zone shows a

110

6. SCOPE TRACKING MEASUREMENTS

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r
of
 fe

at
ur
es

Time to birth (days)

Time to birth distributions

Project A Project B Project C

Figure 3.7: Time to birth distributions (M4).

large scope reduction that happened between MS3 and MS4 in the plat-
form project. The analysis revealed that this zone includes two reasons for
de-scoping. The first one is the strategic reason and the other one is the
cancellation of one of the products from the product line project.

Zone 2 - A large scope inclusion after MS4: This zone shows a large
set of features introduced to the scope of the project after MS4. The reasons
for this change turned out to be an ongoing work to improve performance
requirements. Because of this reason, it was decided shortly after MS4 to
include these features into the scope.

Zone 3 - A large scope inclusion together with a parallel scope exclu-
sion: This zone represents a desired behavior of the process used in the
company. The large scope inclusions show a new flow of requirements re-
lated to one of the platform releases. Our responders confirmed that all
three sets of features, separated from each other on the graph, represent an
introduction of a new requirements flow. The focus for the analysis in this
case was to examine if there was any relation between inclusion of new
requirements and exclusion of other requirements at the same time. The
set of de-scoped features turned out not to be related to the big scope in-
clusion. As described by the interviewed requirements manager, the main
reasons for these scope changes were defined as "stakeholder business de-

111

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

Table 3.3: Results from practitioners’ ranking of proposed measurements.

Rank Responder 1 Responder 2 Responder 3
1 M2 M2 M5
2 M5 M5 M1
3 M1 M4 M2
4 M4 M1 M4
5 M3 M3 M3

cision", which means that the previously defined plan was changed to ac-
commodate other aspects of the product portfolio.

Zone 4 - Some incremental scope inclusions introduced very late in
the project: As we can see in Figure 3.1, this zone covers many of the incre-
mental scope inclusions by the end of the analyzed time. Since late scope
extensions may put reliability at risk, we investigated why they occurred
and found out that there are many reasons behind this phenomena. One of
the large changes, that involved four features, was caused by administra-
tive changes in the requirements database. Some additional five features
were included into the scope as a result of a late product gap analysis. A
gap analysis is a task that requirements managers perform in order to en-
sure that the scheduled product features are covered by the corresponding
platform project. Finally, seven features introduced into the scope turned
out to be a result of late negotiations with one of the customers.

Zone 5 - Late removal of previously accepted features: In this zone,
we analyze removal of the features that were analyzed in zone 2. We have
asked our responders why initially accepted features later were de-scoped.
They replied that despite these features were initially approved, a new
decision had to be made mainly due to a lack of available development
resources. We also performed a quantitative analysis of reasons for de-
scoping in Project A. The results are presented in Figure 3.8. We have ana-
lyzed 120 de-scoping decisions that belong to project A. The result is shown
in percentages in Figure 3.8, summing up to 100%. As we can see, 33% of
the de-scoping decision were caused by a stakeholder’s business decision,
and 29% by a lack of resources, while 9% of the decisions were caused by
changes in product portfolios. Our largest category, stakeholder business
decision is similar to the category mentioned by Wohlin et al. (2005) called
"Stakeholder priority of requirement". Therefore we can assume that the
dominant reason for both inclusions and exclusion of certain requirements
in a specific release does not differ significantly. Furthermore, criteria such
as requirements volatility and resource availability seem to appear both in
our study and in (Wohlin and Aurum 2005).

As an additional validation step, we asked three practitioners working

112

7. CONCLUSIONS

Figure 3.8: Quantitative analysis of reasons for removing features from the
scope of the Project A.

with scoping to rank the proposed measurements. As a criterion for rank-
ing, we chose usefulness in understanding the scoping processes and in
defining future improvements. The measurement ranked as number one
is considered to be the most useful one, while the one ranked in position
five is the least useful one. The results are presented in Table 3. As we can
see in Table 3, M3 was ranked as the least useful, while M2 and M5 were
placed in the top three positions for all responders.

7 Conclusions

According to Basili et al. (1988), software engineers and managers need
real-time feedback in order to improve construction processes and prod-
ucts in ongoing projects. In the same manner, the organization can use
post mortem feedback in order to improve the processes of future projects
(Karlsson et al. 2006). Furthermore, visualization techniques used in soft-
ware engineering have already proven to amplify human cognition in data
intensive applications, and support essential work tasks (Botterweck et al.
2008). Our visualization technique provides feedback about ongoing scop-

113

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

ing activities as well as a visualization of past project scoping activities.
Measurements presented in this paper are complementing our visualiza-
tion technique by quantitative characterization and qualitative rationale
for scoping decisions. The results in terms of usefulness of the proposed
visualization technique and scope tracking measurements were acknowl-
edged by practitioners involved in their development as valuable since
they confirm the volatility of the scope and provide a tool to analyze the
various aspects of this phenomenon. The results were then used by the
case company to adjust the process towards more flexibility in scope set-
ting decisions, and a clearer scope responsibility. Our solution has con-
firmed to outperform the previously used table-based textual method to
track the scope changes in the case company. It gives a better overview
of the scoping process of the whole project on a single page size graph.
The industrial evaluation has indicated that our method can be applied
to large scale projects, which demonstrates the scalability of the method.
Finally, the managers at the case company decided that our visualization
technique should be implemented as a standard practice and is currently
in widespread usage at the case company. Even if the characteristics of
scope changes found may be particular to this case study, we believe that
the manner in which these graphs together with measurements are used
to increase the understanding of the performance of the scoping process is
generally applicable.

Limitations. As for any empirical study, there are threats to the validity.
One threat is related to the mapping between measurements and external
attributes. In software engineering we often want to make a statement of
an external attribute of an object. Unfortunately, the external attributes are
mostly indirect measurements and they must be derived from internal at-
tributes of the object (Wohlin et al. 2000). We are aware that our mapping
can be one of several possible mappings between internal and external at-
tributes. We address its correctness by evaluating external attributes with
practitioners in the case company. Another threat is related to the gen-
eralization of our results. Although the company is large and develops
technically complex products, it cannot be taken as a representative for all
types of large companies and hence the results should be interpreted with
some caution. Finally, theoretical validation is context dependent and thus
needs to be redone in every new context.

Further work. Additional studies of scope dynamics visualization in
other cases would further increase our understanding of their usefulness.
Enhanced tool support with the possibility of zooming interactively may
be useful, as well as depiction of size and complexity of features by vi-
sualizing their relation to the underlying system requirements. How to
optimize usability of such a tool support, and the search for new possibil-
ities while observing practitioners using the visualization techniques, are
also interesting matters of further research.

114

7. CONCLUSIONS

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special acknowledgments to Thomas
Olsson for valuable contributions on scope tracking measurements and to
Lars Nilsson for valuable language comments.

115

PAPER III: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

116

REFERENCES

References

V. R. Basili and D. H. Rombach. The tame project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineer-
ing, 14(6):758–773, 1988.

G. Botterweck, S. Thiel, D. Nestor, S. bin Abid, and C. Cawley. Visual tool
support for configuring and understanding software product lines. In
Proceedings of the 12th International Software Product Line Conference (SPLC
2008), pages 77–86, 2008.

R. G. Cooper. Stage-gate systems: A new tool for managing new products.
Business Horizons, 33(3):44–54, 1990.

C. Ebert and J. De Man. Requirements uncertainty: Influencing factors and
concrete improvements. In Proceedings of the 27th International Conference
on Software Engineering (ICSE 2005), pages 553–560, 2005.

N. E. Fenton and S. L. Pfleeger. Software Metrics A Rigorous & Practical
Approach. Thomson Publishing, 1996.

D. Greer and G. Ruhe. Software release planning: an evolutionary and
iterative approach. Information and Software Technology, 46(4):243–253,
2004.

J. Karlsson and K. Ryan. A cost-value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

L. Karlsson, B. Regnell, and T. Thelin. Case studies in process improve-
ment through retrospective analysis of release planning decisions. Inter-
national Journal of Software Engineering and Knowledge Engineering, 16(6):
885–915, 2006.

T. Kishi, N. Noda, and T. Katayama. A method for product line scoping
based on decision-making framework. In Proceeding Second International
Software Product Lines Conference (SPLC 2002), pages 53–65, 2002.

B. Kitchenham, S. L. Pfleeger, and N. Fenton. Towards a framework for
software measurement validation. IEEE Transactions on Software Engi-
neering, 21(12):929–944, 1995.

K Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag, 2005.

J. Savolainen, M. Kauppinen, and T. Mannisto. Identifying key require-
ments for a new product line. In Proceedings of the 14th Asia-Pacific Soft-
ware Engineering Conference (APSEC 2007), pages 478–485, 2007.

117

REFERENCES

K. Schmid. A comprehensive product line scoping approach and its vali-
dation. In Proceedings of the 24th International Conference on Software Engi-
neering (ICSE 2002), pages 593–603, 2002.

K. Wnuk, B. Regnell, and L. Karlsson. Visualization of feature survival
in platform-based embedded systems development for improved un-
derstanding of scope dynamics. In Proceedings of the Third International
Workshop on Requirements Engineering Visualization (REV 2008), pages 41–
50, 2008.

Krzysztof Wnuk. Distributions of derived m3 can be accessed
at. http://www.cs.lth.se/home/Krzysztof_Wnuk/RE_09/

NumberOfChangesNeededToRemoveTheFeature.bmp, January 2010.

C. Wohlin and A. Aurum. What is important when deciding to include
a software requirements in a project or release? In Proceedings of the
International Symposium on Empirical Software Engineering (ISESE 2005),
pages 246–255, 2005.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering An Introduction. Kluwer Aca-
demic Publishers, 2000.

118

Paper IV

Feature Transition Charts for Visualization of
Cross-Project Scope Evolution in Large-Scale
Requirements Engineering for Product Lines

Krzysztof Wnuk1, Björn Regnell1, Lena Karlsson2

1Dept. of Computer Science, Lund University, Sweden
{krzysztof.wnuk,bjorn.regnell}@cs.lth.se

2Det Norske Veritas, Sweden
lena.karlsson@dnv.com

In Proceedings of the
Fourth International Workshop on Requirements Engineering

Visualization (REV09),
September 2009, Atlanta, USA

ABSTRACT

In large-scale multi-project software engineering it is a chal-
lenge to provide a comprehensive overview of the complexity
and dynamics of the requirements engineering process. This
paper presents a visualization technique called Feature Transi-
tion Charts (FTC) that gives an overview of scoping decisions
involving changes across multiple projects based on previous
work on within-project visualization of feature survival. FTC
is initially validated using industrial data from the embedded
systems domain in a multi-project product line engineering con-
text in dialogue with practitioners. The initial validation pro-
vided specific improvement proposals for further work and in-
dicated a positive view on the general feasibility and usefulness
of FTC.

1. INTRODUCTION

1 Introduction

Requirements for software intense embedded systems can often be counted
in thousands and often describe cutting edge functionality which can have
many complex dependencies with other parts of the system. In this case,
the decision about which candidate requirements should be included into
the scope of the project and which should not is not always obvious. It is
strongly emphasized by researchers, like for example Boehm et al. (2003)
and Boehm and Huang (2003), that the inclusion process should be value-
based, while others, for instance Wohlin et al. (2005), argue that a good un-
derstanding of the underlying decision-making process is needed so that
researchers can support it in the best possible way.

In product line engineering, the selection process is often called scop-
ing and is considered crucial for achieving economic benefits (Pohl et al.
2005). Furthermore, many embedded systems companies are releasing
their products to an open market in a mode often called Market-Driven
Requirements Engineering (MDRE) (Carlshamre and Regnell 2000). In this
case, the complexity and uncertainty of scoping decisions may increase
even more and may result in a situation where the decisions have to be
made a priori with limited knowledge about their market value and their
cost for implementation. Decisions often need to be revised due to changes
in the market situation (DeBaud and Schmid 1999) or other unplanned con-
straints. Therefore, some requirements are deferred to later releases for a
number of reasons (Wnuk et al. 2008). In de-scoping there can be both re-
jected requirements (that for example are out of scope of the current strat-
egy) and postponed requirements (that for example are delayed because of
lack of resources). Large scope changes with many deferred requirements
may significantly delay a project’s overall business value, and are thus in-
teresting to track in project and product management.

In one of our previous papers, (Wnuk et al. 2008), we have analyzed
three large platform projects to test the applicability of our visualization
technique denoted Feature Survival Charts (FSC) on empirical data. In the
case of the company under study, the decision process is based on bun-
dles of requirements, called features, rather than single requirements. A
single scoping decision may concern one or many features and their de-
pendencies. In our earlier work, we have experienced a very large number
of features that were de-scoped from analyzed projects (Wnuk et al. 2009).
Due to one of the limitations in our previous work, namely the fact that
the Feature Survival Charts only show a single project during analysis, it
is not possible to analyze if some of de-scoped features are moved to an-
other projects. In a real product development setting, we can assume that
many scope changes span across several projects. Scope changes that seem
to result in rejected features may in fact concern postponed features that
appear in later projects. Based on these observations, the presented work
addresses the following two research questions (Q2 is a refinement of the

121

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

more general Q1):

• Q1: How can scope changes across projects be visualized?

• Q2: Which visualization mechanisms are effective in providing an
overview of the timing and magnitude of feature transitions across
projects in a large-scale setting?

The main contribution presented in this paper case study is a prototype
visualization technique called Feature Transition Charts (FTC) that can show
features transitions across projects, while scaling to hundreds of features.
FTC has been initially validated using real data from a large-scale product
line engineering case in the domain of embedded systems, and iteratively
refined in dialogue with domain practitioners.

