

On systems architecting : a study in shop floor control to
determine architecting concepts and principles
Citation for published version (APA):
Zwegers, A. J. R. (1998). On systems architecting : a study in shop floor control to determine architecting
concepts and principles. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Industrial Engineering and
Innovation Sciences]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR513247

DOI:
10.6100/IR513247

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR513247
https://doi.org/10.6100/IR513247
https://research.tue.nl/en/publications/6357c0f8-a4bf-4803-9da7-5b468d8d75dd

Ta Prohm, one of Angkor’s temples, was built in approximately 1186 AD. After the
defeat of the Khmer empire, most of the temples were left to the jungle. For centuries,
the jungle threatened the structures of Ta Prohm. The temple was intertwined by trees
that reduced the strength of its structure. Ta Prohm survived the encroaching trees,
but would have gone lost in the jungle without human intervention. However, removing
some of the trees might lead to a partial collapse of the temple.

After years of evolution, shop floor control systems frequently consist of entangled
components. Modifications violate the system architecture, and the complexity of the
system becomes increasingly hard to manage. Because of the entanglement of the
components, changes in a component propagate to other components. Systems
become so complex, that they can hardly be changed anymore.

Systems architecting tries to maintain the integrity of complex systems so that they can
be adapted to future requirements. This study explores the systems architecting
discipline.

On Systems Architecting

A study in shop floor control to determine architecting concepts and principles

On Systems Architecting

A study in shop floor control to determine architecting concepts and principles

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 30 juni 1998 om 16.00 uur

door

Arian Zwegers

geboren te Asten

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. E.J. Sol
en
prof.dr.ir. J.C. Wortmann

en de copromotor:
dr.ir. H.J. Pels

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Zwegers, Arian

On systems architecting : a study in shop floor control to determine architecting concepts and principles /
door Arian Zwegers. - Eindhoven : Technische Universiteit Eindhoven, 1998.
Proefschrift.

ISBN 90-386-0699-4
NUGI 684

Subject headings: systems architecting / shop floor control / enterprise integration

Printed by University Press Facilities, Eindhoven
Cover photos by Jelle van Maare

BETA Central Secretary, Pav. A03, PO Box 513, 5600 MB Eindhoven, The Netherlands.
Phone: +31 40 247 3983. Fax: +31 40 245 0258. Email: BETA@tm.tue.nl

iii

Table of Contents

1. Introduction...1

1.1 Introduction...1
1.2 Shop floor control ...1
1.3 Problem statement...4
1.4 Research objective ..5
1.5 Research approach ..6
1.6 Structure of the dissertation ..7

2. Architecture Definition...9

2.1 Introduction...9
2.2 Initial definition...9
2.3 Architecture in various disciplines..11

2.3.1 Building science ... 11
2.3.2 Digital systems engineering... 11
2.3.3 Information management ... 12
2.3.4 Software engineering ... 13
2.3.5 Computer Integrated Manufacturing... 15

2.4 Architecture in this thesis..17
2.4.1 Definition ... 17
2.4.2 Architectures, systems, models, structures, and infrastructures ... 19
2.4.3 Objectives and roles... 21

2.5 Architecting...23
2.6 Structure, behaviour, and non-functional aspects ...25
2.7 Summary ...27

3. Architecting Concepts...29

3.1 Introduction...29
3.2 The Gordian project ..30
3.3 Domains ..31
3.4 Decomposition hierarchy ..36
3.5 Views ..38
3.6 Other concepts...41

3.6.1 Variants .. 41
3.6.2 Status .. 41
3.6.3 Versions.. 42

3.7 Summary ...42

Table of Contents

iv

4. Architecting Principles ...43

4.1 Introduction...43
4.2 Modularity...43
4.3 Structural stability ...49
4.4 Layers..51
4.5 Indication of changeability..55
4.6 Organisational embedding ..56
4.7 Summary ...57

5. Reference Architectures for Enterprise Integration..59

5.1 Introduction...59
5.2 Enterprise reference architectures ...60
5.3 CIMOSA ...62

5.3.1 Introduction.. 62
5.3.2 CIMOSA approach... 63
5.3.3 CIMOSA modelling framework.. 64
5.3.4 CIMOSA integrating infrastructure... 65

5.4 Application of CIMOSA at Traub...66
5.5 The practical value of CIMOSA ...67

5.5.1 CIMOSA and the architecting concepts... 67
5.5.2 CIMOSA and the architecting principles... 68
5.5.3 CIMOSA and evolution .. 69

5.6 Baan’s Enterprise Modeller...70
5.7 Summary ...73

6. Reference Models for Shop Floor Control..75

6.1 Introduction...75
6.2 Control architecture and enabling technology ..76

6.2.1 Control levels and granularity of resources .. 76
6.2.2 Control levels and enabling technology .. 77

6.3 Evolution of control architectures...80
6.4 Proper hierarchical control ..84

6.4.1 Characteristics of the proper hierarchical control form... 84
6.4.2 Evaluation .. 85

6.5 Heterarchical control ...86
6.5.1 Characteristics of the heterarchical control form ... 86
6.5.2 Evaluation .. 87

6.6 Modified hierarchical control..89
6.6.1 Characteristics of the modified hierarchical control form.. 89
6.6.2 Evaluation .. 89

6.7 Holonic manufacturing systems..90
6.7.1 Characteristics of holonic manufacturing systems.. 90
6.7.2 Evaluation .. 92

6.8 Summary ...93

v

7. Shop Floor Control Architecting ...95

7.1 Introduction...95
7.2 The model factory ...96
7.3 Agent based control systems...98
7.4 Scope...99
7.5 Control functionality and enabling technology...100
7.6 Identification of agents..103
7.7 Control strategy...104
7.8 Subcontracting ..106
7.9 Structure of a workstation agent ...107
7.10 Evaluation ...108
7.11 Summary ...110

8. Conclusions and Suggestions ...111

8.1 Conclusions...111
8.2 Suggestions for further research..114

References ..117

Appendices...127

A. Application of CIMOSA at Traub..127

A.1 Introduction ..127
A.2 Reorganisation objective ..128
A.3 Requirements definition ...129
A.4 Architectural design ...130
A.5 Detailed design...134
A.6 Implementation ..136

B. CIMOSA and the GERAM Framework ..139

B.1 Introduction ..139
B.2 CIMOSA and the GERAM framework..140

C. GRAI/GIM and PERA ..143

C.1 GRAI/GIM ...143
C.2 PERA..145

Table of Contents

vi

D. Controller Architectures..149

D.1 Introduction ..149
D.2 Production Activity Control (PAC) and Factory Coordination (FC)...............................149
D.3 Reference models for the heterarchical control form...152
D.4 Factory Activity Control ..152
D.5 Building blocks of a holonic manufacturing system..154

E. Simulation of the Model Factory’s Agent Based Control System................................157

E.1 Introduction to the specification language χ ..157
E.2 Simulation model..157
E.3 Simulation results ...160

Summary..163

Samenvatting (summary in Dutch) ...167

Curriculum Vitae ..171

1

1. Introduction

1.1 Introduction

A system architecture is the manner in which system components are organised and
integrated. The architecture is important in determining the effectiveness of a system because
it establishes the functionality of the system. It is also important because it establishes the
limitations or possibilities for changing the system in the future; the value of a proper
architecture lies in the fact that it provides ‘future flexibility’.

Architecting, the (planning and) designing of architectures, arose long time ago. It was a
response to problems that were too complex to be solved by pre-established rules and
procedures. Many thousands of years ago, city states began public works of such complexity
that engineering alone could not solve the resultant problems. Egyptians built canals and
irrigation systems that not only exploited the Nile, but largely determined the economic status
of the country. Phoenicians built maritime and naval fleets. The Greeks and Romans built
cities, aqueducts, fortifications, and empire-spanning road systems. From these endeavours
arose the first civil, military, and naval architectures (Rechtin, 1991).

Conceiving architectures required architects who were able to bring together various
disciplines in order to understand and resolve problems of large complexity.
Building architects had to bring together structures, psychology, art, and aesthetics.
Civil-works architects had to integrate structures, mechanics, politics, economics, geology,
and hydrology. Naval architects combined structures, mechanics, hydrodynamics,
aerodynamics, meteorology, economics, and military engineering. All had to take into account
the physical and social environment in which their efforts were undertaken. Systems architects
do likewise, though their interests are primarily functional rather than aesthetic (Rechtin,
1991).

Similar developments as described above are underway in aerospace, electrical, industrial, and
other engineering fields. Several observations justify this statement. First, it can be seen in the
literature. The word ‘architecture’ is now widely used in communications, space systems,
computers, software, networks, Computer Integrated Manufacturing, and transportation
systems. Second, if there are architectures, there must be architects to design them. Indeed
there are, although they have gone under different names. They have been called
configurators, chief engineers, chief designers, design team leaders, and advanced-systems
engineers. But they are architects, nonetheless. Even more, architecting is not limited to the
engineering domains anymore. From politicians to football coaches, people who outline the
structures of complex undertakings, such as treaties and football teams, are called architects in
everyday language (Rechtin, 1991).

Chapter 1

2

1.2 Shop floor control

In this thesis, the focus is on architectures of shop floor control systems. This section places
shop floor control in the larger frame of production control.

Bertrand et al. define production control as ‘the coordination of supply and production
activities in manufacturing systems to achieve a specific delivery flexibility and delivery
reliability at minimum costs’ (Bertrand et al., 1990a; p. 17). Figure 1-1 shows a production
control framework based on the Material Requirements Planning (MRP) and Manufacturing
Resource Planning (MRP II) approaches as they are frequently applied in industry.

Sales and
Operations
Planning

Material
Requirements

Planning

Shop Floor
Control

Master Planning

Demand
Management

Master
Production
Scheduling

sales forecasts (by product family)

long term capacity policy

master production schedule

planned and open orders

Strategic
Planning &

Control

Tactical
Planning &

Control

Execution
Planning &

Control

Figure 1-1 Production control framework

Source: Higgins et al. (1996)

The strategic planning and control layer consists of the sales and operations planning activity.
Its objective is to ensure that manufacturing capacity is adjusted to anticipated levels of sales.
The real output of the sales and operations planning process towards master production
scheduling should be viewed as a set of statements with respect to future enhancements or
reductions of capacity (Higgins et al., 1996).

The tactical planning and control layer plans and controls purchasing and manufacturing
activity for all (inventory) items in response to firm and anticipated demand.
Master production scheduling drives the MRP logic (Higgins et al., 1996).

Execution or operational planning and control issues essentially involve taking the output
from the tactical planning phase, e.g. the planned orders from an MRP system, and managing
the manufacturing system in quasi-real time to meet these requirements. The execution
planning and control layer supplements the MRP logic with the required logic to plan and
control the manufacturing environment on a day-by-day basis. Its most important objective is
to minimise lead times and work-in-process (inventory), primarily by accurate control over

Introduction

3

which orders are released on the shop floor and how. Frequently, separate work load control
and work order release functions can be distinguished (Higgins et al., 1996).

A framework for production control is outlined above from a functional point of view.
Before focusing on shop floor control, a technical point of view is taken by reflecting upon the
evolution of production control systems (see Figure 1-2). Figure 1-2 and the following
discussion are based on (MESA, 1997).