The paper is structured as follows: Section 2 provides related work.
Section 3 describes background information about the context of our in-
dustrial case study. Section 4 describes the methodology used in this study.
Section 5 explains our visualization technique. Section 6 describes the re-
sults from applying our technique to two industrial projects. Section 7 de-
fines and evaluates the results. Section 8 provides conclusions and dis-
cusses their limitations.

2 Related Work

Current state-of-the-art research in software engineering has established
an opinion that decision processes are the driving forces to organize a cor-
poration’s success (Gregorio 1999). Researchers have already contributed
in creating better support for decision making based on best knowledge
and experience, computational and human intelligence, as well as a suite of
sound and appropriate methods and techniques (Ruhe 2003). The decision-
making process has also been addressed by researchers working in the re-
quirements engineering field, since it is dependent on requirements being
captured, analyzed and specified before any decision about implementa-
tion can be made. The contributions in this area are visible within differ-
ent aspects of requirements management, namely prioritization (Karlsson
and Ryan 1997, Karlsson et al. 1997) or understanding of requirements de-
pendencies (Carlshamre and Regnell 2000, Dahlstedt and Persson 2003).
Others have worked on connecting requirements engineering processes
to decision making (Aurum and Wohlin 2002; 2003, Regnell et al. 2001).
Finally, some effort has already been dedicated to the understanding of
release planning (Carlshamre 2002), while others proposed the usage of
generic algorithms to plan for different releases (Ruhe and Greer 2003).

The reasons behind scope changes have been discussed in (Wohlin and
Aurum 2005, Wnuk et al. 2009). Others have investigated the root cause
for changing requirements, namely requirements uncertainty (Ebert and

122

3. THE CASE OF THE COMPANY UNDER STUDY

Man 2005). Selecting the appropriate set of requirements has also been
addressed by researchers related to the product line community. However,
the main research stream is, according to Schmid (2002), focused on the
identification aspect of scoping (Kishi et al. 2002, Savolainen et al. 2007)
and does not address changes beyond formal decision to approve the scope
of the project.

In the requirements visualization field, the research effort is focused
mainly on three aspects of requirements engineering (Gotel et al. 2007).
The first aspect is addressing the problem of creating a visual representa-
tion of requirements and their attributes based on a formal language (Tey-
seyre 2002, UML 2010) or even visualizing these representations (Konrad
et al. 2006). The second aspect addressed in the requirements visualization
literature is focusing on visualization of the structure and relationships be-
tween requirements (Duan and Cleland-Huang 2006, Ozakaya 2006, Sellier
and Mannion 2006). Finally, the third aspect, which is most relevant to the
work presented in this paper, is addressing elicitation (Pichler and Humet-
shofer 2006) and decision-making activities (Feather et al. 2006).

Thus the work has been conducted on release planning itself, and scop-
ing as its vital part. However, to our best knowledge no studies have ac-
tually looked into the phenomenon of postponing features for the next re-
lease, and no studies have made an attempt to create a visual support for
this aspect of product development that may help to assess its scale in real
projects.

3 The case of the company under study

Our results are based on empirical data from industrial projects at a large
company that is using a product line approach. The company has more
than 5000 employees and develops embedded systems for a global mar-
ket. There are several consecutive releases of the platform, a common code
base of the product line, where each of them is the basis for several prod-
ucts that reuse the platform’s functionality and qualities. A major platform
release has approximately a two year lead time from start to launch, and is
focused on functionality growth and quality enhancements for a product
portfolio. Minor platform releases are usually focused on the platform’s
adaptations to the different products that will be launched with different
platform releases. This approach enables flexibility and possibilities for
adaptation of the platform project, while the major release is dedicated to
address functionality of the highest importance.

The company uses a stage-gate model with several increments (Cooper
1990). There are Milestones (MS) and Tollgates (TG) to control the project
progress. In particular, there are four milestones for the requirements man-
agement and design before the implementation starts: MS1-MS4. The scope
of the project is constantly changing during this process. In this case,

123

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

the project management makes scoping decisions based on groups of re-
quirements that constitute new functionality enhancements to the plat-
form, called features. The scope of each project is maintained in a docu-
ment called the Feature List, that is regularly updated each week after a
meeting of the Change Control Board (CCB). The role of the CCB is to decide
upon adding or removing features according to changes that happen. The
history of scope changes is the input data for the visualization technique
described in this paper.

According to the company guidelines, most of the scoping work should
be finished before reaching the second milestone of the process. After this
milestone, the content of the main release of the platform project should
be well defined and remain stable so that more effort can be addressed
towards the preparation for the implementation phase. Therefore, minor
releases are introduced to enable necessary adaptations that related prod-
uct projects require. The product projects start approximately at MS2.

After MS4, the project starts its implementation phase. Even though the
scope of the platform projects together with their minor releases should be
defined and approved at this stage, some important changes may still hap-
pen and decisions about how to address them must be made. The changes
may be related to unplanned issues with the development of previously
approved features or they may be requested by important customers as a
result of a rapidly changing market situation. These late changes or adap-
tations are usually handled by adaptations of the platform required by cer-
tain platform project releases.

4 Research Methodology

At the beginning of this study, a set of research questions and assumptions
was formulated by the researchers. Researchers assumed in this case that
the feature transition is a phenomenon that can have a significant repre-
sentation in real life projects. It was also assumed that there is an impact of
these types of changes on the quality attributes of the requirements man-
agement processes and the resulting products that should not be neglected
in conscious product management. As a result, three types of transitions
were defined as the most important and they are discussed in Section 5. As
a next step, the empirical investigation of previously derived assumptions
in the given company context. In this step, we have analyzed two large
platform projects. The projects under consideration contained hundreds
of features, and they were related in such as way that the first one was a
direct ancestor of the following one. On a set of two large projects, a name
matching algorithm, checking for multiple occurrences of the same feature
id among the analyzed projects, was applied to find possible reoccurrences
of the same features between the projects. The result is visualized in Fig-
ure 4.1, a distinction between forward and backward transitions has been

124

5. FEATURE TRANSITION TYPES

made, and it (the distinction) is followed by a description of the transitions
in Section 6.1. In the next step, each single project was analyzed for pos-
sible internal transitions. Many transitions were discovered and they are
visualized in Figures 4.2 and 4.3 followed by analysis in Section 6.2. Finally
a multiple-step feature transition graph was proposed and it is presented
in Section 6.3.

As the final step of the methodology, an interview study with two prac-
titioners, namely one requirements management process manager and one
requirements engineer, was performed. The interviews lasted for about
one hour each and were semi-structured. Before conducting interviews,
the list of questions to ask was prepared based on the initial assumptions
described in this section and in Section 1. Researchers have evaluated their
pre-understanding of the feature transitions phenomenon, and feedback
from practitioners in the form of their suggestions for improvements was
thus collected. Some of the important aspects of the discussion were the
usefulness of the visualization technique presented and the importance of
the need to quickly spot feature transitions in the case of the company un-
der study. The results from this step are presented in Section 7.

5 Feature Transition Types

In this section, different types of transitions are discussed. For each plat-
form project, there is one release, called the major release that provides the
main part of the functionality, while other minor releases focus on adapta-
tions and additional functionalities needed for certain products associated
with them. In this context, the distinction can be made between within-
project, cross-project and multiple transitions. Each type of transition is de-
fined and described respectively in the following sections. another plat-
form project. This type of transition is defined in Section 5.3.

5.1 Cross-project Feature Transitions

A cross-project transition occurs when a feature is moved between two
platform projects in one step. In case that a feature is moved to the follow-
ing platform project, it may be included into the earliest possible release
of the next platform project (the main release). However, the destination
release may not always be the main release. There may also be a situation
where one feature first gets internally moved to another release of its origi-
nal platform project and then later moved to another platform project. This
type of transition is defined in Section 5.3.

There may be various reasons that cause cross-project transitions. Firstly,
features may simply be moved to the next platform project due to resource
constraints, secondly due to a lack of proper hardware. Thirdly because
of the unfinished functionality it is difficult to minimize all non-functional

125

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

issues so features may be rescheduled for a later project where they can
possibly be mitigated. The decision to perform a cross-project transition
should be made after a careful analysis of the impact of the transition on
the included features’ market-values and possible efforts for implementa-
tion. Cross-project decisions also require impact analyses to ensure that for
example other features that enable new functionality to work in a new con-
text are available. The decision should also be confirmed with a business
plan for the considered functionality so that no crucial market opportuni-
ties will be missed by a decision.

5.2 Within-project Feature Transitions

This type of transition occurs between two releases within one platform
project. Features are moved between releases in one step. Each platform
project has in our case a set of consecutive releases that differs in providing
functionality. Apart from the main release, always scheduled at the begin-
ning of the platform project, all other releases are introduced and sched-
uled later in the project. Internal transitions may be caused for reasons
similar to those for the external transitions: lack of resources, dependen-
cies on suppliers or other constraints. The basic difference is that a feature
internally moved is staying in the scope of its platform project while be-
ing rescheduled to a usually later release. From a business value perspec-
tive, we believe that this type of transition can be considered as less critical
and to some extent positive since it enables a quicker and more flexible
response to rapidly changing market situations or unplanned project diffi-
culties.

5.3 Multi-step feature Transitions

The last type of transition may happen both between platform project re-
leases and the platform projects. The main difference between the pre-
viously described types of transitions and this type is that a transition is
made multiple times either within one project or between different projects.
The situation where a feature is moved multiple times only between the
platform project’s releases or between platform projects can also be classi-
fied as a multi-step transition, but we assume that it may be rare in indus-
trial projects. Multi-step transitions can significantly influence the market-
value of moved features and their cost of implementation. The manage-
ment of a project can benefit from careful analysis of this type of transitions
and tries to assess the impact of the transition on involved features’ market
value and, if applicable, their implementation cost. This type of transitions
is visualized and described in Section 6.3.

126

6. VISUALIZING FEATURE TRANSITIONS ON THE INDUSTRIAL EXAMPLE

Table 4.1: Characteristics of analyzed projects.

Project Nbr. of
features

Percentage of internal
feature transitions

Percentage of external
feature transitions

A 206 17% 8%
B 568 6% 0.5%

6 Visualizing Feature Transitions on the Indus-
trial Example

In order to confirm or reject our pre-understanding about described types
of feature transitions, we applied a new visualization technique to data
from an empirical set of two large platform projects. The characteristics
of analyzed projects are presented in Table 4.1. The projects differ signifi-
cantly in the number of features ever considered in their scope, but have a
similar number of associated technical areas.

An initial analysis of transitions present revealed that internal transi-
tions represent 17% of all scope changes for Project A, and 6% of all scope
changes for Project B. On the other hand, external transitions turned out to
be 8% of all scope changes for Project A and only 0,5% of all scope changes
for Project B. The numbers presented are, however, influenced by the fact
that only two projects were analyzed. In general, each project will have
two, or even more, associated projects; one from which the project is re-
ceiving backward transitions from and one or more to which forward tran-
sitions are sent to.

All types of transitions are visualized using a modified concept of Fea-
ture Survival Chart (FSC) presented in (Wnuk et al. 2008), namely Feature
Transition Chart (FTC). The FSC, shows scope changes over time, which
is illustrated on the X-axis. Each feature is positioned at a specific place
along the Y-axis so that the complete lifecycle of a single feature can be
followed by looking at the same Y-axis position over time. The various
scope changes are visualized using different colors. As a result, each scope
change can be viewed as a change in color. Based on discussions with prac-
titioners, we decided to use the following coloring scheme: green for fea-
tures considered as a part of the primary flow, red for features considered
as de-scoped and, if applicable, orange, yellow, pink and cyan for other
flows. After sorting the features according to how long they were present
in the scope, we get a graph where several simultaneous scope changes can
be seen as śtepsẃith areas of different colors. The larger the red areas are,
the more features are de-scoped in the particular time of the project. At
the top of the graph we can see features that we called ’survivors’. These
features represent functionality that was included early, while lasting until

127

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

the end of the scoping process.

Figure 4.1: Cross-project transitions between Projects A and B
(see Section 5.1). The full-size color figure can be found at
http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure1.bmp

The FTC is complementing the original FSCs by marking transitions
of features together with their departure and arrival points. In order to
find external transitions, we have searched feature identifiers involved in
both projects for exactly matching names. This technique resulted in a sig-
nificant fraction of features transmitted between the projects. In order to
indicate the transitionsd́eparture and arrival points, a set of the following
symbols is used. The departure points are marked by 45◦ lines leaning
down if the transition is forward, or leaning up if the transition is back-
ward. The destination points are marked by a rectangle. This technique
enables the representation of the magnitude of concurrent changes in ana-
lyzed projects, which pure lines can not adduce. It may however be inef-
ficient when many changes happen at the same time due to the overlap of
symbols. Various releases within the analyzed projects are represented by
various colors. Features removed from the scope of the release that they
finally arrived at, or even belonged to, are marked red.

128

6. VISUALIZING FEATURE TRANSITIONS ON THE INDUSTRIAL EXAMPLE

6.1 Cross-projects Feature Transitions

We have found 21 forward transitions (from Project A to Project B) in the
analyzed dataset and only 4 backwards transitions (from Project B to project
A). The results are depicted in Figure 4.1. The backward transitions are in-
teresting to analyze since they mean that features were moved to an earlier
platform project. The lines depicting transitions are not always orthogonal,
which means that there has been a delay in transitions.

In order to analyze the reasons for external feature transitions, we have
checked the decision logs for both projects for the descriptions of pro-
posed changes. The analysis of forward transitions revealed that seven
transitions were caused by stakeholders business decisions. The decision
in these cases was to refine the features and accept only a limited scope
in the next project. In three other cases, lack of development resources
caused the features to be moved to the next project. On the contrary, in
two other cases the resources were available, but the time schedule was
too tight to be ready with the implementation of given features. In two
other cases, dependencies on either suppliers or other features caused the
external transitions. In one case, the feature failed compliance testing with
a certain standard required by the customer so it had to be moved to the
next release of the project for improvements. Finally, in two cases features
were only partly ready for the original project deadline and therefore were
moved to the next release. The interesting information here is that most
of the functionality was available, but the company decided to postpone
the commercial availability of features until the complete feature imple-
mentations were ready. The analysis of backward transitions revealed that
for all cases there was a request to provide the functionality in an earlier
project. The requests were accepted after checking that the development
teams were capable of meeting the new deadlines and that the new features
were technically compatible with the destination project’s source code.

6.2 Within-projects Feature Transitions

Next, we have visualized internal transitions within both projects A and
B. The results are depicted in Figures 4.2 and 4.3. Various platform project
releases are placed next to each other in the graphs. The time offset is not
present in this case, so that all transitions are represented by orthogonal
lines and transition symbols similarly to across-project transition visual-
ization. Due to the doubling of data points (only for the features that have
been moved within-project) in this type of graph, the data has been min-
imized by removing data points from after the transition for the source
project and before the transition for the destination project. As a result, a
more accurate picture of the size of various platform project releases can
be achieved.

In the case of Project A, we experienced in total 34 within-project tran-

129

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

Figure 4.2: Within-project transitions for Project A (see
Section 5.2). The full-size color figure can be found at
http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure2.bmp

sitions. 18 of them turn out to be originating from R1 and 15 from R2. All
mentioned transitions are targeted to later releases. On the other hand, one
transition is originating from R4 and is directed towards an earlier scope
release. In the case of Project B, 36 within-project transitions were found
in total. The interesting observation here is that 19 transitions are originat-
ing from release R5, another 10 from release R2. Both groups of transitions
are targeted to earlier releases. In this case, only five transitions originated
from release R1 and only two from release R2.

6.3 Visualizing multiple transitions.

The last type of visualization is representing only features that have been
transferred multiple times. Due to the fact that these transitions are com-
plex, the visualization used here considers only mentioned transitions. All
single transitions, as well as features that were not moved anywhere, are
excluded from the graph. The results from visualizing this type of tran-
sitions on the industrial data are depicted in Figure 4.4. In our case, only
five features happened to behave in this way. For all discovered cases the

130

7. INITIAL VALIDATION

Figure 4.3: Visualizing within-project transitions for Project B
(see Section 5.2). The full-size color figure can be found at
http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure3.bmp

scenario is the same, the features were first moved internally to an early
project release within the same platform project, and then moved to the
second release of the following project. To emphasize multiple transitions,
a new symbol was added to the graph, namely the interim transition sym-
bol. As a result of its design, this view cannot visualize the magnitude
of multiple transitions compared with all transitions in the project. It is
instead focusing on paths for multiple transitions.

7 Initial Validation

As an initial validation step, interviews were conducted with two prac-
titioners from the case of the company under study, one person work-
ing with requirements engineering process improvement and one person
working with scope management. The questions were asked to confirm
or reject the assumptions that the researchers had before applying visu-
alizations to the empirical data. As one of the first questions, interest in
visualizing feature transitions was discussed. Both responders expressed

131

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

Figure 4.4: Multiple transitions between projects A and B visualized with
the exclusion of non-transitions. The full-size color figure can be found at
http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure4.bmp

their interest in visualizing cross-project transitions and also reported that
current tool support cannot provide this functionality. Neither of the re-
sponders could give an accurate estimate of the scale of this phenomenon
in the case of the company under study, but they agreed that there are
many changes that would be valuable to visualize and analyze.

Our responders confirmed our assumptions that feature transitions may
sometimes heavily influence the market value of affected features. This is
because for each feature there is an optimal market window for an esti-
mated profit. If, for some reasons, a feature is delivered to the market out-
side its optimal market window new estimations of its market value need
to be made. In addition, cost of implementation may be affected, although
market value implications were considered more important. The relation
to the cost of implementation is, according to one of our responders, de-
pendent on when the feature was moved (to which project) since that may
either reduce or increase the cost for implementation. Both responders ex-
pressed that it is crucial to visualize the transitions because of so called
enablers: features that are prerequisites of other valuable features, but that
might not have a great market value on their own. Enablers often have
to be implemented before, or in conjunction with, the features that rely on
them. Therefore, all backward feature transitions should be analyzed to

132

8. CONCLUSIONS

ensure that dependencies to required enablers related to moved features
are available. In some cases, feature transitions may involve large archi-
tectural changes while the impact may be minimal in others. For forward
transitions, enablers should not be rejected in order to make sure that sup-
port for the transferred features still persists. In the event of backwards
transitions, it is important to check that support for the new functionality
is available and thus may also require the backward transition of related
enablers. Being able to trace features between the projects was considered
as very valuable and desired.

Questions regarding usefulness and applicability of each type of the vi-
sualization were also asked. The external transitions graph was considered
useful by our responders (by one responder the most useful graph). The
meaning of the backward transitions was discussed together with the time
delay between the exclusion and inclusion. As our responders mentioned,
sometimes it is undesirable to remove the feature from the original scope
until the final decision to transfer is made. For the backward transitions,
the lead-time can be shown (Figure 4.1) representing the time needed to
analyze the feature. The internal transition visualization turned out not to
be as useful as the external version. Responders mentioned that the fact
that each data point is placed twice on the graph (to distinguish among re-
leases) may lead to wrong conclusions. It was also mentioned that in their
company only one person is responsible for one project meaning that this
person would usually be aware about the number of internal transitions in
the project under his or her management.

Finally, the multiple transitions view was discussed. The responders
found it less useful than the external transitions graph. One responder
would like to have all features in the graph, not only the transitions, to be
able to compare the scale of the project to the overall size of the project.

8 Conclusions

In this paper, we present a technique for visualization of the scope dynam-
ics of changes within and across multiple projects called Feature Transition
Charts (FTC), an extension of Feature Survival Charts (FSC) (Wnuk et al.
2008). We have applied FTC post-mortem to real-world data from two
large projects. FTC was initially validated in dialogue with practitioners,
indicating that while FTC may be both feasible and useful, additional re-
search could enhance the features in terms of interactive zooming and en-
hanced user configurability. The main findings are summarized in relation
to research questions from Section 1:

• (Q1) FTC can visualize scope changes across the projects by aligning
a set of FSC and depicting transfers using special markers and lines.
The visualization can scale to large projects (at least in the projects
we have tested), which can be counted as its advantage over a tex-

133

PAPER IV: FEATURE TRANSITION CHARTS FOR VISUALIZATION OF
CROSS-PROJECT SCOPE EVOLUTION IN LARGE-SCALE REQUIREMENTS
ENGINEERING FOR PRODUCT LINES

tual representation of scope dynamics The practitioners believe that
FTC can give a comprehensive overview of scoping dynamics that
have not previously been made explicit, and that the concept of FSC
(Wnuk et al. 2008; 2009) is extended in a useful way. FTC can be
used by both requirements engineers and process managers to gain
valuable information about the presence and nature of scope changes
across projects or projects’ releases.

• (Q2) The proposed visual symbols for departure and arrivals of fea-
ture transitions can be useful in providing an effective overview of
the timing and magnitude of feature transitions. However, in a very
large scale projects, many adjacent transitions can overlap and future
work thus may include experiments with interactive zooming and
filtering features.

Limitations. Our study has some limitations. Firstly, even if the case of
the company under study is large and develops technically complex prod-
ucts, it cannot be taken as a representative for all types of large companies
and hence the results should be interpreted with some caution. Secondly,
our initial validation of FTC is limited to a static post-mortem analysis and
because of that it could not be applied in a proactive manner and no feed-
back from ongoing projects could be gathered. Thirdly, when the size of
the projects grows, our visualization technique should be complemented
by zooming and interactive features so that the holistic picture can be per-
ceived, while the details are available on demand.
Further work. Additional studies of scope dynamics visualization in other
cases would further increase our understanding of their usefulness. En-
hanced tool support, with the possibility of zooming interactively, may be
useful. Other means of marking the departure and arrival points should
be evaluated. Finally, additional work should be performed to address the
applicability of FTC in other contexts, for example other domains, such as
information systems, and other development modes, such as single prod-
uct development or agile development.

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special acknowledgments to Thomas
Olsson for valuable help with Section 7, and to Lars Nilsson for valuable
language comments.

134

REFERENCES

References

A. Aurum and C. Wohlin. Applying decision-making models in require-
ments engineering. Information and Software Technology, 45(14):2–13, 2002.

A. Aurum and C. Wohlin. The fundamental nature of requirements engi-
neering activities as a decision-making process. Information and Software
Technology, 45(14):945–954, 2003.

B. W. Boehm. Value-based software engineering. Software Engineering
Notes, 28(2):1–12, 2003.

B.W. Boehm and L. G. Huang. Value-based software engineering: A case
study. Computer, 36(3):33–41, 2003.

P. Carlshamre. Release planning in market-driven product development:
Provoking an understanding. Requirements Engineering Journal, 7(3):139–
151, 2002.

P. Carlshamre and B. Regnell. Requirements lifecycle management and
release planning in market-driven requirements engineering processes.
In Proceedings of the 11th International Workshop on Database and Expert
Systems Applications, pages 961–965, 2000.

R. G. Cooper. Stage-gate systems: A new tool for managing new products.
Business Horizons, 33(3):44–54, 1990.

Ȧ. Dahlstedt and A. Persson. Requirements interdependencies - moulding
the state of research into a research agenda. In Proceedings Ninth Interna-
tional Workshop on Requirements Engineering (REFSQ 2003), pages 71–80,
2003.

J. M. DeBaud and K. Schmid. A systematic approach to derive the scope of
software product lines. In Proceedings of the 21st International Conference
on Software Engineering (ICSE 1999), pages 34–43, 1999.

C. Duan and J. Cleland-Huang. Visualization and analysis in automated
trace retrieval. In Proceedings of the First International Workshop on Require-
ments Engineering Visualization (REV 2006), pages 54–65, 2006.

C. Ebert and J. De Man. Requirements uncertainty: Influencing factors and
concrete improvements. In Proceedings of the 27th International Conference
on Software Engineering (ICSE 2005), pages 553–560, 2005.

M. S. Feather, S. L. Cornford, J. D. Kiper, and T. Menzies. Experiences
using visualization techniques to present requirements, risks to them,
and options for risk mitigation. In Proceedings of the First International
Workshop on Requirements Engineering Visualization (REV 2006), pages 80–
89, 2006.

135

REFERENCES

O. C.Z. Gotel, F. T. Marchese, and S.J. Morris. On requirements visualiza-
tion. In Proceedings of the Second International Workshop on Requirements
Engineering Visualization (REV 2007), pages 80–89, 2007.

G. De Gregorio. Enterprise-wide requirements and decision management.
In Proceeding of the 9th International Symposium of the International Council
on System Engineering, pages 1–7, 1999.

J. Karlsson and K. Ryan. A cost-value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for pri-
oritizing software requirements. Information and Software Technology, 39
(14-15):939–947, 1997.

T. Kishi, N. Noda, and T. Katayama. A method for product line scoping
based on decision-making framework. In Proceeding Second International
Software Product Lines Conference (SPLC 2002), pages 53–65, 2002.

S. Konrad, H. Goldsby, K. Lopez, and B. H.C. Cheng. Visualizing require-
ments in uml models. In Proceedings of the First International Workshop on
Requirements Engineering Visualization (REV 2006), pages 1–10, 2006.

O. Ozakaya. Representing requirements relationships. In Proceedings of
the First International Workshop on Requirements Engineering Visualization
(REV 2006), pages 75–84, 2006.

M. Pichler and H. Humetshofer. Business process-based requirements
modeling and management. In Proceedings of the First International Work-
shop on Requirements Engineering Visualization (REV 2006), pages 20–29,
2006.

K Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag, 2005.

B. Regnell, M. Höst, J. Natt och Dag, and A. Hjelm. Case study on dis-
tributed prioritization in market-driven requirements engineering for
packaged software. Requirements Engineering Journal, 6(1):51–62, 2001.

G. Ruhe. Software engineering decision support - a new paradigm for
learning software. Lecture Notes in Computer Science, 2640(1):104–113,
2003.

G. Ruhe and D. Greer. Quantitative studies in software release planning
under risk and resource constraints. In Proceedings of the International
Symposium on Empirical Software Engineering (ISESE 2003), pages 262–271,
2003.

136

REFERENCES

J. Savolainen, M. Kauppinen, and T. Mannisto. Identifying key require-
ments for a new product line. In Proceedings of the 14th Asia-Pacific Soft-
ware Engineering Conference (APSEC 2007), pages 478–485, 2007.

K. Schmid. A comprehensive product line scoping approach and its vali-
dation. In Proceedings of the 24th International Conference on Software Engi-
neering (ICSE 2002), pages 593–603, 2002.

D. Sellier and M. Mannion. Visualizing product line requirements selec-
tion decision inter-dependencies. In Proceedings of the Second International
Workshop on Requirements Engineering Visualization (REV 2007), pages 20–
29, 2006.

A. Teyseyre. A 3d visualization approach to validate requirements. In
Proceedings of the Congreso Argentino de Ciencias dela Computacion, pages
1–10, 2002.

UML. The unified modeling language webpage. http://www.uml.org,
January 2010.