Finite Capacity
Scheduling

Forecasting

1960 1970 1980 1990

ERPMRP IIMRPAccounting

Supply Chain
Management

DRP

Integrated MESMES

Figure 1-2 The evolution of manufacturing systems

Source: MESA (1997)

The first computerised business systems were used in accounting. By the late 1960’s or early
1970’s, from these accounting systems evolved Material Requirements Planning (MRP),
which was intended to help manufacturers better plan material availability. By the late 1970’s
and early 1980’s, computers were more powerful and capable of handling more data and
being used interactively by more people. MRP evolved into Manufacturing Resource Planning
(MRP II) as shop floor reporting systems, purchasing systems, and related functions were
added.

At about the same time, many companies began to realise they needed other systems to
manage other aspects of their businesses. MRP II did not address the requirements of
forecasting and managing demand in distribution, nor did it adequately manage the shop floor
and the many disparate activities that took place there. Forecasting and Distribution
Requirements Planning (DRP) were developed to address the requirements in distribution.
Likewise, Manufacturing Execution Systems (MES) and a number of unique, function-
specific systems such as scheduling and quality management, evolved. While these systems
helped manufacturers solve specific business problems, they were not integrated and often
could not take advantage of data from or pass data to other systems.

In the late 1980’s and early 1990’s, another generation of systems became available.
These systems attempted to solve the ‘islands of information’ problem by providing broad
comprehensive solutions. MRP II systems became Enterprise Resource Planning systems.

Chapter 1

4

DRP became Supply Chain Management and the shop floor solutions evolved into Integrated
MES systems. In all cases, solution-focused systems such as quality or maintenance
management, remained viable alternatives for companies which required more functionality
than what was available in the integrated solutions.

Manufacturing Execution Systems emerged as a response to a deficit of both Material
Requirements Planning and Manufacturing Resource Planning systems: both are not designed
to respond to real-time data as it happens on the shop floor. Although planning systems could
create a shop schedule weekly or even daily, planners often find at the end of the day that
schedules are not realised and few tasks went as planned. Therefore, a new type of software
solution appeared. These systems ensure that the plans coming from planning systems
actually get done, and if they do not, they make sure that the planning systems are notified
and updated (Esch, 1995). For that type of production control software, the term
‘Manufacturing Execution Systems (MES)’ was coined by the consulting firm Advanced
Manufacturing Research (AMR).

According to AMR’s definition, a MES is ‘an information system that resides on the plant
floor between the planning systems in offices and direct industrial controls at the process
itself’. Figure 1-3 shows that AMR positions MES between MRP II or Enterprise Resource
Planning (ERP) systems on the one side and supervisory control systems on the other side.
Supervisory control refers to terminals, PCs, workstations, or servers linked to operators,
programmable controllers, or other shop floor devices. The execution system takes plans from
a corporate manufacturing planning (MRP II) system and executes them on the shop floor.
The MES is supposed to transform data from shop-floor devices such as programmable logic
controllers (PLCs) and distributed control systems (DCS) into information an MRP II system
can use to improve overall planning (Hill, 1995).

Figure 1-3 Production control software

A group of about 25 MES developers and vendors joined forces to promote the MES
concepts, and formed MESA (Manufacturing Execution System Association) International.
In 1993, their total market for integrated MES systems was $150 million. In 1995,
AMR projected the total market would be $280 million before growing to $414 million and
$613 million in 1996 and 1997, respectively. Growth rates were projected to continue at
30 percent or greater through the end of the decade (Hill, 1995; MESA, 1997).

Manufacturing Execution Systems are commercial, standard implementations of shop floor
control software. Rather than using the term ‘MES’, this thesis uses the more general term
‘shop floor control systems’.

Introduction

5

1.3 Problem statement

Shop floor control systems have grown in importance. However, with the rapid influx of
computerised equipment and their interfaces to ERP systems and supervisory control
equipment, the complexity of shop floor control systems is exploding. The result of this
tendency is that the complexity of these systems becomes hard to manage, and that the
systems are hardly maintainable and sensitive to failures. Apart from consequences for the
effectiveness of the system, the flexibility (i.e. the modifiability, extensibility, and
reconfigurability) diminishes.

The aim of this thesis is to provide a contribution to solving or avoiding these problems.
Emphasis is on the architecture of shop floor control software, i.e. on the manner in which
components of shop floor control systems are organised and integrated. The creations of
architects have to last for many years, unlike the creations of other professionals such as
authors, actors, or even engineers. After time, new business objectives and requirements will
come up, and the current shop floor control system will no longer satisfy. Rather than
throwing away the old shop floor control software and starting development of a new solution
from scratch, a company wants to change its existing control software. It is the architect who
establishes the limitations or possibilities for changing the system in the future. This thesis
aims to formulate guidelines with which system architects are able to design more flexible
systems.

1.4 Research objective

The primary research objective is to find architectural guidelines that lead to more flexible
systems. This implies a number of research questions:

1.1. A central preposition in this thesis is that the system architecture determines the
limitations and possibilities of changing the system in the future. Van Waes (1991) and other
authors notice, however, that most publications assume that the reader understands what is
meant by the term ‘architecture’. The consequence of such an assumption is that the term
remains undefined, and that different readers interpret the term differently. Therefore, the first
research question is about the meaning of the word ‘architecture’: what is (an) architecture?
And, what is architecting?

1.2. The next research question is about how an architect manages complexity.
Architecting emerged as a response to complex problems. Architects developed their own
means to combat complexity, their own architecting concepts. What are these architecting
concepts?

1.3. With only architecting concepts, an architect can not create a flexible system.
The architecting concepts enable one to manage the complexity of the design problem.
However, guiding principles are needed that lead to flexible systems. What architecting
principles lead to flexible, evolving systems?

Chapter 1

6

The secondary research question is to evaluate the suitability of several theories for the design
of flexible systems. The evaluation is carried out by means of the discerned architecting
concepts and principles. The application domain is the area of shop floor control.
The secondary research question is broken down into three subquestions:

2.1 When the problem of legacy systems that hinder the evolution of shop floor control
systems became obvious, several frameworks were constructed to remedy this problem.
Some of these proposed solutions became known as enterprise reference architectures.
One enterprise reference architecture is examined in particular, namely CIMOSA.
The research questions with regard to CIMOSA are: to what degree does CIMOSA
incorporate the architecting concepts and principles that are found as answers to research
questions 1.2 and 1.3? How and to what degree does it contribute to the evolution of (shop
floor control) systems?

2.2 Whereas the enterprise reference architectures try to achieve continuous evolution of
enterprises, also more specific solutions were proposed, such as reference models for shop
floor control. Almost the same research questions are posed for these reference models as for
the reference architectures: to what degree do these reference models incorporate the
architecting principles that are found at research question 1.3? How and to what degree do
they contribute to the evolution of shop floor control systems?

2.3 The architecting concepts and principles can be applied during the development of a
specific system. Both enterprise reference architectures and reference models for shop floor
control are generic solutions; they aim to support the development of many (shop floor
control) systems. A shop floor control system can just as well be developed without these
reference architectures and reference models. How can the architecting concepts and
principles support one in the design of a specific system?

1.5 Research approach

The occasion to start this research project was the observation that hierarchical control
architectures might lead to expensive, rigid systems. In the second half of the 1980’s,
Philips and Digital Equipment Corporation experimented with control architectures. The two
companies developed the CAM Reference Model, which was based on hierarchical control
concepts. During the CIMphony project at Philips Centre For manufacturing Technologies,
the CAM Reference Model was the basis for the development of a control architecture for an
assembly line (Philips CFT, 1987). The project demonstrated that a thoughtless
implementation of the hierarchical control form leads to very expensive systems.

The research project was started in 1993 in the section Manufacturing Technology of the
department of Industrial Engineering & Management Science at Eindhoven University of
Technology. At its initiation, it was envisaged that the project would examine and simulate
several control forms that offered alternatives for the hierarchical form, which was the
dominant control form at that time. However, it was realised that writing a thesis on
architectures required ‘field work’ with very complex systems. This was needed in order to

Introduction

7

acquire knowledge and insight about systems architecting. Systems architecting was a young,
immature discipline, that is if one could talk about a ‘discipline’ at all. It was a science in a
‘pre-paradigm phase’ (Kuhn, 1970). At the time, one could not learn it from study books.
Therefore, this research project started with working in the field for a significant period to
acquire knowledge and insight.

During the first two years, this research project contributed to the ESPRIT project VOICE*,
which validated the Open System Architecture for Computer Integrated Manufacturing
(CIMOSA). This validation was performed by the development of manufacturing control and
monitoring solutions according to the CIMOSA concepts in three types of industry.
The contribution to the VOICE project consisted of the application of the CIMOSA concepts
to model the control, monitoring, and production processes of a Greek aluminium foundry.
A second contribution was the definition of an ‘engineering approach’ that should describe
how to use CIMOSA in practice.

A research goal during the VOICE project was to evaluate the suitability of CIMOSA for shop
floor control architecting. During the VOICE project, however, it became clear that more
research was needed in the concept of ‘architecting’ and even an ‘architecture’ itself. The
terms were too vague and needed to be deepened before CIMOSA could be evaluated or
before alternative control architectures could be compared. The primary research questions
were formulated. Later, the discerned architecting concepts and principles were used to
evaluate CIMOSA and reference models for shop floor control.

In the first half of 1996, an action research project was carried out at Baan Company.
The Gordian project (named after the famous Gordian knot) investigated the possibilities to
place functionality that was formerly spread out over several software packages in one, new
package. To do so, the entanglements of the functionality with other packages had to be
examined, and solutions to disentangle the packages were proposed. The Gordian project was
used to sharpen the discerned architecting concepts and principles.

In 1994, the model factory that formerly belonged to Digital’s Cooperative Engineering
Centre was moved to Eindhoven University of Technology. This model factory was one of the
research objects for this project. The model factory was used as an example in this project for
designing architectural solutions.

1.6 Structure of the dissertation

Figure 1-4 provides a schematic overview of the remainder of this dissertation. In Chapter 2,
architecture and related notions are defined, and the process of architecting is introduced.
Chapter 3 focuses on the concepts to manage the complexity faced by a development project;
three such architecting concepts are elaborated upon, while three other concepts are shortly
discussed. Three architecting principles are formulated in Chapter 4 that aim to guide
architects in the development of flexible, future-proof systems. Chapter 5 discusses the theory

* VOICE: Validating OSA in Industrial CIM Environments

Chapter 1

8

behind enterprise reference architectures, and the practice of enterprise integration. Chapter 6
presents various reference models for shop floor control. Both the reference models in
Chapter 6 and the reference architectures in Chapter 5 are confronted with the discerned
architecting concepts and principles. Chapter 7 presents the application of the concepts and
principles in an example. A shop floor control system is defined based on agents. Finally,
Chapter 8 presents the main conclusions of this research project, and mentions a few possible
directions for further research.