K. Wnuk, B. Regnell, and L. Karlsson. Visualization of feature survival
in platform-based embedded systems development for improved un-
derstanding of scope dynamics. In Proceedings of the Third International
Workshop on Requirements Engineering Visualization (REV 2008), pages 41–
50, 2008.

K. Wnuk, B. Regnell, and L. Karlsson. What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting. In Proceedings of the 17th IEEE International Re-
quirements Engineering Conference (RE 2009), pages 89–98, 2009.

C. Wohlin and A. Aurum. What is important when deciding to include
a software requirements in a project or release? In Proceedings of the
International Symposium on Empirical Software Engineering (ISESE 2005),
pages 246–255, 2005.

137

REFERENCES

138

Paper V

Replication of an Experiment on Linguistic Tool
Support for Consolidation of Requirements from

Multiple Sources

Krzysztof Wnuk, Martin Höst, Björn Regnell,
Dept. of Computer Science, Lund University, Sweden

{krzysztof.wnuk,martin.host,bjorn.regnell}@cs.lth.se

To be submitted to the Empirical Software Engineering Journal (ESEJ)

ABSTRACT

Requirements management in large-scale contexts demands
using effective methods that can cope with its inherently com-
plex and challenging tasks. This paper presents a replicated
experiment with a linguistic tool for consolidation of require-
ments sets. The core of the experiment is the requirements con-
solidation task, where new requirements are analyzed against
those already present in a requirements database, and similari-
ties are discovered and recorded. As a result, a significant effort
can be saved by finding which new requirements are actually
already implemented or analyzed. In this replication, 45 sub-
jects used two methods for the consolidation task. The first
method, also called the assisted method, uses linguistic engi-
neering techniques to calculate the degree of similarity between
requirements implemented in a tool called ReqSimile. The sec-
ond method, namely the manual method, comprises searching
and filtering capabilities provided by the Telelogic Doors tool.
The manual method has been changed from the original ex-
periment. The results of this replication follows the original
experiment outcomes, where the linguistic method helped to
access more correct links and miss fever links than the man-
ual method. However, the performance improvement achieved
for the linguistic method used in the original experiment is not
confirmed by this replication, which may indicate that advanced
searching and filtering functionalities may also be helpful in the
requirements consolidation task.

1. INTRODUCTION

1 Introduction

Requirements engineering in a market-driven context (Regnell and Brinkkem-
per 2005) can be characterized by: continuous elicitation, time-to-market
constraints, and strong market competition (Natt och Dag 2006). In this
context, requirements are arriving constantly from multiple sources through-
out the development process (Regnell et al. 1998). When the company is
growing and expanding, more products are created which result in a more
complex variability structure, and more effort is needed to handle product
customizations, for example by utilizing the Software Product Line (SPL)
concept (Pohl et al. 2005). This constant flow of requirements arriving to
the company need to be analyzed both from the new market opportunity
and the technical compliance perspectives. In a case when a company
is large and develops complex software solutions to a global market, the
quantity of information to constantly analyze and assess may severely im-
pede the analytical capacity of requirements engineers and managers. The
result is a need for methods and tools that will assist in analyzing large
amounts of natural language requirements for the purpose of finding and
recording similarities between them. As a result, the efficiency of require-
ment management activities can be significantly improved. The impor-
tance of the mentioned issue increases with the volumes of requirements
to analyze.

The process of analyzing requirements incoming from customers or
proxy-customers against requirements already present in the requirements
repository can be called requirements consolidation. This process includes
gathering incoming documents, finding similarities and merging or link-
ing similar descriptions into a consolidated single description that covers
all analyzed aspects. The core in the requirements consolidation process is
finding the similarities between requirements and recording them by mak-
ing links between them (Natt och Dag et al. 2006). However, the amount of
possible links grows exponentially with the increase of the number of re-
quirements to analyze, which may result in overwhelming the company’s
management and analytical skills. This problem was identified in the orig-
inal experiment report as a relevant industrial problem in a large company,
caused by complex stakeholders set ups and many projects running in par-
allel (Natt och Dag et al. 2006). As a remedy to this problem, Natt och Dag
et al. (2006) developed and evaluated a method for requirements consol-
idation that utilizes linguistic techniques and provides a list of require-
ments that are the most similar to the currently analyzed requirement. The
evaluation of the method showed that its usage can significantly improve
the performance of the consolidation process as well as the number of cor-
rectly linked requirements, and that it can help to miss fever requirements
links. However, the unsupported method used in the original experiment
was limited to a simple search functionality, while most of currently avail-
able requirements management tools offer more advanced filtering and

141

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

searching techniques. Thus, this replication has been designed in order to
asses whether the tool, with a linguistic analysis of the similarity between
requirements, can still perform better than a currently available commer-
cial requirements management tool in the task of requirements consolida-
tion. A replicated experiment has been chosen due to its falsifiable nature,
which provides a possibility to evaluate whether the output parameters of
a system remain stable if one or more input parameters are systematically
changed.

In this experiment, two subject groups were asked to consolidate two
requirements sets by finding and linking requirements that address the
same underlying functionality. The presented replication reuses the origi-
nal procedures in terms of the study design and experimental steps (Natt
och Dag et al. 2006), but uses another set of subjects and changes one of
the experimental objects. In the light of the previous facts, this replica-
tion can be classified according to Shull et al. as an exact replication (Shull
et al. 2008). The unchanged object in this replication, also called the as-
sisted method, is a research prototype tool, called ReqSimile (Natt och Dag
2010), that utilizes linguistic analysis to assist in the task of finding similar
requirements. The second object, being changed compared with the origi-
nal experiment, is also called the manual method, and it utilizes searching
and filtering functionalities implemented in a tool called Telelogic Doors
(IBM 2010), which has currently changed its vendor and its name to Ra-
tional DOORS. However, since the Telelogic Doors version 8.3 was used
in this experiment, we will refer to this tool throughout this paper as Tele-
logic Doors. Both methods were compared for the task of requirements
consolidation meaning that comparing the two tools in general is outside
of the scope of this paper. The objectives of the replication constitute the
following research questions:

Q1: Can significant difference between the assisted and the manual methods
that were achieved in the original experiment be confirmed in a replicated
experiment where manual method is provided by a commercial require-
ments management tool?

Q1a: Is the assisted method significantly more efficient in consolidating
two requirements sets?

Q1b: Is the manual method significantly more correct in consolidating
two requirements test by assessing more correct links?

Q1c: Does the assisted help to miss less requirements links?

Q2: How do the results of the original study for each method correspond
to the results for the same method in a replicated study?

Q2a: Is there any difference between the results for the assisted method
between the two studies?

Q2b: Is there any difference between the results for the manual method
between the two studies?

142

2. RELATED WORK

The aim of RQ1 is to assess if results obtained in the original experiment
holds even if one of the tools is changed (Natt och Dag et al. 2006). Also,
to better compare the results from the original and replicated experiments,
the research question Q1 was divided into three sub-questions, were each
of them is explicitly addressing various quality aspects of the consolidation
process. Question Q2 aims at assessing if there are any differences between
the two experiment runs for the same treatments. The possible differences
provide valuable input regarding the nature of the consolidation task and
the subjects used in both experiment runs.

The paper is structured as follows. Section 2 provides related work.
Section 3 describes the experimental design. Section 4 explains experiment
execution procedures. Section 5 describes the experiment results analysis.
Section 6 brings an interpretation of results. Section 7 concludes the paper.

2 Related Work

Replications play an important role in software engineering by allowing
to build knowledge about which results or observations hold under which
conditions (Shull et al. 2008). Unfortunately, replications in software engi-
neering are still rarely reported. A recent survey of controlled experiments
in software engineering revealed that replications are still neglected by em-
pirical researchers since only 18% of the surveyed experiments are reported
as replications (Sjoberg et al. 2005). Moreover only 3,9% of analyzed con-
trolled experiments can be categorized according to the IEEE taxonomy as
requirements/specification related (Sjoberg et al. 2005, IEEE 2010).

The awareness of new possibilities that Natural Language Processing
(NLP) can bring to requirements engineering has been present from the
beginning of the requirements engineering discipline, when Rolland et al.
(1992) discussed the natural language approach for requirements engineer-
ing. Shortly after, Ryan (1993) warned that although natural language pro-
cessing provides a variety of sophisticated techniques in the requirements
engineering field, they can only support sub-activities of requirements en-
gineering and that the process of using natural language processing tech-
niques have to be guided by practitioners. The possibilities exemplified
above have later been explored by a number of research studies and pub-
lications, where applications of various NLP techniques in supporting re-
quirements management activities were evaluated and discussed. Among
those that include some kind of empirical evaluations, the vast majority
of natural language process tools are used to examine the quality of re-
quirements specifications in terms of, for example, the number of ambigu-
ities (Fantechi et al. 2003) by using ambiguity rates to sentences depend-
ing on the degree of syntactic and semantic uncertainty (Macias and Pul-
man 1995), or detecting ambiguities by applying an inspection technique

143

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

(E.Kamsties et al. 2001). Furthermore, Rupp et al. (2000) produced logi-
cal forms associated with parsed sentences to detect ambiguities. Among
other quality attributes of requirements artifacts that natural language pro-
cessing is aiming for analyzing and improving, Fabbrini et al. (2001) pro-
posed a tool that assess understandability, consistency, testability, and cor-
rectness of requirements documents. Providing measurements that can be
used to assess the quality of a requirements specification document is the
aim of the ARM tool proposed by Wilson et al. (1997). Furthermore, Ed-
wards et al. (1995) present a tool that uses rule-based parsing to translate
requirements from natural language and by that helps with requirements
analysis and maintenance tasks throughout the system life-cycle. Mich et
al. (2002) reported on an experiment designed to assess the extent to which
an NLP tool improves the quality of conceptual models. Finally, Gervasi
et al. (2000) used natural language processing techniques to perform a
lightweight validation of natural language requirements which is consid-
ered as having low computational and human costs.

Apart from the quality evaluation and assurance tasks, NLP techniques
have also been applied for a task of extracting abstractions from textual
documents (Aguilera and D.Berry 1991, Goldin and Berry 1997) and help-
ing synthesizing crucial requirements from a range of documents that in-
clude standards, interview transcripts, and legal documents (Sawyer et al.
2002). Sawyer at al. (2005) have also reported how corpus based statisti-
cal language engineering techniques are capable of providing support for
early phase requirements engineering in a way that is tolerant of both the
volume and the quality of the text being analyzed. Rayson et al. (2000) re-
ported experiences from one of the projects where probabilistic NLP tech-
niques were used. They presented two experiments using tools that they
have developed, namely part-of speech and semantic taggers, which sug-
gested that the tools are effective in helping to identify and analyze do-
main abstractions. Their results were further supported by a later study
by Sawyer et al. (Sawyer and Cosh 2004), where ontology charts of key
entities were produced using collocation analysis. On the other hand, Ger-
vasi et al. (1999) used lexical features of the requirements to cluster them
according to specific criteria and thus obtaining several versions of a re-
quirements document. The sectional structure of these documents, and the
ordering of requirements in each section, are optimized to facilitate under-
standing for specific purposes.

A different angle of research in using NLP techniques for requirements
engineering is presented by Luisa et al. (2004), who investigated the eco-
nomical advantages of developing a CASE tool that integrates linguistic
analysis techniques for documents written in lateral language. Even though
the economic advantages of extending current requirements management
tools by the NLP based features seems to be clear, not all tool vendors
found these features interesting to have in their products. Moreover, the
INCOSE report (INCOSE 2010) which provides a comprehensive compar-

144

2. RELATED WORK

ison of the functionality of requirements management tools, has not clearly
defined a new class of features related to NLP techniques. However, among
currently defined features are some that may be related to NLP techniques.
One of these features, namely "the automatic parsing of requirements" is
described as "a mechanism for automatic identification of requirements by
keywords, structure, unique identifiers etc.". For this category, 54% of all
analyzed tools have reported to have full support and 9% only partial sup-
port, while 36% reported no support at all. Another category that may be
related to NLP techniques is entitled "Interactive/semi-automatic require-
ment identification" which is described as the ability to identify require-
ments from a text file via interactive means such as mouse highlighting of
the requirement text or by letting the system to prompt "is this a require-
ment?". In this category, 59% of all analyzed tools have full support, 36%
declared no support and 14% partial support. Another category is "iden-
tify inconsistencies", which states that the tool should allow the user to
identify inconsistencies such as unlinked requirements or system elements
(orphans). In this category, 24 tools have reported to have a full support
(54%) 16 no support (36%) and 4 partial support (9%). Finally, the last cat-
egory that may be related to NLP is the "quality and consistency checking"
which is described in the report as "support for the document quality and
consistency checking through spell checking, data dictionaries, acronym
tables, etc.". In this case category, 22 of reported tools have full support
(50%), 16 no support (36%) and 6 partial support (14%).

The fact that in this replication an open source tool is compared with
a commercial tool, makes the open source research literature as a part of
related work. The current state-of-art in the open source software research
discipline provides a large amount of analyses and comparisons of open
source software . On the other hand, Stol et al. (2009) analyzed four edi-
tions of the International Conference on Open Source Systems and only
28% of analyzed articles were classified as empirical studies. Furthermore,
Stol et al. (2009) categorized analyzed papers in four categories: commu-
nities and the largest category, development and maintenance, diffusion
and adoption as the second largest category and characteristics of OSS as
the last category. Surprisingly, the category related to the analysis of the
functionality that open source software is providing is not present in Stol
et al.’s classification. Out of a small number of research papers that in gen-
eral compares proprietary software to open source software, Machado et
al. (2007), who compared user experience between the leading proprietary
solution and open source solution of learning management systems. Oth-
ers, for example Selvi et al. (2008), present a roadmap to analyze open
source software and proprietary software using performance testing. As a
result, a comparison of performance of proprietary versus non-proprietary
software may be achieved. Performance is also the quality attribute of the
software solutions compared by Patton et al. (2000), who compared fire-
wall solutions based on the open source Linux operating system to the

145

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

commercial solution from Cisco using the Cisco IOS firewall features set.

3 Industrial Problem Description

In this section, we provide an industrial background for the problem of
requirements consolidation on an example of a large software company
that develops embedded systems to a global market. The importance of
tackling the problem has been identified in the original experiment (Natt
och Dag et al. 2006) and is also repeated here. Requirements are constantly
arriving to the company’s requirements database from multiple sources,
namely requirements engineers, requirements management as well as key
customers, and subcontractors. Another part of the company, which is re-
sponsible for providing new ideas, is called Application Planning, and is
responsible for the different application areas of products under release.
The primary customers are in this case selling the products to the end
users. They are responsible for a large set of incoming requirements to the
new products as well as for requests for specific product adaptations. In
order to acquire knowledge in the technical capabilities of the company’s
products, key customers submit a Request for Information (RFI). The re-
quest for information process is depicted in Figure 5.1.

Customer A

RFI
M i

Area of Expertise

Customer B

Messaging

RFI

Coordinator
Key

Account
Bid

Support

Memory
Global Product Management

…
…

CoordinatorAccount
Manager

Support
Specialist Audio

…
.

Customer N

…
…
…
.

RFI

RFI – Request for Information

Figure 5.1: The request for information process.

Each year, each key customer submits a couple of RFIs. The RFIs arrive

146

4. EXPERIMENTAL DESIGN

to the Key Account Managers, one for each major customer, in different
document formats (PDF, MS Excel, MS Word, etc.) and at different times.
The main specification technique for the RFI requirements is feature style
(Lauesen, 2002) using natural language as the specification language. The
Key Account Manager passes the RFI on to a Bid Support Specialist, who
reviews the RFI from a market point of view and decides which products
shall be considered when dealing with the RFI. The Bid Support Special-
ist then passes the document on to the Coordinator, who analyzes the RFI
and the accompanying instruction and distributes relevant parts of the RFI
to different Areas of Expertise. An Area of Expertise consists of a Function
Group and a Technical Work Group. The Technical Work Group focuses on
road maps (i.e., future functions) and the Function Group is dedicated to
implementation and testing. When the Areas of Expertise have stated the
compliance to each requirement, they send the RFI reply back to the coordi-
nator. The coordinator reviews the answers and sends the replies on to the
Bid Support Specialist, who also checks the answers. If the RFI originates
from a major customer, a meeting is held with the Global Product Manage-
ment, the coordinator, and experts from the Areas of Expertise, in order to
discuss the answers which are to be submitted back to the customer. The
RFI reply is then sent back to the customer by the Key Account Manager.
The RFIs play an important role in the customer’s strategic planning.

The efficiency of the RFI process, in which requirements are analyzed
and checked against product features, is however severely impeded. The
experts that analyze the requests are often concerned with their primary
assignments in development and testing and have troubles in finding the
time required to analyze the RFIs. An even bigger issues is that the ex-
perts get frustrated as they have to state the compliance to the same or
very similar requirements multiple times. Large parts of the new versions
of RFIs arriving from the same customer are typically the same as previous
versions. Furthermore, it is often the case that the same and very similar
requirements appear in the RFIs from different customers. The mentioned
problems can be generalized into other than requirements consolidation
task, where large amounts of information have to be gathered and ana-
lyzed for multiple reasons. In this case, computer based analysis methods
and tools can significantly decrease the time needed to analyze the men-
tioned amounts of information. Providing a tool support for automatic
identification of similar requests is the topic of the original experiment and
remains in the case of this replication.

4 Experimental Design

In this section, the outcome of the experiment planning phase is presented.
The goal of this experiment is to assess which method: assisted or manual
perform best in the task of requirements consolidation. The central part of

147

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

the requirements consolidation task is finding similarities between the two
sets of requirements described in details in Section 3. The methods evalu-
ated in this replication were implemented in two tools, namely ReqSimile
and Telelogic Doors. As mentioned in Section 1, the goal of the study is not
to evaluate the tools in general, but to compare the methods that they pro-
vide. The planning phase was based on the initial experiment design (Natt
och Dag et al. 2006) where, when possible, the original material is reused
and extended according to the guidelines of designing experiments pre-
sented in (Wohlin et al. 2000). In order to draw more general conclusions,
the authors put additional effort into minimizing the difference between
this experiment design and the original experiment design.

A

A’
C

Assisted or Manual
method

B’
method

B

Figure 5.2: The process of using the support tool for requirements consoli-
dation.

Due to the exact replication nature of this study (Shull et al. 2008), the
evaluation of the experiment design for the replication sake was limited
to checking additional changes and new elements. The changes concerned
questionnaire improvements and a new instruction regarding the usage
of Telelogic Doors (IBM 2010). The experiment design was evaluated by
an independent researcher before executing the experiment. The same re-
searcher participated in the pilot study where he used both tools to find
similar requirements and create links between them. Comments and sug-

148

4. EXPERIMENTAL DESIGN

gestions regarding readability and understandability of the laboratory in-
structions were given and later implemented. Finally, since the require-
ments sets used in this replication were the same, the correct answer to the
consolidation task remained unchanged.

Similarly to the original experiment, this replication was also conducted
in a laboratory experiment, since it captures the consolidation problem in
an untainted way. Figure 5.2 depicts the conceptual solution of the con-
solidation activity. To the left in Figure 5.2, two requirement sets A and B
are shown. They represent two consecutive submissions of Requests For
Information (RFIs) from the same key customer. We can also assume that
the earlier RFI is set A in this case, and that it would have already been
analyzed and the result from the analysis should be available in the central
requirements database. The coordinator uses the support tool, which in the
case of this replication can be either Telelogic Doors for the manual method
(IBM 2010) or ReqSimile for the assisted method (Natt och Dag et al. 2006),
to find requirements in the B set that were already analyzed in the A set
and to mark them by assigning a link between them. The output of the
process is shown to the right in Figure 5.2. The subset A’ comprises all re-
quirements that were previously analyzed but are no longer requested by
the customer. The subset B’ represents all new requirements that have not
previously been analyzed. Finally, there is the subset C, which comprises
all requirements in the new RFI that previously have been analyzed. The
coordinator would then send the requirements in set B’ to the experts for
analysis. The experts are thus relieved from the burden of re-analyzing the
requirements in subset C.

4.1 Goals, Hypothesis, Parameters and Variables

The variables in this replication were kept unchanged from the original
study (Natt och Dag et al. 2006). They can be grouped into independent,
controlled and dependent:

• The independent variable is the method used in the experiment. The
two methods compared are manual and assisted

• The controlled variable is the experience of the participants. In order
to analyze the individual experience of the subjects a questionnaire
was used

The dependent variables are:
T - time used for the consolidation
N - the number of analyzed requirements
Ncl - number of correct links
Nil - number of incorrect links
Ncu - number of correctly not linked
Niu - number of missed links (incorrectly not linked)

149

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

These dependent variables are used to analyze the hypotheses. The
number of analyzed requirements is used in case the subjects are not able
to analyze all requirements, which will affect Niu and Ncu. The hypothe-
ses for comparing the manual and the assisted method remain unchanged
to the original experiment design. Presented below are six null hypotheses:

H1
0 - The assisted method results in the same number of requirements ana-

lyzed per minute, N/T, as does the manual method.

H2
0 - The assisted method results in the same share of correctly linked re-

quirements, Ncl/(Ncl +Niu), as does the manual method.

H3
0 - The assisted method results in the same share of missed requirements

links, Niu/(Ncl + Niu), as does the manual method.

H4
0 - The assisted method results in the same share of incorrectly linked

requirements, Nil/N, as does the manual method.

H5
0 - The assisted method is as precise, Ncl/(Ncl + Nil), as the manual method.

H6
0 - The assisted method is as accurate, (Ncl + Ncu)/(Ncl + Nil + Ncu +

Niu), as the manual method where Ncl + Nil + Ncu + Niu = N.

Since the subjects may not use exactly the same time for the task, the
performance is calculated as the number of analyzed requirements divided
by the total time spent on the consolidation task.

4.2 Subjects

In this study, a different set of subjects comparing to the original exper-
iment, but from the same kind of population was used. The sample in-
cludes participants of the course in Requirements Engineering at Lund
University (ETS170) (Lund University 2010b). The course is an optional
master-level course offered for students at several engineering programs
including computer engineering and electrical engineering. It gives 7,5
ETCS points (ECTS 2010) which corresponds to five weeks full time study.
The students were between 24 and 41 years old with an average of 27 years.
There were 4 female and 41 male students. Before conducting the experi-
ment, the subjects had been taught requirements engineering terminology
and had gained practical experiences through their course project. The re-
sult from the pre-test questionnaire revealed that the difference in English
reading and writing were small, varying from "very good knowledge" for
the majority of subjects to "fluent knowledge" for some of them. When
it comes to the industrial experience in software development of the sub-

150

4. EXPERIMENTAL DESIGN

Table 5.1: The number of years of experience in software development in
pairs of subjects. The remaining pairs of subjects exhibited no industrial
experience for both pair members.

Pair of
subjects

Experience of the first subject in
the pair (in years)

Experience of the second subject
in the pair (in years)

1 0.5 1.5
2 1 1
3 1 2
4 1 2
5 0.25 0
6 0.5 1
7 0 1
8 0.25 1.5
9 0.5 1

jects, most of them reported no experience at all (28 out of 45 students).
Among the subjects that reported any degree of industrial experience, the
length of the experience varied between four months and two years with
an average value 11 months. At this stage, the most important measure to
avoid biased pairs of subject was to ensure that persons with a lot of expe-
rience will not cooperate with persons with no experience and by that the
whole process may be slowed down. The analysis of industrial experience
in pairs of subjects revealed that nine pairs were having some degree of in-
dustrial experience which not always was equal. The remaining pairs had
no experience at all. The analysis of the experience of both pair members
and the difference in the experience between them is depicted in Table 5.1.
The difference in experience varied between three months and 15 months
with an average value of nine months. Therefore, we can assume that the
difference in subject’s professional experience had a minor impact on the
results.

A similar analysis was performed for the question regarding experience
of subjects from the course that the requirements used in this replication
originate from (ETS032) (Lund University 2010a). The results revealed that
22 out of the 45 subject have not taken the course that the requirements
originate from at all, while the rest had taken the course and acted in var-
ious roles during the project phase of the course. Next, the roles taken
in the course that the requirements originates from in the pairs formed
by subjects were analyzed. For most cases (16 out of 22), the pairs were
formed by an inexperienced person and an experienced person from the
course. This has a positive impact on the task, since the more experienced

151

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

person can help the inexperienced person to understand the nature and
origin of the requirements set. On the other hand, the more experienced
person can bias the consolidation task by bringing knowledge about the
requirements sets and possible similar requirements from the course. The
remaining six pairs represented experience from various roles including:
developer, development manager system group manager, project manager
and tester. Only one pair had the same experience from being developer,
in other cases the roles taken in the course project did not overlap.

When it comes to the experience in analyzing and reviewing require-
ments, 80% of the subjects declared to have experience only from courses.
Among the remaining subjects, three had experience from both courses
and industry, and all were paired with persons with experience only from
industry. Furthermore, three other subjects had only less than a year of
experience from industry. Two of them were mixed with subjects having
experience from both industry (also less than a year) and courses, while
the third one was teamed up with a person having only experience from
courses. Two other subjects reported no experience at all. Finally, one
subject reported more than a year of industrial experience and the subject
was teamed up with a person without any experience. Because of the fact
that this significant difference occurs only for one couple it is reasonable
to state that differences in experience of analyzing and reviewing require-
ments have only a minor impact on the results.

A further question concerned the subject’s experience with the tool that
implements the manual method, namely Telelogic Doors. The analysis in-
dicated that 91% of subjects reported no experience with Telelogic Doors
and that they had never heard about the tool. Although four persons have
heard about the tool they have never used it. Based on this, we can con-
clude that the subjects are very homogenous in this matter and that we can
exclude this treat from aspects influencing the results.

4.3 Objects

The objects of this replication are methods used in supporting the require-
ments consolidation task. One of the methods, namely the assisted method,
was implemented in the ReqSimile tool which uses linguistic engineering
to calculate the degree of similarity between requirements using lexical
similarity as a way of approximating semantic similarity (Natt och Dag
et al. 2004). The other object, namely the manual method comprises search-
ing and filtering functionalities provided by the Telelogic Doors tool. The
goal of this replication is not to compare the two tools in general, but the
functionality that they provide to support the requirements consolidation
task. The objects used in the original and the replicated experiment are
listed in Table 5.2. Comparing to the original experiment, one of the ob-
ject was kept unchanged while the second one was changed. The change
comprises substituting ReqSimileM from the original design (Natt och Dag

152

4. EXPERIMENTAL DESIGN

Table 5.2: The difference between the objects used in original and repli-
cated experiment.

Original experiment Replicated experiment
Assisted
method

Manual
method

Assisted
method

Manual
method

Treatment ReqSimile ReqSimileM ReqSimile Telelogic
Doors

et al. 2006) by Telelogic Doors (IBM 2010). More information regarding
tools used in the replication can be found in Section 4.3.2. The requirements
specifications were kept unchanged comparing to the original experiment.
Together with the reused requirements set the original tacit analysis infor-
mation was used. The key with the correct answer was provided by an
expert in the requirements domain and was created prior to any analysis
of the subjects’ assigned links in order to reduce any related validity threats
(Natt och Dag et al. 2006).