- Definition of architecture, reference model, and reference architecture
- Definition of architecting

Chapter 2, Architecture Definition

- Concepts to manage overall system complexity
- Introduction of domains, decomposition hierarchy, and views as main architecting concepts

Chapter 3, Architecting Concepts

- Principles to obtain future system flexibility
- Introduction of modularity, structural stability, and layers as main architecting principles

Chapter 4, Architecting Principles

- Theory and practice of enterprise integration
- CIMOSA and architecting concepts and principles

Chapter 5, Reference Architectures for Enterprise Integration

- Evolution of control architectures and enabling technology
- Shop Floor Control reference models and architecting concepts and principles

Chapter 6, Reference Models for Shop Floor Control

- Architecting of an agent based control system
- Application of architecting concepts and principles

Chapter 7, Shop Floor Control Architecting

- Conclusions
- Directions for further research

Chapter 8, Conclusions and Suggestions

Figure 1-4 Overview of this thesis

9

2. Architecture Definition

2.1 Introduction

The objective of this chapter is to provide an understanding of the term ‘architecture’ as used
in this thesis. In Section 2.2, an initial definition of ‘architecture’ is derived. It is shown that
architecture has three main meanings in everyday language, namely related to science, style,
and structure.

For a good understanding of the concept, it is necessary to learn from other disciplines, where
researchers and engineers have decades of experiences with architectures and architecting.
Section 2.3 gives some opinions on architecture from various disciplines, starting – naturally
– with the building discipline, where architects have been around from time immemorial.
Digital systems engineering was the first to borrow the term. However, the original thoughts
in this field about architecture (e.g. (Amdahl et al., 1964; Blaauw, 1966; 1971; 1976)) appear
to be quite out of date for this thesis’ purposes. Some efforts in information management have
enlarged the scope of thinking about architectures. Except for building science, software
engineering is probably the discipline where architectural design is best understood.
Finally, various opinions on architecture stemming from the domain of this thesis,
Computer Integrated Manufacturing, are reflected.

In Section 2.4, the definition as used in this thesis is presented. A distinction is made between
architectures, reference architectures, and reference models. Since architectures are frequently
confused with other concepts and vice versa, the differences between architectures on the one
side and the other concepts on the other side are given. Subsequently, the objectives and roles
of architectures are clarified.

Section 2.5 explains architecting: the process or design activities that is responsible for the
system architecture and the integrity of the system. Architecting is positioned towards
engineering to explain their differences and to demonstrate why both have a critical impact on
the success of a development project.

An architecture encompasses more than the overall structure of a specific system.
However, frequently architectural specifications only deal with static system aspects.
Section 2.6 shows that architecting involves the dynamic and non-functional aspects of a
system as well.

2.2 Initial definition

The term ‘architecture’ is widely used in publications. It is generally assumed that the reader
knows what this term means (Zachman, 1987; Van Waes, 1991; Soni et al., 1995; Garlan and
Perry, 1995). In this section, an initial definition is derived by a small dictionary survey.
In Section 2.4, the definition is refined.

Chapter 2

10

The word ‘architect’ is derived from two Greek words:
• ‘archi’ (Gr. ‘αρχη’) = a beginning, start, principle, e.g. as in ‘archetype’ or ‘archbishop’.
• ‘tekton’ (Gr. ‘τεκτων’) = bricklayer, mason (Hionides, 1978).

The same dictionary gives a translation for the word ‘architekton’ (Gr. ‘αρχιτεκτων’),
which simply means ‘architect’. In the view of the ancient Greeks, an architect is a master
builder, a chief artificer.

Merriam-Webster’s collegiate dictionary (Merriam, 1993) defines architecture as:
1. the art or science of building; specifically: the art or practice of designing and building

structures and especially habitable ones
2a formation or construction as or as if as the result of conscious act
2b a unifying or coherent form or structure
3. architectural product or work
4. a method or style of building
5. the manner in which the components of a computer or computer system are organised and

integrated.

The fifth meaning sticks out for two reasons. Firstly, because architecture is explicitly
associated with computers. In fact, the discipline that deals with the design of computer
systems, digital systems engineering, was the first to adopt the term ‘architecture’ from
building science. Secondly, because this definition is clearly the one that is most related to the
one used in this thesis. Other dictionaries give similar definitions to Merriam-Webster’s.
Combining Merriam-Webster’s second, third, and fifth definition, and comparing their
definitions with those of other dictionaries and everyday usage shows basically three different
main meanings:
• the art and/or science of planning, designing, and constructing buildings (e.g. ‘Vitruvius

wrote ten books on architecture’);
• a style and/or method of design and construction (e.g. ‘Beijing’s Tiantan, the Temple of

Heaven, is considered by many as the perfection of Ming architecture’);
• a unifying or coherent structure (e.g. ‘the architecture of the system consists of the

following components’).

For the moment, it suffices to remember that there are three meanings of ‘architecture’, related
to science, style, and structure. In later sections, this thesis focuses on the third meaning,
structure, and advocates that an architecture incorporates dynamic and non-functional aspects
besides static, structural aspects.

Note that all three meanings are uncountable nouns. In English, an uncountable noun has only
one form; it does not have separate singular and plural forms. Only the latter meaning has a
countable form as well. A countable noun has a singular form and a plural form. When it is
singular, it must always have a determiner in front of it. If one speaks about ‘an architecture’,
always the third meaning is used (Crowther, 1995).

Architecture Definition

11

In the next section, all three different meanings are used confusedly. It is up to the reader to
pick the right understanding. In later sections, more precise definitions are given which
attempt to avoid a confusion of tongues.

2.3 Architecture in various disciplines

2.3.1 Building science

The first building science theory was formulated by Marcus Vitruvius Pollio, a Roman
architect and engineer in the first century BC. His ten books are the oldest and most
influential works on building science in existence. The instructions he gave were followed for
hundreds of years. Most building architects are familiar with Vitruvius’ three targets of
architecture as shown in Figure 2-1: firmness (Latin: ‘firmitas’), efficacy (‘utilitas’),
and gracefulness or charm (‘venustas’) (Morgan, 1960; Germann, 1980).

Architectura

UtilitasFirmitas Venustas

Symmetria Eurythmia Decor

Figure 2-1 The targets of architecture according to Vitruvius

Source: Germann (1980)

A modern interpretation of architecture is given by Bax (1996). He defines ‘architecture’ as
the quality of the coherence of all categories of technological design. Architecture is
independent of a discipline. The discipline ‘architecture’ is the field in which this quality is
achieved within a building. As such, Bax considers architecture as the science of (controlled)
complexity.

2.3.2 Digital systems engineering

Probably the first to use the term ‘architecture’ in an engineering discipline outside the
building discipline were the designers of the IBM System / 360. These pioneers adopted the
name ‘architecture’ from building science because its original meaning refers to the first
element, the archetype, in this case of a digital system design. In their view, the term
‘architecture’ is used to describe the attributes of a (hardware) system as seen by the
programmer, i.e. the conceptual structure and functional behaviour, as distinct from the
organisation of the data flow and controls, the logical design, and the physical implementation
(Amdahl et al., 1964).

The architecture is one of the three elements or phases in the design of digital systems as
discerned by Blaauw (1966, 1971, 1976). The first, the architecture, specifies what functions
the system can perform. The architecture is not the vague, general appearance of the system,
but it covers all details a user might find out and if necessary will find out. These details are
most apparent when a system is operating at the lines of its abilities (Blaauw, 1966).

Chapter 2

12

The second is the implementation, which states how these functions can be performed by a
logical structure. The third is the realisation, which concerns the physical structure which
embodies the logic. In particular the components which are selected and the locations where
they are placed are of concern here.

Furthermore, Blaauw claims that for defining ‘good architecture’, digital systems engineering
is assisted by building science. A good digital system architecture needs to have structure,
thereby clearly embodying a basic idea. It needs to be functional, i.e. it should bear the user
(either man or machine) in mind. And it needs to comply with the ‘laws of beauty’,
namely symmetry, balance, and independence.

In digital systems engineering, an understanding of ‘architecture’ is adopted that is very close
to the building sector. The architecture should serve the user; it is seen as the feeling a user
senses when dealing with a certain system. However, the following sections show that in other
disciplines architecture does not refer so much to the user’s view of a system as to the
system’s structure and protocols that organise and integrate the system components,
and which may be quite hidden from the user. This latter view is adopted by this thesis.

2.3.3 Information management

An initial contribution to information systems architecture is the definition of a descriptive
framework by Zachman (1987). He claims that as size and complexity of information systems
increases, architectures are essential as logical constructs for defining and controlling the
interfaces and the integration of all system components. In order to describe a complex
system, a set of architectural representations is needed rather than a single architecture.

The first axis of Zachman’s framework consists of the architectural representations, used by
an involved actor, i.e. the owner, the designer, or the builder. The owner has in mind a product
that will serve some purpose. The architect transcribes this perception of a product into the
owner’s perspective. Next, the architect translates this representation into a physical product,
the designer’s perspective. The builder then applies the constraints of the laws of nature and
available technology to make the product producible, which is the builder’s perspective. Each
of these representations has a different nature from the others; they do not just increase the
level of detail compared to a previous representation.

The framework’s second axis consists of the different types of descriptions oriented to
different aspects of the object being described. Zachman points out that each of the mentioned
representations can be seen from three different perspectives, depending on what has to be
described. In the case of information systems, these perspectives are:
• the data to be processed,
• the processes to be controlled, and
• the networks via which the processes communicate.

Architecture Definition

13

Combining the two axes — a set of architectural representations as perceived by different
actors, and the different perspectives upon these representations — results in Zachman’s
framework for information system architecture as shown in Table 2-I.

Table 2-I Framework for information systems architecture

Data description Process description Network description

Scope description
(ballpark view)

List of entities important
to the business

List of processes the
business performs

List of locations in which
the business operates

Model of the business
(owner’s view)

E.g. entity/relationship
diagram

E.g. functional flow
diagram

E.g. logistic network

Model of the information
system (designer’s view)

E.g. data model E.g. data flow diagram E.g. distributed systems
architecture

Technology model
(builder’s view)

E.g. data design E.g. structure chart E.g. system architecture

Detailed description
(out-of-context view)

E.g. data base
description

E.g. program E.g. network architecture

Actual system Data Function Communications

Source: Zachman (1987)

For Zachman, every representation short of being the final physical product is an architecture.
However, he considers the out-of-context representations as less interesting “architecturally”,
since they do not depict the final product in total and are more oriented to the actual
implementation activities.

Van Waes (1991) developed a framework for architectures in information management.
In broad lines, her framework follows the same ideas as Zachman’s. It combines three views,
namely the function (process-oriented), object (data-oriented), and communication view, and
four architectures, namely the business, information, systems, and technical architecture.
The four architectures are defined for four actors, respectively the owner, user, designer,
and implementer.

The most valuable contribution to architectural thinking by Zachman and Van Waes is the
axes of their frameworks. They recognised that each actor in the development process needs
his own (set of) representation(s). The difference between the various representations is their
nature rather than the level of detail. Furthermore, they noticed that each actor might have
three perspectives (or views) to look upon systems; in other words, they distinguished three
possible viewpoints to describe a system. This thesis adopts the requirement that various
representations are needed that differ in nature, and that various viewpoints are possible to
look upon these representations. The representations and viewpoints are elaborated upon in
Chapter 3, where the architecting concepts ‘domains’ and ‘views’ are introduced.