4.3.1 Requirements

Two requirements sets were reused from the original experiment. The re-
quirements specifications have been produced as a part of a course "Soft-
ware Development of Large Systems" (ETS032) (Lund University 2010a).
The course comprises a full development project, including: requirements
specification, test specification, high-level design, implementation, test, in-
formal and formal reviews and acceptance testing. At the end of the course,
the students deliver a first release of the controller software for a com-
mercial telecommunication switch board. Two requirements specifications
were randomly selected from the course given in years 2002 and 2003. The
requirements have been specified in use case style or features style (Laue-
sen 2002), and all written using natural language. Two sets of requirements
that contained respectively 139 and 160 requirements were imported to Re-
qSmilieA and Telelogic Doors. As a result, each tool comprises the two
remaining sets of requirements. An example of requirements from specifi-
cation comprising 139 requirements is depicted in Table 5.3. More details
about the requirements set can be found in the description of the original
experiment (Natt och Dag et al. 2006).

4.3.2 Tools

In this replication, one tool remained unchanged from the original exper-
iment while the other was changed. The tool that implements the assisted
method, namely ReqSimile (Natt och Dag 2010), was kept unchanged. Re-

153

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Ta
bl

e
5.

3:
Ex

am
pl

e
re

qu
ir

em
en

ts
fr

om
a

sp
ec

ifi
ca

ti
on

co
m

pr
is

in
g

13
9

re
qu

ir
em

en
ts

.

K
ey

Id
Ty

pe
Se

le
ct

io
n

D
es

cr
ip

ti
on

3
Sc

en
ar

io
13

Fu
nc

ti
on

al
Se

rv
ic

e:
R

eg
ul

ar
ca

ll
R

eg
ul

ar
ca

ll-
bu

sy
A

ct
or

s:
A

:C
al

lin
g

su
bs

cr
ib

er
,B

:C
al

le
d

su
b-

sc
ri

be
r,

S:
Sy

st
em

Pr
er

eq
ui

si
te

s:
Bo

th
A

an
d

B
ar

e
co

nn
ec

te
d

to
th

e
sy

st
em

an
d

ar
e

no
tu

nh
oo

ke
d.

St
ep

13
.1

.A
un

ho
ok

s.
St

ep
13

.2
.

S
st

ar
ts

gi
vi

ng
di

al
to

ne
to

A
St

ep
13

.3
.

A
di

al
s

th
e

fir
st

di
gi

t
in

B_
s

su
bs

cr
ib

er
nu

m
be

r
St

ep
13

.4
.

S
st

op
s

gi
vi

ng
di

al
to

ne
to

A
.S

te
p

13
.5

.A
di

al
s

th
e

re
m

ai
ni

ng
th

re
e

di
gi

ts
in

B_
s

su
bs

cr
ib

er
nu

m
be

r
St

ep
13

.8
.

S
st

ar
ts

gi
vi

ng
bu

sy
to

ne
to

A
St

ep
13

.9
.

A
ha

ng
s

up
St

ep
13

.1
0.

S
st

op
s

gi
vi

ng
bu

sy
to

ne
to

A
80

SR
S4

16
06

Fu
nc

ti
on

al
Se

rv
ic

e:
C

al
l

fo
r-

w
ar

di
ng

A
ct

iv
at

io
n

of
ca

ll
fo

rw
ar

di
ng

to
a

su
bs

cr
ib

er
th

at
ha

s
ac

ti
va

te
d

ca
ll

fo
rw

ar
di

ng
sh

al
l

be
ig

no
re

d
by

th
e

sy
st

em
.

Th
is

is
re

-
ga

rd
ed

as
an

er
ro

ne
ou

s
ac

ti
va

ti
on

,a
nd

an
er

ro
r

to
ne

is
gi

ve
n

to
th

e
su

bs
cr

ib
er

.(
M

ot
iv

at
io

n:
To

ge
th

er
w

it
h

SR
41

60
7,

av
oi

ds
ca

ll
fo

rw
ar

di
ng

in
cl

os
ed

lo
op

s)
11

1
SR

S4
18

04
Fu

nc
ti

on
al

Se
rv

ic
e

in
te

ra
ct

io
n

T
he

se
rv

ic
e

ca
ll

fo
rw

ar
di

ng
sh

al
lb

e
de

ac
ti

va
te

d
if

a
cu

st
om

er
re

m
ov

es
ei

th
er

th
e

su
bs

cr
ib

er
fr

om
w

hi
ch

ca
lls

ar
e

fo
rw

ar
de

d
or

th
e

su
bs

cr
ib

er
to

w
hi

ch
ca

lls
ar

e
fo

rw
ar

de
d.

154

4. EXPERIMENTAL DESIGN

qSimile provides a linguistic tool support that aims for assisting in the
requirements consolidation task. The user interface of ReqSimile is pre-
sented in Figure 5.3. The left side of the top pane of the window presents
a list of requirements. Selecting a requirement (1) makes the requirement’s
details display on the right (2) and a list of similar requirements in the
other set appear in the bottom pane (7), sorted on the similarity value (3).
Requirements that have already been linked in the set of analyzed require-
ments are highlighted using another (gray) color (6). Requirements that
has been linked to the currently selected requirements (1) are highlighted
using another (green) color (5). Unlinked requirements are not highlighted
(8). Links can be made between the selected requirement (2) and the re-
quirement with the associated link button (4). Before using linguistic sup-
port the user has to pre-process the requirements by selecting this option
from the menu.

Figure 5.3: The user interface of ReqSmiliA used in the experiment.

The second tool, described by Natt och Dag et al. (2006) as ReqSimileM
was changed in this replication to Telelogic Doors (IBM 2010). Telelogic
Doors is one of the market leading commercial requirements management
tools that, according to the vendor’s information, provides powerful capa-
bilities for capturing, linking analyzing and managing changes to require-
ments and their traceability. The tool has recently changed its vendor and

155

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

is currently called Rational DOORS. However, since in this experiment the
Telelogic Doors version 8.3 was used, we will refer to it as Telelogic Doors.
The user interface of Telelogic Doors is shown in Figure 5.4. The analyzed
two sets or requirements were opened in Doors from separated modules
and placed next to each other on the screen. Figure 5.4 comprises one of
the requirements sets opened in a module. This orientation is similar to
the ReqSimile’s view and enables easy visual comparing between the two
sets of requirements. To perform the consolidation task in Telelogic Doors,
its finding and filtering capabilities were used. These capabilities can be
accessed respectively from the Edit menu and the Find command or the
Tools menu and the Filters command. The subjects were given detailed
instructions with screen-shots of each step and each dialog window that
was related to finding and filtering capabilities. After finding similar re-
quirements, links were established using the built in traceability solution.
During the planning activities, it was discovered that making links in Telel-
ogic Doors is not as straightforward as in ReqSimile, where only one mouse
click is required. This fact was addressed by the experiment’s documenta-
tion.

Figure 5.4: The user interface of Telelogic Doors used in the experiment.

156

4. EXPERIMENTAL DESIGN

4.3.3 Correct Consolidation

To enable measurement of the subjects’ accuracy of linking requirements
that are semantically similar, the original key for assigning correct links
has been reused. This original key was created by the first author of the
original experiment article (Natt och Dag et al. 2006), having many years
of experience from this course in various roles. It is therefore justifiable to
consider this key as one provided by an expert in the domain. The key was
created a priori to any analysis of the subjects’ assigned links in order to
reduce any related validity threats. More information regarding the correct
consolidation key, together with the distribution of the position at which
the correctly similar requirements are placed by the tool in the ranked lists,
is available in the original experiment article (Natt och Dag et al. 2006).

4.4 Instrumentation

In this replication, most of the original experiment’s guidelines were kept
unchanged. In particular, the instruction about how to use the assisted
method (ReqSimile tool) was reused. A new instruction describing how
to use the manual method (Telelogic Doors) to find similar requirements
and assess links between them was developed and evaluated by an inde-
pendent researcher. Since Telelogic Doors has a much more complex user
interface, the instruction was significantly longer, consisting of four pages
of text and figures. Due to its length, it was decided that subjects should get
more time to read through the instruction. This fact was taken into consid-
eration by adjusting the time needed to read the instruction for the groups
working with Telelogic Doors during the experiment execution. The pre-
and post-test questionnaires were updated according to the changes made
from the original study. In the pre-test questionnaire, authors added one
question about the experience in using Telelogic Doors to be able to mea-
sure the impact of this phenomenon on the results. Furthermore, two ques-
tions related to English skills that were separated in the original design
were merged into one. The rationale for this decision was the fact that
the subjects of the experiment will only read requirements so their skills
in writing are not as relevant. As a result, a questionnaire (pre-test) in-
cluding five questions about the subjects’ industrial experience in software
development, experience from analyzing and revising requirements and
possible knowledge and skills in Telelogic Doors was prepared. Before col-
lecting the data, one independent researcher evaluated the questionnaire
by checking the understandability of questions and their relevance for this
study. Due to a limited number of available computers in the laboratory
room, the subjects were asked to work in pairs in the assignment. This
difference from the original experiment design, where subjects were per-
forming the task individually, demands additional analysis to ensure that
groups were formed equally. Some changes were also made to the post-test

157

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

questionnaire. The original questions regarding (1) the time spent on the
consolidation task, (2) the number of finished requirements, (3) the number
of found duplicates, similar and new requirements and (4) the usefulness
of used methods were kept unchanged. Moreover, two questions about
the scalability of used methods and possible improvements were kept un-
changed comparing to the original experiment design.

4.5 Data Collection Procedure

The data collection procedure was kept as similar as possible to the origi-
nal experiment design. The subjects had, as in the original case, 45 minutes
dedicated only for the consolidation task, followed by the introduction and
problem description given by the moderator. After the introduction, sub-
jects were given some time to read through the assigned tool instruction
and make themselves familiar with the user interface. At this stage, the
groups assigned to work with Telelogic Doors were given some extra time
since the tool interface was more complex and the instruction was longer.
One of the important changes here was the fact that the subjects answered
pre-study test right before starting the task. The results were analyzed af-
terward and are presented in Section 4.2.

4.6 Validity Evaluation

As for every experiment, the question about the validity of results has to
be raised here. Threats to validity are presented and discussed using clas-
sification of threats to conclusion, internal, construct and external validity
Wohlin et al. (Wohlin et al. 2000).

Conclusion validity. Due to the fact that the design of the replication kept
the Null hypotheses unchanged from the original experiment, the same
type of error, namely Type-II-error, may occur Wohlin et al. (2000). The
probability of this type of error, may be expressed as:

P(type-II-error) = P (not rejecting H0 | H0 false)

In order to maximize the power of a statistical test in this case, which
is defined as 1-P(type-II-error) the Type-II-error should be addressed. This
threat is addressed by using normal probability plots to check that para-
metric tests can be used. This means that as powerful as possible test are
used. Furthermore, one of the threats with respect to the subjects is, as
in the original study, also limited since the subject groups are rather ho-
mogeneous. The subjects have attended the same education program for
2.5 years. On the other hand, the threat related to the fact that subjects
were asked to work in pairs did not exist in the original design, and there-
fore has to be addressed here. This fact affects in particular the random
heterogeneity of subjects, since created pairs may manifest differences in

158

4. EXPERIMENTAL DESIGN

industrial experience or experience from the previous courses. This threat
is addressed by the analysis of the pre-study questionnaire results in Sec-
tion 4.2. The way how the subjects took seats in the laboratory room and
thus the way how they were assigned to the methods can also be ques-
tion here. As pointed out by Wilkinson et al. (1999), random assignment
is sometimes not feasible in terms of the control or measure of the con-
founding factors and other source of bias. This threat was addressed by
performing a pre-test and a post-test questionnaires to help with assessing
the mentioned factors and minimize dropouts. Although all subjects have
taken the same education program for 2.5 years, the individual differences
in industrial experience, experience from the course where requirements
originates from, and knowledge of English may affect the results. The
searching for a specific result threat was addressed by not notifying the
subjects which method is supposed to perform better than the other. The
threat to the reliability of measurements is addressed by the fact that the
original measurements are reused also for the replication case. Finally, in
order to minimize random irrelevance in experimental setting, the exper-
iment moderators ensured that the subjects were not be disturbed during
the task and that any discussions in pairs of subjects should be taken as
silently as possible.

Internal validity. Similarly to the original experiment study, also in this
study threats related to the history, maturation, morality etc. have to be
mentioned. They are addressed by the fact that the experiment was run
during a two hour period. The instrumentation threat is addressed in two
ways: (1) by reusing the original experimentation instrumentation, if no
changes were needed, and (2) by a review of the instrumentation doc-
umentation performed by an independent research. On the other hand,
since subjects were not divided into groups according to the results of the
pre-study questionnaire (the questionnaire has been filled in right before
the experiment’s execution), the statistical regression threat can not be as
easily addressed as in the original experiment. The analysis related to this
threat is presented in Section 4.2 and in Section 7. The selection threat,
similarly to the original design, may influence the results since the sub-
jects are not volunteers and the laboratory session where experiment was
performed is a mandatory part of the course. Finally, the incentives of par-
ticipants is, next to their experience, an important factor that may influence
the results of this study. According to the classification presented in Host
et al. (2005), both the original experiment and replication can be classified
as I2 E1 where I2 means that the project is artificial (in terms of incentive).
The subjects have typically no prior knowledge of the artifacts that they
are working with and the requirements sets used in the experiment were
developed by the researcher or borrowed from an industrial organization.
The E1 level on the experience scale means that the subjects are undergrad-
uate students with less than 3 months recent industrial experience where
recent means less than two years ago. Since all of the students were on

159

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

their third year of studies, we can assume that their working experience is
more than two years in all cases. Although the identical comparison of two
I2E1 cases in not present in Host et al. (2005), the example of two experi-
ments classified as E1 I1 shows no significant difference in their outcomes.
The E1 I1 level is defined as a combination of an isolated artifacts where
subjects have no prior knowledge of the studies artifact and no experience
of the subjects. Moreover, three other pairs of experiments, classified in
the same category, also shows the same outcomes (Höst et al. 2005). The
previous facts may lead to the conclusion that the incentive and experience
influence on the results threat of this study can be addressed.