2.3.4 Software engineering

Researchers and engineers in software engineering have adopted the term ‘architecture’ as
well. Perhaps of all disciplines, software engineering is the one where designers are most
conscious about the importance of sound architectures. Nevertheless, there is no consensus

Chapter 2

14

about the subject; almost every paper in the field starts by saying that no standard,
universally-accepted definition of the term ‘architecture’ is agreed upon. Although a standard
definition is not available, there is no shortage of definitions.

Perry and Wolf (1992) consider a software architecture as a set of architectural elements that
have a particular form. Similar to Zachman and Van Waes, they distinguish three different
classes of architectural elements: processing, data, and connecting elements. Perry and Wolf
consider an architecture as a necessary framework in which requirements are satisfied and
which serves as a basis for the design.

Garlan et al. (1995) state that a system’s architectural design is concerned with describing its
decomposition into computational elements and their interactions. Design tasks at this level
include organising the system as a composition of components; developing global control
structures; selecting protocols for communication, synchronisation, and data access; assigning
functionality to design elements; physically distributing the components; scaling the system
and estimating performance; defining the expected evolutionary paths; and selecting among
design alternatives.

Soni et al. (1995) state that software architecture is concerned with capturing the structures of
a system and the relationships among the elements both within and between structures.
Software architectures describe how a system is decomposed into components, how these
components are interconnected, and how they communicate and interact with each other.
Based on a survey on the role of architecture in the design and development of large systems
within Siemens, Soni et al. notice that different structures are used at different stages of the
development process. Each structure describes the system from a different perspective.

Soni et al. argue that the four different architectures they distinguished are needed because of
the growing complexity of software throughout history (see Figure 2-2). Initially, only the
code architecture was required. The module and execution architecture became necessary

implemented_by

Execution
Architecture

files, directories, libraries,
includes, contains, ...

Code
Architecture

implemented_by

subsystems, modules,
exports, imports, ...

Module
Architecture

implemented_by

components,
connectors, ...

Conceptual
Architecture

assigned_to

assigned_to

assigned_to

configured_by

tasks,
threads,
IPC, RPC,
...

resource_resides_on

Hardware
Architecture

processors,
networks,
memory,
disks, ...

Source Code

located_in

Figure 2-2 Relationships among software architectures

Source: Soni et al. (1995)

Architecture Definition

15

when systems became larger and distributed. Now, software engineers would like to use
communicating objects and assemblies of reused components. Therefore, a high-level
structure is described in the form of a conceptual architecture. On the other hand,
Zachman and especially Van Waes reason that their various architectures are wanted as
representation for each of the involved actors. Obviously, more actors became necessary to
control the growing complexity of software.

Garlan and Perry (1995) found that the term ‘architecture’ is used in a number of ways in
software engineering. Among the various uses are a) the architecture of a particular system, as
in ‘the architecture of this system consists of the following three components,’ b) an
architectural style, as in ‘this system adopts a client-server architecture,’ and c) the general
study of architecture, as in ‘the papers in that issue are about architecture.’ Note that the three
common uses show a remarkable resemblance with the three dictionary meanings as stated in
Section 2.2, namely structure, style, and science. Garlan and Perry continue by stating that
most uses of the term ‘software architecture’ focus on the first of these interpretations.

A discussion group at Carnegie Mellon University’s Software Engineering Institute developed
a typical definition: the structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their design and evolution over
time. The same institute has collected various definitions for software architecture
(SEI, 1997). They notice that these definitions and views do not preclude each other, nor do
they represent a fundamental conflict about what software architecture is. Instead, they
represent a spectrum in the software architecture community about the emphasis that should
be placed on architecture — its constituent parts, the whole entity, the way it behaves once
built, or the process of building it. Taken together, they reflect the various aspects of software
architecture.

The software engineering community realised that software architecture is not only about
structures (components and interfaces), but also about system behaviour (interaction between
components, protocols). Furthermore, this community introduced an architectural design
phase in the system life cycle, in which requirements should be satisfied and which should
serve as a basis for detailed design activities. This thesis adopts the viewpoint that a system
architecture is more than the system’s structure, and that system behaviour is part of
architectural specifications as well.

2.3.5 Computer Integrated Manufacturing

In addition to the previous disciplines, the term ‘architecture’ is nowadays widely used in
Computer Integrated Manufacturing. In the next section, a description and definition is given
which is used throughout the remainder of this thesis. In this section, some well known views
on CIM architectures are given.

Probably the first to adopt the term ‘architecture’ in the design of control systems for
automated production systems were the designers of the Automated Manufacturing Research
Facility (AMRF) of the US National Institute of Standards and Technology, formerly called

Chapter 2

16

the National Bureau of Standards (Simpson et al., 1982; Albus et al., 1981). In their
description of the AMRF control architecture, they outline three hierarchies, namely an
organisational, computational, and behavioural hierarchy, that together form the control
system hierarchy.

Bakker (1989), referring to an internal Philips report (Philips CFT, 1987), states that the
architectural description of a system describes the functionality of each of the tasks that have
to be executed. Allowable inputs and outputs are defined and the relations between the tasks
are specified. The architecture describes what the components do and describes the relations
that exist between the components.

Jones et al. (1989) argue that the basis for achieving the integration of manufacturing
processes with engineering and production functions into a CIM system lies in the design and
implementation of a system architecture for CIM. They believe that a system architecture
must include three separate but related architectures for production management, data
management, and communications. This partition of concerns makes it possible, to a large
extent, to optimise the design of each structure independent of the design of others.

The CIMCON ’90 conference on the design and implementation of global CIM architectures
(Jones, 1990) shows that the distinct CIM architecture developments throughout the world
have been abundant, but each of them is based on its own architectural definition.
No consensus has been achieved on what a CIM architecture is, and there is no way of
justifying an architecture proposal. Bernus et al. (1996) give a summary of the state-of-the-art
on CIM architecture as presented during CIMCON ’90. Opinions on CIM architectures range
from ‘a set of models which describe the elements and the relationships between these
elements of the whole CIM system’ (Chen et al., 1990a) to a ‘style of constructing or
designing the information processing within a manufacturing enterprise’ (Spur et al., 1990).

Böhms (1991) defines a CIM architecture as a CIM model showing manufacturing activities,
material and information flow objects, information and production technology components
and their interrelations on a global implementation-independent level within a specific
manufacturing system. A CIM architecture does not show all the details necessary for the
implementation of the architecture in reality.

Frequently, the relation between the architecture and system components is emphasised.
For example, Timmermans (1993a) defines an architecture as a description of system
components and their interfaces. According to Dilts et al. (1991), a (control) architecture
makes a (control) system from (control) components.

A distinction is seen between ‘architecture’ in the ‘art or science’ meaning and ‘architecture’
in the ‘model of a structure’ meaning. During the 1990’s, the CIM community gradually
accepted the dual meaning of the word. Williams et al. (1994b) shed some light on this
distinction. They define two types of architecture which deal with the integration of
manufacturing entities or enterprises. These are:

Architecture Definition

17

• The structural arrangement (design) of a physical system such as the computer control
system part of an overall enterprise integration system (Williams’ type 1). Examples are
the NBS or AMRF model (Jones and McLean, 1986), the reference model for
manufacturing planning and control (Biemans and Vissers, 1989; Biemans, 1989), and the
Factory Automation Model (Graefe and Thomson, 1989).

• The structural arrangement (organisation) of the development and implementation of a
project or program such as a manufacturing or enterprise integration or other enterprise
development program (Williams’ type 2). Examples are CIMOSA — Open System
Architecture for Computer Integrated Manufacturing (AMICE, 1989; AMICE, 1993a), the
GRAI Integrated Methodology (Doumeingts et al., 1987; Chen et al., 1990a), and the
Purdue Enterprise Reference Architecture (Williams, 1994).

The distinction by Williams et al. between enterprise reference architectures (type 2) and
‘the rest’ (type 1) was useful in a time of emerging reference architectures. Nevertheless,
Williams’ type 1 architectures are badly defined. In the next section, a distinction is made
between architectures, reference models, and reference architectures. The examples given
above for Williams’ type 1 architectures should be considered as reference models rather than
architectures.

This thesis does not look upon an architecture as a description or model of a structure
(or anything else). In the next section, it is explained that descriptions or models are needed to
represent an architecture, and that the term ‘architecture’ does not refer to a model but to the
entity being modelled.

Since around 1990, architectural thinking has been maturing. The introduction of enterprise
reference architectures made the focus in architecting shift from the management of
complexity to the pursuit of future flexibility. Furthermore, an important premise of the
enterprise reference architectures is that CIM systems are not static but have to be adapted
continuously. This implies that the specification of the system architecture is no longer a one-
time activity, but preserving the integrity of the system as part of architecting is a continuous
process.

2.4 Architecture in this thesis

2.4.1 Definition

After reviewing various opinions on architecture in the CIM domain and other fields, it is
appropriate to describe what is meant in this thesis by ‘architecture’. In Section 2.2, the results
of a dictionary survey showing the three main meanings of the term ‘architecture’ are
presented. In this section, the definition of the term as applied in the remainder of this
dissertation is given. The aim is not to give a final definition of ‘architecture’ — an
unachievable goal —, but to set a frame for the remainder of the dissertation, and to raise
some intuitive notion for architectures.

Chapter 2

18

This thesis reserves the term ‘architecture’ for the manner in which the components of a
specific system are organised and integrated. As such, a system architecture determines the
nature or essence of a system. An architecture of a specific system or product is the result of a
design process. It is laid down in a set of specifications that describe the system components,
their interfaces, and their behaviour. Architectural specifications do not show all the details
necessary for the implementation of the conceived system in reality. The abstraction level of
the specifications is higher than that of the specifications that are the result of later design
activities.

A reference model is a generic manner to organise and integrate system components. It serves
as a point of departure for the design of a large number of systems in a specific application
area. Recall that the second dictionary definition refers to architecture as a style and/or
method of design and construction. The style suggests features that are characteristic of
several systems. For buildings, these features are usually common throughout a certain time
period or place. For automated manufacturing control systems, a similar reasoning holds;
for instance, most systems developed in the 1980’s follow the hierarchical features as
originally outlined in the NBS model. Styles range from abstract architectural patterns and
idioms (such as ‘client-server’ or ‘layered’ organisations) to concrete reference models.
Unfortunately, the term ‘reference model’ seems to refer to the style’s representation, rather
than to the style itself. Nevertheless, this dissertation uses the term ‘reference model’ for a
certain architectural style.

Finally, the term ‘reference architecture’ is used for a framework in which system related
concepts are organised. As such, a reference architecture can be used as a tool with which one
can analyse and design systems. An enterprise reference architecture or a reference
architecture for enterprise integration is a framework in which enterprise related concepts
are organised. A reference architecture for enterprise integration should point toward
purposeful organisation of enterprise concepts (Nell, 1996); it should identify and structure
concepts for enterprise integration, most notably life cycle activities and enterprise modelling
concepts such as views. To some extent, this interpretation resembles the first meaning from
the dictionaries in Section 2.2, the art and science explanation, since both try to gather and
apply knowledge. Architecture (as a discipline) should deliver reference architectures (as
paradigms expressing thoughts about state-of-the-art architecting).

The relation between reference models and architectures is one of instantiation. A reference
model specifies the general structure of the system and shows which tasks have to be
executed. In addition, the relation between the tasks is shown (Bakker, 1989). A designer
might use a certain reference model to specify an architecture. The architectural description of
the system specifies the specific functionality of each of the reference model’s generic tasks.
Allowable inputs and outputs are defined and the relations between the components are
specified. A reference model can lead to a number of different architectures. For instance,
many network architectures of current data communication systems are derived from the well-
known ISO-OSI reference model. The OSI model itself is not a network architecture;
the exact services and protocols applicable for each layer are defined but not specified
(Tanenbaum, 1988).

Architecture Definition

19

The relation between reference architectures and architectures is more complex. Part of the
outcome of a development process supported by a reference architecture are the architectural
specifications. For instance, a reference architecture such as CIMOSA contains a modelling
framework and modelling methodology, with which designers can specify architectures.
However, reference architectures aim to provide more support in a system development
trajectory than just during architectural design activities; they attempt to cover the full
development cycle. In Chapter 5, the role of reference architectures in a system development
process is illustrated.

Reference architectures might be accompanied by reference models. Reference architectures
offer the frameworks with which reference models can be made. The provision of reference
models is one way in which reference architectures support designers.

2.4.2 Architectures, systems, models, structures, and infrastructures

Architectures are frequently confused with other, related concepts. This subsection tries to
lighten the gloom a bit by confronting architectures with these related concepts.

Architectures, systems, and models
The relationships between architectures, systems, and models is as follows. The architecture is
merely one of the properties of a specific system. However, it is not a concrete, physical
property; it is a conceptual one. It can be seen as an abstract ‘view’ of a real (concrete)
system. Just like other properties of a system, the architecture can be modelled; it is visualised
by means of a symbolic model, which may be called a representational model (Van Waes,
1991). Figure 2-3 shows the relationships between systems, architectures, and models.
Architecting comprises an abstraction from the real system (the CIM system, its control
system, the physical means used to realise the control system, and so on) to yield an abstract
system (the abstract view of the real system a designer has in mind), and formalising this
abstract view to a symbolic system (the symbolic model, for instance consisting of a diagram
with text).

Architecture

abstracts
from

SystemModel

represented
by

represents

Figure 2-3 Relationships between system, architecture, and model

Adapted from Van Waes (1991)

The distinction between an architecture as an abstract view and a symbolic model as a
representation of the architecture is not commonly made; models are called architectures.

Chapter 2

20

After all, whereas the architecture is an abstract product of architecting, the models are
concrete results. It is only natural to mistake a concrete product for an abstract one.*

Architectures and structures
A system architecture encompasses more than a system’s structure. In many papers,
the structure of a system is put on a par with the system architecture. However, an architecture
is not identical to a structure. The specification of system components and their relations is
only part of architecting, though one of the most important parts.

Besides the static structure of a system, architecting also deals with the dynamic processes of
the system. The architect specifies how a particular system behaves in operation, e.g. a shop
floor control architect specifies the protocols by means of which controllers coordinate their
actions. For instance, the control structure as part of an architecture based on holonic control
concepts enables both hierarchical and heterarchical behaviour, depending on the situation.
Note that this interpretation of the dynamic aspect of architectures is a difference with the
classical building science explanation. Although a building does enable some sort of
dynamics, it is static in nature. The behavioural aspect is more relevant for some disciplines
(shop floor control, software engineering) than for others (building science, product design).

Architectures and infrastructures
The relation between an architecture and an (information technology) infrastructure is perhaps
best explained by means of an example. The architecture of a shop floor control system is the
manner in which the controllers are organised and integrated. These controllers might need
additional functionality to function properly, such as computing and communication
functionality offered by computer and network technology. The components that provide
necessary additional technology are considered as parts of an infrastructure. Clearly, an
infrastructure has an architecture as well. This dissertation adopts the interpretation of
Timmermans (1993a), who defines infrastructure as hardware and software (computers,
networks, operating systems, applications, and so on) that is shared between different
autonomous units. Other authors, such as Renkema (1996), take a broader perspective on
infrastructures.

Van den Berg (1998) claims that ‘an infrastructure is in the first place a provision
(if positively interpreted) and a restriction (if interpreted negatively)’. Indeed, both
architectures and infrastructures establish the possibilities and limitations of changing systems
in the future. However, both have a different effect on the future flexibility of systems.
In the example above, the system architecture determines the future flexibility of the shop
floor control system by the structure and protocols that integrate the various controllers.
The infrastructure determines the future flexibility of the shop floor control system by its
ability to offer the enabling functionality when the system evolves. An architecture sets the
flexibility from the inside of a system, an infrastructure from the outside.

* It could be argued that the term ‘reference model’ is incorrect. A better option might be to use the words

‘reference architecture’ and ‘meta-architecture’ instead of ‘reference model’ and ‘reference architecture’
respectively. However, this dissertation borrows the terms from literature.

Architecture Definition

21

2.4.3 Objectives and roles

Architectures and architectural models serve several objectives and/or roles along different
points in a system life cycle. They are as follows.

To manage complexity
An architectural model allows one to present the essence of a complex system in a (simple)
model. An architectural model supports the ability to comprehend complex systems;
it presents them at a level of abstraction at which a system’s high-level design can be
understood. It supports the analysis of relationships as an aid to understand complexities in a
design environment. In particular, an architecture is needed in complex, dynamic
environments (Van Waes, 1991). Zachman states that the increased scope of design and levels
of complexity of system implementations are forcing the use of architectural models for
defining and controlling the interfaces and the integration of the system components
(Zachman, 1987). Moreover, at its best, architectural descriptions expose the high-level
constraints on system design, as well as the rationale for making specific architectural choices
(Garlan and Perry, 1995).

Architectural models abstract away from details instead of from the essential complexity.
Brooks claims that ‘the complexity of software is an essential property, not an accidental one’
(Brooks, 1995; p. 183). Descriptions of a software entity that abstract away its complexity
often abstract away its essence.

To serve as a set of specifications
An architecture may be seen as a result of the design process. It is laid down in specifications,
which are derived from the requirements, and from which the desired system can be built.
Specifying an architecture is concerned with the specification of components, their
interactions, and the constraints on these entities and their interactions. These unambiguous
specifications define the scope of future development activities, and serve as a basis for
further design and implementation activities. Modular components can be developed
independently, provided that their interfaces are well-defined. By defining modular
components, the total system design is split into a number of smaller subdesigns, making the
complexity of the total system more manageable. As such, the architecture enables a top-down
development approach, in which each subsystem can be implemented from the bottom up and
independent of other subsystems with assurance that the various subsystems can be integrated
with each other. Finally, the distinction in components may serve as the managerial basis for
cost estimation and project management.

Means of communication
Furthermore, an architectural model may play the role of a means of communication during a
system (re-)design process. The architect can use it to visualise various aspects of the system
to be designed, thus providing the various parties concerned with a basis for discussion and
decision-making. By producing order in chaos, architectural models help each party to clarify
its perception of the problem. Visualisation and explanation of the relevant aspects of the
problem area, and the possible relationships between them, supports the various actors to

Chapter 2

22

focus their attention on the essential elements, thus providing a basis for discussion of the
problems.

To indicate the most vital system elements
Furthermore, the architecture determines the nature and quality of a system. As such,
an architectural model indicates the invariant or most vital system elements, that must be
treated carefully during system re-design. Systems evolve and are adapted to new uses, just as
buildings change over time and are adapted to new uses. One frequently accompanying
property of evolution is an increasing brittleness of the system, caused by violations of the
architecture – for example, removing load-bearing walls often ends with disastrous results.
Violations of the architecture frequently lead to an increase in problems in the system and
contribute to an increasing resistance to change, or at least to changing gracefully (Perry and
Wolf, 1992). By explicitly indicating the ‘load-bearing walls’ of a system, system maintainers
can better understand the ramifications of changes, and thereby more accurately estimate costs
of modifications. The architecture should mark the system’s invariant load-bearing walls,
mostly interfaces and constraints.

Means to reduce the impact of changes
Another role of an architecture involves its contribution to the effective re-design of a system.
The architecture should reduce the impact of changes to the lower component levels, and to as
few components as possible. Both for shop floor control systems and for products, it is
advantageous to use as many parts of the existing system or product design as possible.
In a re-engineering trajectory, an architectural model of the system allows one to pinpoint and
discuss the areas requiring major change, and to integrate the new specifications into the
existing model. Furthermore, architectural change is not so much determined by the system
components, as well by the interfaces between these components; the ease with which
components can be modified, replaced, or with which the system can be extended by new
components is dependent on the extent to which the interfaces of the new components match
those of the old ones. In addition, the use of standards in the architectural specifications
positively affects system modifiability and extendibility.

Means to gain strategic benefits
Finally, a (product) architecture may have certain strategic importance for a company.
The development of a new product brings together a wide range of technologies. Only a few
of these technologies contribute to ultimate competitive advantage. Successful companies do
not compete on (and even give away) the enabling technologies on which their core utility is
based. By the architectural design of functions that can be filled in by cheap, standard
components, companies profit from the strong competition in the markets for these
components, and are free to focus on their true sources of competitive value. In addition,
a company might extend the value of its product by publishing the product’s interfaces to the
outside world. Other enterprises might use this product as an indispensable part for their own
products. By controlling the interfaces of an enabling product, a company might direct itself
in a profitable monopoly position (Rappaport and Halevi, 1991; Morris and Ferguson, 1993).

Architecture Definition

23

2.5 Architecting

Rechtin (1991) gives a good impression of the process of architecting. This section is adapted
from his standard work on systems architecting.

To understand the role of an architect, it is beneficial to compare architecting with
engineering. Distinguishing between architecting and engineering is important if the
architecting function is to be effective. Two distinctions have to be made: function versus
form, and complexity versus specificity.

Engineering is form-based and system architecting is function-based. Many disciplines come
together in the practice of design, resulting in technical, judgmental, and professional
conflicts. In the past, the resolution of these conflicts became a task for the architect;
he became an integrator, making all pieces fit. Good architectures were generally derived
from compatible pieces, i.e. they were system engineered. Later, architects began to
appreciate that (still) better architectures might be based on complete submission of the
individual parts to the purpose of the whole. Architectures began to be designed from the top
down, driven by the function, instead of the form, of the system.

An architect reduces complexity, uncertainty, and ambiguity to workable concepts, whereas
the engineer makes feasible concepts work. Complex systems contain dozens if not hundreds
of possible variables and hundreds of interactions among these variables. The architect’s
problem is to reduce this complexity to a manageable degree, specifically to the point where
the techniques of engineering analysis can be brought to bear. The ‘nice-to-have’ functions
have to be separated from the essential ones; the load-bearing walls have to be distinguished
from the decorations. The result has to be one or more well-specified possible systems. At this
point, efficient engineering can begin.