The social threat to internal validity is addressed since the subject had
nothing to gain from the actual outcome of the experiment, the grading
in the course is not based on the speed or preparation to the experiment.
Although in the dissimilarity with the original experiment design the ex-
periment groups are not separated, no information about which method is
actually better was revealed to the subjects. The possibility to look at other
subjects’ results during the experiment execution is minimized by the fact
that the subjects took places in a way that separated two treatments by
another treatment. Compensatory rivalry may be a problem in this case,
since the group that will use an ’open-source’ solution or the commercial
solution may try to perform much better to make their favor type of soft-
ware win. This threat was addressed by explicitly stating in the beginning
of the experiment, that there is no favor or assumingly better method. The
potentially more problematic threat is the fact that the subjects had to an-
alyze and link requirements written in English when they had themselves
used only Swedish to specify their own requirements in the domain. This
threat is, similarly to the original experiment design, addressed through
the pretest where we asked about their ability to read and write common
and technical English (Natt och Dag et al. 2006).

Construct validity. In this case, the theory is that the assisted method
implemented in ReqSimile tool provides a better assistance to a particular
task than the second method implemented in Telelogic Doors. In contrast
to the original experiment design, none of the authors have developed any
of the tools. On the other hand, the originally mentioned threat related
to the awareness of subjects about their own errors is still present in the
case of this replication. This may have influenced the number of correct
and faulty links. Also, as pointed out by Natt och Dag et al. (2006), when
subjects know that the time is measured, it is possible that they get more
aware of the time spend and the performance results may be affected (Natt
och Dag et al. 2006). Finally, the fact that exactly the same requirements
sets were used for the replication may still not give the answer whether
the results would be the same if the requirements set were altered. On the
other hand, keeping the requirements sets unchanged opens up the possi-
bility to discuss other factors and differ between the original and replicated
experiment and address their influence on the results.

160

5. EXPERIMENT EXECUTION

External validity. The largest threat in this category is the number of an-
alyzed requirements. Since only a relatively small number of requirements
is analyzed during the experiment, it is hard to generalize the results on
a very big set of requirements, which often is the case in industry setting.
Using students as subjects is another large threat. Even though the sub-
jects were on their last year of studies, they can be considered as rather
similar to an ordinary employee. Also, as mentioned by Kitchenham et al.
(2002) students are the next generation of software professionals and they
are relatively close to the population of interest. Since they participated
in the requirements engineering course, they are familiar with the applica-
tion domain. The time spent on the task is also among potential threats to
external validity. In order to reduce the fatigue effect, the number of pri-
oritized requirements was lower than in a real industrial setting, which is
a serious threat in extending the result to the case with large amounts of
requirements.

5 Experiment execution

The replication was run in two two-hour laboratory sessions in January
2008. The first 15 minutes of each session were dedicated to the presenta-
tion of the problem. During this presentation, the importance of the indus-
trial applicability and the goal of the experiment was stressed. All students
were given the same presentation. The general overview and differences
between the included methods and tools were presented without favoring
one method over the other. To avoid biasing, no hypotheses were revealed
and it was made very clear that it is not known which approach will per-
form better. This approach is similar to the original experiment execution
described in (Natt och Dag et al. 2006). The only difference here is the
fact that the experiment was performed in two occasions instead of at one
occasion in parallel.

After the presentation, the subjects were assigned to the methods. Due
to the fact that only one laboratory room could be used for one session,
subjects were asked to work in pairs. Each pair was randomly assigned to
the method later used for the consolidation task. There were no name tags
of other indicators of the method on the laboratory desks when subjects
took their seats in the laboratory room. Therefore, subject could not take a
preferable method seat or be attracted by the name on the desk. Students
were asked to discuss the solutions only within their own pair. Since the
nearest group was not using the same object, the possibility of comparing
or discussing results was avoided. The subjects were allowed to ask ques-
tions to the supervisor, if they experience any problems. Only answers
related to the difficulties of using tools were given straightforward. No
answers related to assessing similarity between requirements were given.
The material used in the experiments comprised:

161

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

• The ReqSimile application with automated support of similarity cal-
culations and a database containing: (1) 30 randomly selected re-
quirements from the first set, (2) all 160 requirements from the second
set. These requirements should be browsed through by the subjects.

• The Telelogic Doors application with the same two sets of require-
ments imported into two separated modules. The application’s graph-
ical user interface was set as presented in Figure 5.4 in order to make
it as similar to the ReqSimile user interface as possible.

• The documentation comprising: (1) An industrial scenario describ-
ing the actual challenge. (2) A general task description. (3) Detailed
tasks with space for noting down start and end times. (4) A short
FAQ with general questions and answers about the requirements.
(5) A screen shot of the tool user interface with the description of
the different parts in the ReqSimile case or a four pages instruction
with screen shots from the steps needed to analyzed requirements
and make links using Telelogic Doors.

• The instruction to the students was as follows: (1) Walk through as
many of the requirements as possible from the list of 30 requirements
shown in the tool. For each investigated requirement, decide if there
are any requirements in the other set that can be considered identical
or very similar (or only a little different) with respect to intention.
(2) Assign links between requirements that you believe are identical
or very similar. (3) Note down the start and finish time. (4) When
finished, notify the moderator.

Given the experience from the original study, it was decided to dedicate
45 minutes to the consolidation task. The subjects were notified about the
time left for the task both 15 and five minutes before the end of the lab ses-
sion. After approximately 45 minutes, subjects were asked to stop working
on the task unless they, for any reason, spent less than 40 minutes on the
task. All students were asked to fill in a post-test questionnaire described
in Section 4.4. Apart from noting the finishing time and the number of
analyzed requirements, subjects were also asked to assess the usefulness
of used methods in terms of a given task and, if applicable, propose im-
provements. Right after executing the experiment, it was known which
data points had to be removed due to the used tool problems or subjects
attitude. Three groups had problems with the tools used which resulted in
loss of data and one group performed unacceptably slow analyzing only
three requirements during 45 minutes and making only two links. All four
groups were removed from the analysis, considered as outliers.

162

6. EXPERIMENT RESULTS ANALYSIS

6 Experiment results analysis

In this section, methods of analyzing the results are described. In order to
keep the procedures as similar to the original experiment design similar as
possible, the same statistical methods were used to test if any of the null
hypotheses can be rejected. Additional analysis was also performed due
to the fact that subjects formed pairs for the experiment in order to assess
how this may influence their performance. Hypotheses were analyzed sep-
arately, while any relations and accumulated results are presented in Sec-
tion 7. Similarly to the original experiment from which requirements were
reused, also in this replication one analyzed requirement can be linked to
several others. Therefore, any conclusions regarding functional relation-
ships between the number of analyzed requirements and other measure-
ments can not be drawn. The results from measuring dependent variables
can be found in Table 5.4. Subjects that used ReqSimile are marked with
the letter A (as an abbreviation of the assisted method), and subjects that
used Telelogic Doors with the letter M (as an abbreviation from the manual
method). The dependent variables are described in Section 4.1.

Rows highlighted in Table 5.4 represent data points that were removed
from the analysis. The pair M10 was removed from the results due to the
inconsistency between the results stated in the post-task questionnaire and
the results saved in the tool. The pair M11 was removed due to loss of data.
Similar problems caused authors to remove subjects A8 from the analysis,
since the links were not saved in the tool. Finally, group A7 was removed
due to their lack of commitment to the task.

The time spent on the task is presented in column 2 of Table 5.4. The
results for the number of finished requirements, derived from the post
questionnaire and confirmed with the results recorded in the tool used, are
listed in column 3. Next, other dependent variables values are presented
in the remaining columns. The values were calculated based on the results
saved in the tools and from the answers to the questionnaires questions.

The results for the number of analyzed requirements per minute are
depicted as a box plot in Figure 5.5. It can be seen that there is no statis-
tically significant difference in the number of analyzed requirements be-
tween the manual and the assisted method. The group that used the man-
ual method analyzed on average 0.41 requirements per minute while the
group that used the assisted method analyzed on average 0.51 requirements
per minute. In this case, we observe that the medians are most likely equal,
while the lower and upper quartiles values differ significantly. The t-test
the gave a p-value of 0.20 which gives no basis to reject the null hypothesis
H1

0 . The notches of the box plot overlap.
The results for the number of correct links assigned by subjects are de-

picted in Figure 5.6. The group that used the assisted method correctly
assigned on average 58% of the links that the expert assigned, while the
group that used the manual method correctly assigned on average 43 % of

163

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table 5.4: The results from measuring dependent variables.

Pair of
subjects

T
(min)

N Links
as-
signed

Correctly
linked
(Ncl)

Correctly
not
linked
(Ncu)

Incorrectly
linked
(Nil)

Missed
(Niu)

M1 38 12 6 1 4 5 6
M2 41 13 10 5 4 5 3
M3 46 30 15 11 10 4 9
M4 44 13 10 5 4 5 3
M5 45 18 16 8 11 8 12
M6 48 20 5 2 6 3 9
M7 45 22 21 6 6 15 8
M8 44 19 9 4 7 5 8
M9 46 19 15 7 5 8 5
M10 45 16 9 4 4 5 5
M11 45 18 ? ? ? ? ?
A1 41 14 13 5 5 8 5
A2 45 20 25 9 4 16 3
A3 49 18 19 5 3 14 6
A4 45 13 25 5 0 20 3
A5 50 20 15 8 4 7 4
A6 50 21 19 6 3 13 6
A7 29 3 11 1 0 12 0
A8 44 30 ? ? ? ? ?
A9 34 30 23 13 7 10 7
A10 41 30 16 12 8 4 8
A11 50 23 19 7 7 12 7
A12 35 30 20 13 8 7 7

164

6. EXPERIMENT RESULTS ANALYSIS

Figure 5.5: The results for the number of analyzed requirements.

the correct links. The medians differ significantly from 61% for the assisted
method to around 42% for the manual method. The t-test gave in this case
the p-value 0.013 which makes is possible to reject hypothesis H2

0 .
To address hypothesis H3

0 , requirements analyzed by each pair of sub-
jects were reviewed, and the number of links that should have been as-
signed but was not, was calculated. In a case when subjects did not analyze
all requirements, only requirements that had been analyzed were taken
into consideration. Each pair of subjects stated in their post-test question-
naire how many requirements were analyzed and how they had worked
through the list of requirements. This information was used to correctly
count the number of missed links. The results are depicted in Figure 5.6.
The group that used the assisted method missed on average 41% of the
links, while the group that used the manual method missed on average
57% of the links. The medians in this case are 38% for the assisted method
and 57% for the manual method. The t-test gives a p-value of 0.0207 which
means that we can reject H3

0 and confirm the orignal experiment’s conclu-
sions by making the conjecture that the assisted method helps the subjects
to miss significantly fewer requirements links.

For the number of incorrectly assigned links (Nil), the t-test resulted in
a p-value of 0.14, so the hypothesis H4

0 can not be rejected. Furthermore,
for the hypothesis H5

0 the t-test gave the p-value 0.62 and for the hypoth-

165

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Figure 5.6: The results for correctly assigned links.

esis H6
0 the t-test resulted in the p-value 0.72. Comparing to the original

experiment, this replication confirmed no statistical difference in the num-
ber of incorrect links, precision and accuracy between the two analyzed
treatments. The question regarding different results for H1

0 is discussed in
Section 7. The summary of the original and the replicated experiments is
depicted in Table 5.5.

7 Experiment results interpretation

This section presents the interpretation of results. As already mentioned,
this replication was conducted on a set of students. Therefore, it is impor-
tant to emphasize here that the results from this study are interpreted in
the light of the population where the experiment was held (Kitchenham
et al. 2002). This section discusses the results of this replication, as well as
compasses the results discusses to the replicated study.

7.1 Interpretation of this replication

The results achieved in this replication allow for the rejection of two out
of six stated null hypotheses (see Table 5.5). As for the H1

0 (performance)
hypothesis, a lack of statistically significant difference can be explained

166

7. EXPERIMENT RESULTS INTERPRETATION

Figure 5.7: The results for the number of missed links.

by a rather large variation in the assisted method (the minimum value for
the performance is 0.29 requirement per minute while the maximum value
is 0.89 requirement per minute). Furthermore, albeit the medians are al-
most identical for both the assisted and the manual method with respect
to the performance, the range of the third quartile is much larger in the
assisted method. This fact can be interpreted in favor of practical signif-
icance (Kitchenham et al. 2002) in the following way: if we assume that
both groups assigned to the methods are rather homogeneous, we can also
assume that for both groups there are similar numbers of more, as well as
motivated subjects. In this case, the practical significance of the results is
that the assisted method gives the possibility to achieve much higher values
of the performance than the manual method. Assuming that the top scores
for both methods correspond to the most motivated pairs of subjects, the
assisted method can provide them a better support in increasing their per-
formance with the given task. Furthermore, in real industrial situations,
subjects are usually rather motivated in doing their task, since it is a part
of their job, which supports our interpretation of the practical significance
of received results. On the other hand, the fact that subjects worked in
pairs may also influence the results. Even though working in pairs has
generally been considered having a positive impact on the task, for exam-

167

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table 5.5: The results of the t-tests for original and replicated experiments.