An essential part of architecting with respect to complexity is structuring, which can mean
bringing form to function, bringing order out of apparent chaos, or converting the partially
formed ideas of a client into a workable conceptual model. The key techniques are balancing
the needs, fitting the interfaces, and compromising among the extremes. The challenge is the
control, if not the reduction, of complexity and uncertainty (Rechtin, 1991; 1992). Figure 2-4
displays Rechtin’s view on architecting as a compromise of extremes. This is represented by
pairs of competing factors pulling in opposite directions, which are held together by fit,
balance, and compromise. Similarly, Bemelmans argues that ‘the art and science of
development is to find a balance between functional and performance requirements on the one
hand, and acceptable costs, effort, and duration on the other hand’ (Bemelmans, 1990; p. 9)

Another way of distinguishing architecting from engineering is by the tasks typically
performed. Architecting is working for a client and with a builder, helping determine the
preferred architecture, relative requirement priorities, and acceptable performance, cost, and
schedule. Toward the end of the project, architecting is also certifying completion and
satisfactory operation of the system. The systems architect is not just concerned with the
system architecture, but also with the process by which the system will be built. The architect

Chapter 2

24

tends to concentrate on concepts, synthesis, top-level specifications, technical as well as non-
technical interfaces, and mission success.

The architect’s responsibility goes beyond the conceptual integrity of the systems as seen by
the user, to the conceptual integrity of the system as seen by the builder and other
stakeholders. The architect is responsible for both what the system does as well as how the
system does it. But that responsibility extends, on both counts, only as far as is needed to
develop a satisfactory and feasible system concept. After all, the sum of both is nearly the
whole system, and the architect’s role must be limited if an individual or small team is to
carry it out. (Rechtin and Maier, 1997).

Engineering is working with an architect and for a builder, applying the best engineering
practices to assure compliance at the system level with the designated architecture and with
applicable specifications, standards, and contracts. Toward the end of the project, engineering
is certifying such compliance. The engineer tends to concentrate on defined subsystem
interfaces, analysis, and performance to specification. Because the success of a development
project depends both on a realisable architecture and on successful implementation of it,
the architect and the engineer necessarily share responsibility for each other’s success.

P
e
rf

o
rm

a
n
ce

F
le

xi
b
le

 m
a
n
u
fa

ct
u
re

S
tr

ic
t p

ro
ce

ss
 c

on
tr

ol

M
an

ag
e

co
m

pl
ex

ity

Pro
ce

ss
 re

vo
lu

tio
n

Tight in
tegratio

n

Product stability

Risk of overdesign

Bottom-up implementation
Familiar technology

SimplicityAffordability

S
trict acceptance criteria

E
nvironm

ental im
peratives

F
o
rm

C
o
st &

 sch
e
d
u
le

S
p
e
cia

lise
d
 m

a
n
u
fa

ctu
rin

g
Low

 level decisions

A
void com

plexity

Process characterisation

Minimal interfacing

Continuous evolution

Conservative design

Top-down plan
New technology Complexity Hum

an
 n

ee
ds

P
er

fo
rm

an
ce

 s
pe

cs

S
ys

te
m

 r
eq

ui
re

m
en

ts

F
u
n
ct

io
n

Fit
Balance

Compromise

Figure 2-4 The tensions in systems architecting

Based on Rechtin (1991)

Architecture Definition

25

Figure 2-5 shows where and to what degree architecting plays a role in a system development
project. The widths of the lines indicate the strength of the connection. Figure 2-5 does not
show the relation of an architect during adaptation phases.

Requirements
Definition

Architectural Design
Model Building

System Concept
Interface Description

Detailed Design
Engineering

Implementation
Development
Procurement

Certification
Testing

Acceptance

Operation
Diagnosis
Evaluation

Adaptation

THE
ARCHITECT

Figure 2-5 The role of the architect

Adapted from Rechtin (1991)

2.6 Structure, behaviour, and non-functional aspects

Besides the structure of a system, an architectural model should specify the system’s
behaviour and various non-functional aspects. In practice, emphasis is put on the structure of a
system. Rechtin (1991), for example, says that ‘the essence of architecting is structuring’. For
information technology (IT) architectures, however, Hammer notices that ‘present IT
architectures concentrate too much on the structure of the system and do not adequately deal
with the dynamic aspects. The emphasis is on modularisation of the system and the interfaces
but not on its behaviour. Even if the various interaction channels are modelled, there are no
restrictions of the actual interaction patterns that can occur at runtime’ (Hammer, 1997;
p. 304).

As a counter-example, in electrical engineering it is common practice to specify the static
relationships and dynamic behaviour of (real-time) systems. The structure of a system is
outlined by a hierarchy of transformation diagrams. The commonly used Ward/Mellor method
prescribes the use of data flows, functions (i.e. data transformations) and stores to construct
transformation diagrams. A dynamic interpretation can be given to the transformation

Chapter 2

26

diagrams by modelling the communication between parallel processes. Ward and Mellor
(1985) make a distinction between three perspectives:
• the static view

In the static view, the focus is on the structure of the data and control transformations,
the data and control flows, and the stores. The static view gives an impression of the
relations between the various parts of the model.

• the dynamic view
The dynamic view adds the time element to the model. Examples are continuous and
discrete data flows, with which time aspects are modelled.

• the event view
In the event view, the occurrence of certain events is added to the model. Events do not
carry any information and are modelled by control flows. They trigger processes and
thereby indicate the synchronisation moments.

The behaviour of a system can be defined in terms of concurrent processes, including the
restrictions on the possible execution paths. The latter is usually formalised in a
communication protocol. Concurrent processes are executed at the same time, and have
mutual interactions, for instance by means of data exchange. In order to collaborate, processes
have to synchronise their mutual actions, or provisions have to be made for asynchronous
communication.

During architecting, one has to be aware of the problems that connecting parallel processes
and synchronisation might create, such as deadlock, individual starvation, and blocking.
These problems might need a considerable effort to anticipate and prevent. A static structure
which appears quite simple, might exhibit a rather complex behaviour when it is put into
operation. When a subsystem is put in a larger whole, it has to cooperate with other
subsystems in a transparent way. Interdependencies are created between subsystems, since the
subsystems expect a certain behaviour from each other. These interdependencies stem from
the application domain and the architectural choices made.

In order to verify system behaviour, some tools have become available with which the
behaviour of the specified system can be simulated. Simulation tools verify whether system
elements will work together as a system. Well-known classes of these tools are based on
concurrent programming formalisms (see e.g. (Rooda, 1996)) and Petri nets (see e.g.
(Van Hee, 1993; Van der Aalst, 1994)). In software engineering, various tools have been
developed to explicitly model system behaviour according to the diagrams proposed by the
Unified Modelling Language, such as sequence diagrams, collaboration diagrams, and state
diagrams (Rational, 1997). With these tools, one is able to detect system consistency errors
such as deadlocks before the actual system is constructed.

Aside from structure and behaviour, various non-functional aspects should be specified.
Again, Hammer observes that ‘there is not enough attention for the non-functional aspects of
an IT architecture like performance/timeliness, dependability (reliability, availability, safety,
security, robustness) and reusability. Since we also miss adequate development methodologies
that support the design of these system dimensions during all development phases, these

Architecture Definition

27

considerations enter the construction of an IT system often only during the implementation
phase’ (Hammer, 1997; p. 304). An architect has to explicitly consider implementation,
requirements, and long-term client needs in parallel. A requirements-centred approach
assumes that a complete capture of documentable requirements can be transformed into a
satisfactory design. However, requirements-modelling methods generally fail to capture
performance requirements and ill-structured requirements such as modifiability, flexibility,
and availability. Even where these non-functional requirements are captured, they cannot be
transformed into an implementation in an even semi-automated way (Rechtin and Maier,
1997).

This dissertation recognises Hammer’s observations that dynamic and non-functional aspects
do not get the attention they deserve. However, it is not the intention of this thesis to explicitly
remedy this shortcoming.

2.7 Summary

The system architecture is the manner in which the components of a specific system are
organised and integrated. Related terms such as reference model and reference architecture are
explained. The roles of architectures and architectural specifications involve the control of
complexity during development projects, and the provision of future system flexibility.

Architecting is the process which initially defines the system architecture, and which
preserves system integrity, i.e. compliance with the architecture, while the system is
developed or adapted. The architect is responsible for what the system does as well as how the
system does it. Rather than a one-time activity, architecting is often an ongoing process, since
many systems evolve after initial delivery.

29

3. Architecting Concepts

3.1 Introduction

The objective of this chapter is to provide the architecting concepts that play a key role in
designing system architectures. By means of these concepts, total system complexity is
reduced or at least made more manageable. Architects use these concepts when they specify
system architectures. Doing so, they aim for the guiding principles such as modularity in order
to design flexible systems. These principles are presented in Chapter 4.

Both the architecting concepts and the principles are illustrated by means of the Gordian
project. This action research project was carried out at Baan Company, and concerned the
decoupling of warehousing functionality into a separate package. The Gordian project is
introduced in the next section.

Section 3.3 presents the first architecting concept, namely domains. Development is
characterised by several domains that contribute simultaneously to the creation of a system.
A domain is defined as a product model together with all representations of this model.
The functional, technology, and physical domain are distinguished. Within each domain,
an architecture can be discerned. For architecting, the functional and technology architectures
are arguably most important.

In Section 3.4, (decomposition) hierarchy is introduced as an architecting concept.
Design problems can be decomposed in smaller parts that can be solved in series or in
parallel. If divisions are chosen properly, the resulting separate subsystems are more
manageable than the original system. By means of decomposition, hierarchical structures are
formed. It is shown that the opposite technique of decomposition, namely composition, is
applied in architecting as well.

Views are ‘windows’ through which some aspects of a system can be observed, and other,
extraneous detail is suppressed. Views divide systems into aspect systems; hierarchy divides
systems in subsystems. The set of views chosen to describe a system is variable and depends
on the purposes of the user. This architecting concept is described in Section 3.5.

Domains, decomposition hierarchy, and views are the three most important architecting
concepts in the context of this thesis. However, different authors recognise different concepts.
Three other architecting concepts are shortly mentioned in Section 3.6, namely variants,
status, and versions. It is argued that these concepts are of minor importance for shop floor
control architecting.

Chapter 3

30

3.2 The Gordian project

This chapter and the next chapter are illustrated by some of the results of an action research
project, the Gordian project.* The project was named after the famous story in Greek
mythology about Alexander the Great disentangling the Gordian knot. The project focused on
controlled growth and evolution along predictable lines. This desirable but difficult
characteristic stands as a challenge to many disciplines, such as information system
development and manufacturing engineering.

The project took place at the Baan Company, which rapidly became one of the largest
software developers in the Netherlands during the 1990’s. The Baan Company is a supplier of
a set of standard software packages for Enterprise Resource Planning (ERP). Previously, the
set was called ‘Triton’; in 1996, it was named after the company. The studied version,
Baan IV, consisted of eight packages (amongst others Distribution, Manufacturing, Service,
and Finance) and comprised more than 2.5 million lines of code.