Hypotheses The p-values in
the original study
(Natt och Dag
et al. 2006)

The p=values in
this replication

H1
0 Speed 0.0034 0.20

H2
0 Correct links 0.0047 0.013

H3
0 Missed links 0.0047 0.02

H4
0 Incorrect links 0.39 0.14

H5
0 Precision 0.39 0.62

H6
0 Accuracy 0.15 0.72

ple in pair programming (Begel and Nachiappan 2008), the results among
researchers are inconsistent (Hulkko and Abrahamsson 2005, Parrish et al.
2004). Therefore, assessing the impact of working in pairs in more decision-
oriented software engineering tasks is even more difficult. Thus, it can be
assumed that working in pairs may sometimes influence the performance
of these types of tasks positively, and sometimes negatively. In this case,
we assume that subjects were similarly affected by this phenomenon both
in the assisted and in the manual method.

The results concerning the number of correct links can be interpreted
as follows. The group that used the assisted method assigned in average
58% of the correct links, while the group that used the manual method as-
signed in average 43% of the correct links. The results of the t-test allows
to reject H2

0 . This may be interpreted in the following way in favor of the
assisted method: even if the assisted method is put next to a rather sophis-
ticated requirements management tool, it can still provide a better support
in assessing more correct links between requirements. The fact that both
in the original and the replicated studies the assisted method provided a
better support in linking similar requirements may lead to the following
two interpretations: (1) the method is better in this matter, and (2) the fact
that working in pairs has a minimum or equal impact on the two methods
when it comes to the number of correctly linked requirements.

The results for the number of missed requirements links confirms the
results of the original experiment. The t-test confirms that the assisted
method can help to miss fever requirements links than the manual method.
Missing less links may be important when large sets of requirements have
to be analyzed, which is a reasonable practical interpretation of this result.
This result also confirms the interpretation that in the case of the assisted
method, showing a list of similar requirements candidates limits the so-
lution space to the analyst which results in a decrease of the amount of

168

7. EXPERIMENT RESULTS INTERPRETATION

Table 5.6: The results of the t-tests for the original and the replicated exper-
iments for the same methods.

Hypotheses Assisted old/new
(p-value)

Manual old/new
(p-value)

H1
0 Speed 0.48 0.27

H2
0 Correct links 0.93 0.30

H3
0 Missed links 0.37 0.20

H4
0 Incorrect links 0.21 0.73

H5
0 Precision 0.81 0.45

H6
0 Accuracy 0.90 0.41

missed links.
Similarly to the original experiment, the results from this replication

can also not reject hypotheses H4
0 , H5

0 and H6
0 . The lack of statistically

significant differences in these cases may be interpreted as a possible ex-
istence of additional factors that affect the consolidation of requirements
process which were not controlled in this replication. For example, the fact
that it is much easier to make a link in ReqSimile may affect the number of
incorrect links, precision and accuracy.

7.2 Interpretation of the analysis of both cases

From the results of the t-tests between the same methods depicted in Table
5.6, we can see no significant difference for any of the cases. At the same
time, other interesting differences between the experiments emerge. As it
can be seen in Figure 5.8, the results for the speed of the assisted method in
this replication has a much larger range of values, which may be the reason
why the hypothesis H1

0 could not be rejected. On the other hand, one of the
possible explanations why the difference between the performance in this
replication and in the original experiment may be a more advanced search-
ing and filtering functionality that has been used in the manual method.
Contrary to the original experiment, the manual method in this replication
uses advanced searching and filtering functionalities which may to some
extend be comparable with the linguistic similarity analysis because they
also present only a subset of analyzed requirements. The analyst using the
filtering and searching functionality has to provide a meaningful search
string to filter out similar requirements, while in the linguistic similarity
case the analysis is done automatically. Therefore, the filtering method has
a higher degree of uncertainty which is shown by the results for the accu-
racy.

169

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Figure 5.8: The result of comparing the speed for the assisted method in
two experiment runs.

8 Conclusions

In this paper, we present a replicated experiment which aims to assess
whether a linguistic method supports a specific large-scale requirements
management activity, namely requirements consolidation, better than a
searching and filtering method. In this replication, two methods imple-
mented in two different tools were compared for the requirements con-
solidation task. The assisted method which utilizes natural language pro-
cessing algorithms to provide a similarity list for each analyzed require-
ments was compared with the manual method, which utilizes searching
and filtering algorithms to find similar requirements. After deciding which
requirements were similar, subjects were assigning links between the re-
quirements. The main conclusions of this paper are as follows:

• The assisted method does not seem to be more efficient in consolidat-
ing requirements than the manual method (question Q1a), which is a
contradictory result compared to the original study

• The assisted method confirms to be significantly more correct in con-
solidating requirements than the manual method (question Q1b), which
confirms the result from the original study

170

8. CONCLUSIONS

• The assisted method helps to miss fever requirements links than the
manual method (Q1c), which confirms the result from the original
study.

• The hypotheses that could not be rejected in the original study (in
terms of the number of incorrect links, precision and accuracy) could
also not be rejected by the result of this replication, which leaves this
issues to be further investigated (Q2)

To summarize, the results from the original experiment corroborate five
out of six hypotheses stated in the original experiment. In order to inves-
tigate the possible reasons for the difference in the remaining case, this
paper provides a cross-case analysis of the same methods across the two
experiments runs.

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special acknowledgments to Richard
Berntsson-Svensson for participating in the pilot study and reviewing the
paper, and to Lars Nilsson for excellent language comments.

171

PAPER V: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

172

REFERENCES

References

C. Aguilera and D.Berry. The use of a repeated phrase finder in require-
ments extraction. Journal of Systems and Software, 13:209–230, 1991.

A. Begel and N. Nachiappan. Pair programming: What’s in it for me? In
Proceedings of the 2008 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 120–128, 2008.

ECTS. The ects grading systems defined by european commission. http:
//en.wikipedia.org/wiki/ECTS_grading_scale, January 2010.

M. L. Edwards, M. Flanzer, M. Terry, and J. Landa. Recap: a requirements
elicitation, capture and analysis process prototype tool for large complex
systems. In Proceedings of the First IEEE International Conference on Engi-
neering of Complex Computer Systems, 1995. Held jointly with 5th CSESAW,
3rd IEEE RTAW and 20th IFAC/IFIP WRTP, pages 278–281, 1995.

E.Kamsties, D.M. Berry, and B. Paech. Detecting ambiguities in require-
ments documents using inspections. In Proceedings of the First Workshop
on Inspection in Software Engineering (WISE 2001), pages 68–80, 2001.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An automatic quality eval-
uation for natural language requirements. In Proceedings of the 7th In-
ternational Workshop on Requirements Engineering Foundation for Software
Quality (REFSQ 2001), pages 4–5, 2001.

A. Fantechi, S. Gnessi, G. Lami, and A. Maccari. Applications of linguistic
techniques for use case analysis. Requirements Engineering Journal, 8(3):
161–170, 2003.

V. Gervasi. Environment support for requirements writing and analysis. PhD
thesis, University of Pisa, 1999.

V. Gervasi and B. Nuseibeh. Lightweight validation of natural language re-
quirements: A case study. In Proceedings of the 4th International Conference
on Requirements Engineering, pages 113–133. Society Press, 2000.

L. Goldin and D. M. Berry. Abstfinder, a prototype natural language text
abstraction finder for use in requirements elicitation. Automated Software
Engineering, pages 375–412, 1997.

M. Höst, C. Wohlin, and T. Thelin. Experimental context classification: In-
centives and experience of subjects. In Proceedings of the 27th International
Conference on Software Engineering (ICSE 2005), pages 470–478, 2005.

H. Hulkko and P. Abrahamsson. A multiple case study on the impact of
pair programming on product quality. In Proceedings - 27th International
Conference on Software Engineering (ICSE 2005), pages 495–504, 2005.

173

REFERENCES

IBM. Rational doors (former telelogic doors) product description.
http://www-01.ibm.com/software/awdtools/doors/productline/,
January 2010.

IEEE. The ieee keyword taxonomy webpage. http://www.computer.org/
mc/keywords/software.htm, January 2010.

INCOSE. The incose requirements management tool survey website. http:
//www.incose.org/ProductsPubs/products/rmsurvey.aspx, January
2010.

B. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,
E. Emam, and J. Rosenberg. Preliminary guidelines for empirical re-
search in software engineering. IEEE Transactions on Software Engineering,
28(8):721–734, 2002.

S. Lauesen. Software Requirements – Styles and Techniques. Addison–Wesley,
2002.

M. Luisa, F. Mariangela, and I. Pierlugi. Market research for requirements
analysis using linguistic tools. Requirements Engineering Journal, 9(1):40–
56, 2004.

ETS032 Lund University. The software development of large systems
course page (ets032) at lund university. http://www.cs.lth.se/

ETS032/, January 2010a.

ETS170 Lund University. The requirements engineering course (ets170) at
the lund university. http://www.cs.lth.se/ETS170/, January 2010b.

M. Machado and E. Tao. Blackboard vs. moodle: Comparing user expe-
rience of learning management systems. In Proceedings of the Frontier
Education Conference (FIE 2007), pages 7–12, 2007.

B. Macias and S. G. Pulman. A method for controlling the production of
specifications in natural language. The Computer Journal, 48(4):310–318,
1995.

L. Mich, J. Mylopoulos, and Z. Nicola. Improving the quality of conceptual
models with nlp tools: An experiment. Technical report, University of
Trento, 2002.

J. Natt och Dag. Managing Natural Language Requirements in Large-Scale Soft-
ware Development. PhD thesis, Lund University, Sweden, 2006.

J. Natt och Dag. The reqsimile tool website. http://reqsimile.

sourceforge.net/, January 2010.

174

REFERENCES

J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. Speeding up
requirements management in a product software company: Linking cus-
tomer wishes to product requirements through linguistic engineering.
In Proceedings of the 12th International Requirements Engineering Conference
(RE 2004), pages 283–294, 2004.

J. Natt och Dag, T. Thelin, and B. Regnell. An experiment on linguistic
tool support for consolidation of requirements from multiple sources
in market-driven product development. Empirical Software Engineering
Journal, 11(2):303–329, 2006.

A. Parrish, R. Smith, D. Hale, and J. Hale. A field study of developer pairs:
Productivity impacts and implications. IEEE Software, 21(5):76–79, 2004.

S. Patton, D. Doss, and W. Yurcik. Open source versus commercial fire-
walls: functional comparison. In In Proceedings of the 25th Annual IEEE
International Conference on Local Computer Networks (LCN 2000), pages
223–224, 2000.

K Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag, 2005.

P. Rayson, L. Emmet, R. Garside, and P. Sawyer. The revere project: Exper-
iments with the application of probabilistic nlp to systems engineering.
In Proceedings of the 5th International Conference on Applications of Natural
Language to Information Systems, pages 288–300, 2000.

B. Regnell and S. Brinkkemper. Engineering and Managing Software Require-
ments, chapter Market–Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

B. Regnell, P. Beremark, and O. Eklundh. A market–driven requirements
engineering process – results from an industrial process improvement
programme. Requirements Engineering Journal, 3(2):121–129, 1998.

C. Rolland and C. Proix. A natural language approach for requirements
engineering, 1992.

C. Rupp. Linguistic methods of requirements engineering (nlp). In Pro-
ceedings of the EuroSPI 2000, pages 68–80, 2000.

K. Ryan. The role of natural language in requirements engineering. In Pro-
ceedings of the IEEE International Symposium on Requirements Engineering,
San Diego California, pages 240–242. IEEE Computer Society Press, 1993.

P. Sawyer and K. Cosh. Supporting measur-driven analysis using nlp tools.
In Proceedings of the 10th International Workshop on Requirements Engineer-
ing: Foundations of Software Quality (REFSQ 2004), pages 137–142, 2004.

175

REFERENCES

P. Sawyer, P. Rayson, and R. Garside. Revere: Support for requirements
synthesis from documents. Information Systems Frontiers, 4(3):343–353,
2002.

P. Sawyer, P. Rayson, and K. Cosh. Shallow knowledge as an aid to deep
understanding in early phase requirements engineering. IEEE Transac-
tions on Software Engineering, 31(11):969–981, 2005.

R. T. Selvi, N. Sudha, and V. Balasubramanian. Performance analysis of
proprietary and non-proprietary software. In Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists 2008 Vol I
(IMECS 2008), pages 982–984, 2008.

F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo. The role of replications in
empirical software engineering. Empirical Software Engineering Journal,
13(2):211–218, 2008.

D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V.B. Karahasanovic, A. Liborg,
and N. K. Rekdal. The survey of controlled experiments in software en-
gineering. IEEE Transactions on Software Engineering, 31(9):733–753, 2005.

K. J. Stol, M. A. Babar, B. Russon, and B. Fitzgerald. The use of empirical
methods in open source software research: Facts, trends and future di-
rections. In In Proceedings of the 2009 ICSE Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, pages 19–24,
2009.

L. Wilkinson. Statistical methods in psychology journals: Guidelines and
explanations. American Psychologist, 54(8):594–604, 1999.

W.M. Wilson, L. H. Rosenberg, and L.E. Hyatt. Automated analysis of
requirement specifications. In Proceedings of the 1997 19th International
Conference on Software Engineering (ICSE 97), pages 161–171, 1997.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering An Introduction. Kluwer Aca-
demic Publishers, 2000.

176