During the fast growth of Triton, problems emerged concerning the integrations between its
various packages. After its introduction in 1990, Triton had grown fast for several years.
Pieces were built on top of each other, and sometimes relations were created in a rather
haphazard way. As a consequence, customers came across more problems, application
developers solved more bugs, at the same time introducing more and more problems
(bad fixes). Whenever functionality was added or modified in a particular package, this
change might create problems in other packages. The fact that changes propagated to other
packages indicated that the interfaces between packages could have been defined better.
Furthermore, whenever a new piece of functionality was introduced into Triton, congestions
occurred at subsequently development, documentation, and testing. Although exceptions had
occurred, all packages had to be ready and released at the same moment; spreading of work
load was not possible. Integrations were needed, but it was desirable to decouple the
packages, thereby decreasing the necessity to release packages at the same moment. In short,
due to tight integrations between packages, new functionality was hard to add, and application
development became a process that was difficult to control.

The management of Baan’s development organisation was aware of the problems described
above, and decided that packages had to be decoupled. The Gordian project was started as a
test case. It focused on the decoupling of warehousing functionality in the Baan packages.
Warehousing functionality expanded throughout the development of the Baan applications.
This growth has been realised by many developers who introduce and improve functionality
in a number of ways and places. The evolution has lead to redundancies and inconsistencies.
In Baan IV, every package contains its own warehousing functionality, such as
generate/update stock mutations, print documents, register material issues/receipts, and so on.
To overcome these problems, Baan Development decided to restructure warehousing
functionality in Baan V.

* Parts of the results of the Gordian project have been published in (Van den Berg and Zwegers, 1996; Van den

Berg and Zwegers, 1997; Van den Berg, 1998).

Architecting Concepts

31

The objective of the face-lift was to put the dispersed warehousing functionality into a
separate package called Warehousing. Furthermore, reading and updating of warehousing data
should be done by standard Warehousing software libraries. Material issue, receipt,
confirmation and approval should be centralised within Baan Warehousing. The same applied
to printing of documents that were previously printed in other packages, such as Goods
Received Notes, Storage Lists, and Bills of Lading.

This section introduces the Gordian project, which is used as an example to illustrate
architecting concepts and principles in this chapter and the next. The following section
presents the first architecting concept, namely domains.

3.3 Domains

Domains are probably the most effective concept to control the complexity faced by
architecting. The architecting concept of domains is best explained by Erens’ dissertation on
the development of product families (Erens, 1996). The applicability of the ideas developed
by Erens goes beyond the area of developing product families; Erens’ theories could be
treated as design theory in general. In this thesis, Erens’ functional, technology, and physical
domains are adopted as three levels of abstraction. Note that the functional domain is
sometimes called the logical, or conceptual domain, and that the technology domain is called
the technical domain by some authors. Before Erens’ ideas are outlined, earlier efforts by
Brandts (1993) and Van den Kroonenberg (1975a, b) are presented.

Previous work on domains was carried out by Brandts (1993) in his thesis on the design of
industrial systems. Brandts presents a design cube with three dimensions: attributes,
(sub)systems, and design abstraction (see Figure 3-1). The first two dimensions are borrowed
from system theory, which is Brandts’ starting point for the formulation of his ideas on the
design of industrial systems. Attributes are the means to distinguish between elements,
i.e. attributes are the qualities, or characteristics of elements. Subsystems and aspect systems
are defined as follows:

‘A subsystem of a system S is a subset of E (the set of elements of S) with all the
attributes of the elements in question. An aspect system of a system S is the set E with
only a subset of the original attributes’ (Van Aken, 1978; p. 29).

Design
Abstraction

(Sub-) systems
Attributes

Figure 3-1 Brandts’ design cube

Source: Brandts (1993)

Chapter 3

32

The third axis represents the level of design abstraction of the knowledge describing the
object during design. Brandts notices that the description of an object changes during the
design process; it is rough and abstract in the beginning and complete at the end. The object
design is transformed from abstract to concrete, and design can be seen as the process of
moving from the upper plane in the design cube to the lower plane (Brandts, 1993).

In his dissertation, Brandts proposes a division of the design process for industrial systems,
which is derived from Van den Kroonenberg’s work on product design (Van den
Kroonenberg, 1975a, b). This phasing distinguishes a function-definition phase, a working-
principle-definition phase, and a form-definition phase. Brandts explains the three phases for
product design:

‘In the first phase, the (abstract) functions of the product are determined. Next,
working principles to execute the functions designed in the first phase are designed.
By doing so, the structure of the product is determined. The eventual form is
determined in the third phase. There, details are designed and the object design is
concretised’ (Brandts, 1993; p. 84).

Similar phases as proposed for product design are used for manufacturing system design,
control system design, and the design of the financial system and its control system. Figure 3-
2 shows the relation between the design phases of the various industrial (sub-) systems. In the
first phase, objective definition, the objective of the industrial system is defined. Brandts
explains the design process of industrial systems:

‘The industrial system design process will go roughly from top to bottom and from left
to right in Figure 3-2. The top to bottom direction follows logically from the fact that
the design process goes from abstract to concrete. The left to right direction follows
from the fact that a subsystem A at the right of a subsystem B cannot be designed

processors

processes

means

processors

processes

means processors

processes

means

processors

processes

means

working
principle

function

means

product

manufacturing
system

control
system

financial
system

financial
control system

objective definition

tim
e

Figure 3-2 The relation between the design phases of industrial subsystems

Source: Brandts (1993)

Architecting Concepts

33

without information from B. A manufacturing system, for instance, cannot be designed
without knowledge of the products to be produced’ (Brandts, 1993; p. 97).

Almost similar to Brandts’ three design phases, Erens (1996) states that development is
characterised by several domains that contribute simultaneously to the creation of a system.
A domain is defined as a product model together with all representations of this model.
Figure 3-3 shows the three domains that suffice to capture product information in the
development process:
• functional domain,
• technology domain,
• physical domain.

Functional Domain Technology Domain Physical Domain

Specifications

Figure 3-3 Domains and product models

Source: Erens (1996)

The specifications (in the top of Figure 3-3) are the starting point for the development of a
system, or for changing part of the system. The initial specifications can not be attributed to
one particular domain as they provide an often informal description of the required function,
the technological constraints, and the physical constraints. An example of a frequently
occurring constraint is the requirement to (re)use parts of the existing infrastructure.

In the functional domain, models are made that capture the function of a system. The models
should result in a complete and unambiguous description of the system. Interdependencies
among functions should be clearly expressed. These dependencies concern interface
definitions that deal with interactions between functions (Erens, 1996).

In the technology domain, the technological solution of the design problem is specified.
It consists of a set of modules or solution principles, which together cover the required
function. Functions are mapped onto modules, thereby taking into account constraints on the
solution. If functions are interconnected to express functional dependencies, then modules
have interfaces for technological dependencies (Erens, 1996).

In the physical domain, the system is described in terms of physical assemblies. It is a
description of the physical implementation. This domain might differ from the technology
domain because of physical reasons, for example resulting from a specific assembly process.

Chapter 3

34

Such decisions are often the responsibility of engineering. Nevertheless, engineers should be
involved in both the functional specification and the technological realisation to guarantee the
creation of a suitable physical model (Erens, 1996). For the same reason, architects – who
primarily focus on the functional and technological domains – should have enough knowledge
of the physical domain to prevent them from designing unrealisable functional and
technological models. Note that the word ‘physical’ should not be taken too literally.
In software engineering, for example, there are no such things as ‘physical assemblies’. There,
the physical domain constitutes of descriptions of the source code.

The distinction of three domains is made, since each domain represents a typical design
problem. Each function can be realised in different technological solutions. The user is
generally interested in the function, not in the technological solution. An engineer is in
general interested most in the technological solution, just like a constructor focuses on the
physical realisation. Therefore, the domains must be separated in the design process, so that
the designer can discuss the function, without bothering about the solution, or so that the
solution can be changed without affecting the function.

Furthermore, the distinction of the three domains avoids a classical error: confusing
implementation dependence and level of detail. It is an infamous misunderstanding to relate a
low level in the design process to implementation details. This would imply that functions
could be decomposed in technology modules and that modules could be decomposed in
physical assemblies. It is possible, however, to specify in detail what a system should do (the
‘what’) without using implementation details (the ‘how’). In other words, details might relate
to the functionality of a system, its technology, or its physical realisation. In the functional
domain, it is not a matter of less detail but a matter of implementation independence and
indeed abstraction from some details, namely implementation details (Ward and Mellor, 1985;
Stevens et al., 1994). Therefore, rather than having one domain of functions, technology
modules, and physical assemblies (left-hand side of Figure 3-4), three distinct domains are
distinguished (right-hand side of Figure 3-4).

Functions
Technology

Modules
Physical

Assemblies

Functions

Technology
Modules

Physical
Assemblies

Figure 3-4 Implementation dependence and level of detail

Architecting Concepts

35

Gordian project
Preferably, packages should be decoupled in the functional, technology, and physical domain
in order to facilitate their evolution. All three domains should be taken into account.
The Gordian project, however, focused on decoupling in the functional and the technology
domain. Figure 3-5 shows decoupling in both domains. The left picture shows two modules in
the functional domain; the right picture is a possible representation of the same two modules
in the technology domain. A DLL (Dynamic Link Library) is a software library that consists
of functions that can be used by other software components.

module A
module B

Functional domain

scripts DLLs

function
calls

DLLs scripts

module Bmodule A

Technology domain

Figure 3-5 Decoupling in the functional and technology domain

Packages have to be decoupled in the technology domain in order to streamline integrations
and harmonise interfaces. If packages are decoupled in the physical domain, they can be put
on the market independently, and they can be shipped to customers separately. However, this
does not guarantee an easy modification of a package; integrations/entanglements in the
technology domain might hinder a smooth evolution. Entanglements such as packages writing
in tables of other packages are major obstacles for modification of these packages in the
future. Section 3.5 shows that basically three types of integrations are present in the
technology domain. They can be replaced by a special type of integration, which uses libraries
as shown by the DLLs in Figure 3-5. This latter type is ‘technically’ more flexible than the
other three, and effectively decouples packages in the technology domain.

Packages have to be decoupled in the functional domain in order to achieve minimal coupling
between packages. Decoupling in the technology domain can significantly improve system
maintenance, since it streamlines integrations between packages. However, undesired
entanglements in the functional domain might still be present. For instance, tables might be
updated from various packages, which threatens the integrity of the data. In the technology
domain, one determines how to update a table in a package from another package,
and decoupling this type of integration eases its modification in the future. In the functional
domain, the fact that a table in a package is updated from another package is determined.
One establishes what functionality belongs to what package in the functional domain.

Chapter 3

36

Obviously, the borders between packages have to be carefully set to avoid unnecessary
interfaces between packages.

3.4 Decomposition hierarchy

Besides the use of domains, one of the most common concepts in architecting is to decompose
a design problem into smaller parts that can be solved in series or in parallel. In some
application areas, effective decompositions are well-known and little search at that level needs
to be conducted as part of routine design activity (Erens, 1996). This process can be repeated
until the activities and their deliverables have become manageable, thereby structuring design
data in a hierarchical way. The triangles in the right part of Figure 3-4 show that each domain
has its own hierarchical structure. In practice, however, the hierarchical structure is frequently
confused with hierarchical control relations as in organisation diagrams. This is the difference
between ‘boxes-in-boxes’ (or ‘parts-within-parts’) and ‘bosses-above-bosses’. The right-hand
side of Figure 3-6 shows the same hierarchical structure as the left-hand side, but the latter
could be confused with a control structure.

S

S2S1 S3

S1bS1a S1c S3a S3b S1

S1a

S1b

S1c

S3

S3a

S3b

S2

S

Figure 3-6 Decomposition hierarchy

Adapted from (Van den Hamer and Lepoeter, 1996)

Brandts (1993) gives three reasons for dividing systems into subsystems, i.e. for introducing a
hierarchical (or nested) structure. The main reason is to avoid (or rather: manage) complexity.
Industrial systems are often too complex to design as one system. Therefore, these systems are
divided into separate subsystems, which are more manageable than the original system. The
second reason is the wish to build systems in a modular way. Modular systems have
advantages in terms of extensibility, adaptability, and reuse. If a subsystem has a well defined
functionality and interface, it can be reused in different parts of the design or across multiple
projects. Subsection 4.2 discusses the topic of modularity in more detail. The last reason to
divide the object design into separate subsystems is to develop these subsystems in parallel
and reduce the overall development time. Design processes can be completed more quickly if
separate subsystems are designed in parallel. Designers work in parallel on smaller object
designs, resulting in a design process evolving more rapidly. In addition to these three
advantages, Brandts mentions a disadvantage to divide systems into subsystems; subsystems
are all designed and optimised individually. The combination of the subsystems will not
necessarily produce a global optimum. To prevent sub-optimisation, a lot of communication is
necessary between designers, implying a non-divided design process.

Architecting Concepts

37

The complementary technique of decomposition is the composition of a set of subsystems into
one system. Architecting is basically a top-down activity; systems are decomposed into
subsystems. However, when the functional model is specified in detail and the functions are
allocated to technology modules, these modules need to be composed into a solution to the
original problem. According to Erens (1996), it is not always the case that the composition of
modules or assemblies meets the original function due to the complexity of the detailing and
allocation process.

Composition also occurs when the specifications prescribe the use of an existing technology,
for instance because of the reuse of existing technology components. Then, (the functions of)
these components have to be incorporated into the functional model, without violation of the
implementation-independent character of the model. Incorporation means that these functions
have to be composed into higher-level functions.

Finally, composition may be part of a ‘centre-out’ design approach. For example,
the Ward/Mellor method, which is often used in electrical engineering, prescribes to use a
preliminary transformation diagram with which to construct transformation diagrams at higher
and lower levels (Ward and Mellor, 1985). Transformations in the preliminary diagram are
grouped so that higher level transformations are specified. The higher level diagrams are used
to specify the lower level diagrams. When both higher and lower level diagrams have been
constructed, the preliminary diagram has become obsolete.

Basically, architecting is a process of concurrent refinement of the functional and technology
domains. Erens and Verhulst notice that ‘once functions are defined at a given level of the
functional hierarchy, they cannot be decomposed independently of the evolving hierarchies in
the technology domain and the physical domain. Consequently, an iterative scheme of
decomposition and allocation between the functional domain and technology domain must be
used to incorporate new information regarding functions and solution principles. This process
suggests a zigzag pattern’ (Erens and Verhulst, 1997; p. 171). Architecting is in principle
concurrent; both the functional and technology domains are refined simultaneously.
The possibilities to realise decomposed functions by means of technology modules is
constantly checked. Possibly, the structure of the technology modules can be used to make
decisions about arbitrary decomposition possibilities in the functional model.

Note that this observation is in line with Suh’s well-known Axiomatic Design theory
(Suh, 1990). According to this theory, design is the creation of synthesised solutions in the
form of products, processes, or systems that satisfy perceived needs through the mapping
between functional requirements in the functional domain and design parameters of the
physical domain. Design parameters have to be selected properly in order to satisfy functional
requirements. Both functional requirements and design parameters have hierarchies. In order
to decompose these hierarchies, a designer has to travel back and forth between the
functional domain and the physical domain in developing the functional requirement and
design parameter hierarchies. Note that Suh does not distinguish a technology domain. For an

Chapter 3

38

extensive discussion between Erens’ and Suh’s domains, the reader is referred to (Erens,
1996).

Gordian project
The Baan applications can be hierarchically decomposed in packages, modules, and business
objects. Figure 3-7 shows the structure of the Baan applications. A Baan package (e.g. Triton
Manufacturing) consists of modules (e.g. Item Control). At their turn, modules consist of
business objects such as Item Data. Finally, during run-time multiple sessions can be invoked
from a business object (e.g. Maintain Item Data). The Gordian project primarily focused on
packages, mostly because packages had to be introduced on the market independently of each
other. In other words, packages had to be decoupled from each other.

business object

module

package

consists of

consists of

Figure 3-7 Baan application structure

3.5 Views

Views are essentially ‘windows’ through which selective aspects of a system can be observed.
Whilst some particular aspects or attributes are emphasised, other extraneous detail is
suppressed to avoid obscuring the real issues at stake. The set of views chosen to describe a
system is variable. A good set of views should be complete and mostly orthogonal, i.e. the set
of views should cover all aspects of a system and each view should capture different pieces of
information. Not all views are equally important to system developmental success, nor will
the set be constant over time (Rechtin and Maier, 1997).

Whereas hierarchy divides systems in subsystems, views divide systems into aspect systems.
For example, one can take an interest in the data aspect of the functional domain and construct
a conceptual data model in which the various data entities and their relationships are shown.
The right-hand side of Figure 3-8 shows a view on a system (left-hand side of Figure 3-8)
with only a subset of the original relations.

Dolan et al. (1998) state that an architecture is an artefact to support various stakeholders in
managing complexity and coordinating their development activities. Stakeholders such as
customers, developers, maintainers, and users have certain roles to fulfil. Each stakeholder is
concerned with certain aspects, and has its own view on the system.

Regarding views, a position is taken different from Van den Hamer and Lepoeter’s (1996),
who consider the view concept to be inseparably linked to the development steps. They argue
that many products are too complex to represent in one single type of representation, and that,
therefore, multiple levels of abstraction or ‘views’ are needed. Design starts with high-level

Architecting Concepts

39

descriptions of systems, after which it proceeds to a lower level of abstraction with greater
detail. Complex design processes can be made more manageable by using multiple steps,
i.e. by introducing multiple design views.

However, this thesis asserts that views are not linked to development process steps or levels of
abstraction. A view is a window through which a particular aspect system is regarded. Linking
views to development steps or levels of abstraction is wrong by definition. On the other hand,
Van den Hamer and Lepoeter’s ‘view’ is more or less similar to the concept of a ‘domain’ as
advocated by Erens and this thesis. Also, Zachman’s ‘views’ (the rows in Table 2.I) are linked
to process steps, whereas his three perspectives (the columns in Table 2.I) are oriented to
different aspects of the object being described. These perspectives – data, processes, networks
– are similar to the definition of views in this dissertation.

Gordian project
Entanglements between Baan packages occur in a number of ways in the technology domain.
A view is taken where only entanglements between packages are considered. Three types of
integrations are distinguished: table-table integrations, software-table integrations, and
software-software integrations. These types of integrations are illustrated by Figure 3-9. In the
context of the Gordian project, the term ‘integration’ indicates a relation between subsystems
in the technology domain.

The first type of integration is the table-table integration. References are made from a table in
a certain package to a table in another package. Figure 3-9 illustrates an example of a
reference to an item record (table B) from a History by Item table in the Triton Process
package. This table contains an item field, ‘mitm’ that refers to the item table. By means of
this reference, the History by Item table has access to the fields in the Item table. This way,
the Database Management System (DBMS) enables the History by Item table to use the
description field of the Item table. The DBMS provides the required consistency and integrity
mechanisms. Normally, a user does not notice these references, but he might run into them
when he tries to delete a record of e.g. the main item table. Although sometimes items are not
used anymore, they can not be deleted since references are made to these items. In the

S1 S2

S4

S3S6

S5

S1 S2

S4

S3S6

S5

Figure 3-8 Views

Chapter 3

40

example of Figure 3-9, deletion of the parent (a record of the Item table) is not allowed if any
child (a record of the History by Item table) refers to the parent; the referential control delete
mode is ‘restricted’. Although the item might not be produced anymore, and history data are
obsolete, references still exist, and the item record has to be present.

Item table
- item
-

History
table
-
- mitm

reference

package A

B scriptA script C script

B table
-
-

B DLLA script

B table
-
-

function
calls

B BA C A B

table-table integration software-table integration software-software integration

Figure 3-9 Three types of integrations between packages

References between packages imply that a customer needs to purchase the package that
contains the tables that are referred to. Consider the previous example in relation to a
customer whose line of business is the process industry. If this customer has bought the Baan
Process package, he needs to purchase the ITM module (that contains the Item table) of the
discrete manufacturing oriented Baan Manufacturing package as well, in order to have item
control functionality. Clearly, this is an undesirable situation.

The second type of integration is the software-table integration. Scripts in a certain package
write (and read) in tables of another package. Figure 3-9 gives an example, in which records
of a table in package B are deleted, inserted, or updated by scripts and Dynamic Link
Libraries (DLLs) from other packages. DLLs and ‘includes’ are software libraries that consist
of functions that can be used by other software components. DLLs and includes are
dynamically and statically ‘linked’ respectively. The benefits and drawbacks of DLLs towards
includes are outside the scope of this thesis.

The third type of integration is the software-software integration. Scripts in a certain package
call functions of a DLL in another package. An example is depicted by Figure 3-9, where a
package A script calls a function of a DLL belonging to package B. Note that the particular
script needs to ‘know’ the DLL mentioned. The script needs information about the package
the DLL belongs to, the version of the package, and so on. In addition, the script must check
whether the DLL is present at all; it is possible that the user has not bought the specific
module. In this kind of structure, all information for a proper invocation of other functions
needs to be present in the script.

Architecting Concepts

41

In the Gordian project, only integrations between packages were considered. In this view,
three types of integration were distinguished. Chapter 4 shows that the three types of
integration are handled similarly.

3.6 Other concepts

The previous three sections present the three most important architecting concepts for
evolving one-of-a-kind systems, such as shop floor control systems. Note that these three
concepts can also be found in Brandts’ design cube (see Figure 3-1). In addition to these three
concepts, architects make use of a number of concepts that are known to handle design
complexity. In this section, variants, status, and versions are discussed. This section builds on
the work of various authors such as Van den Hamer and Lepoeter (1996), Erens (1996),
and Brooks (1995).

3.6.1 Variants

Companies offer a large variety from which customers can choose their ideal products.
Preferably, these products have many common modules to reduce the efforts in development
and increase the economy of scale in manufacturing. Still, specific modules must be
developed to create the necessary differentiation of products for individual customers and
market segments. So, different variants are to a large degree similar, but not identical.
This leads to the need to explicitly manage their commonality as well as their differences.
Since the variant concept is mainly applicable to products and less applicable to shop floor
control systems, this thesis does not cover this concept in detail. For more information about
variants, product families, and variety, the reader is referred to (Erens, 1996).

3.6.2 Status

The status concept corresponds to organisational procedures that are used to maximise the
likelihood that system design is satisfactory. Examples of such procedures are the introduction
of verification steps, validation steps, and approval procedures. When design information
passes such a step, this results in a change in status. The change in status does not correspond
to any change in the design information itself; it only represents the fact that the organisation
has decided that the information meets certain requirements. For instance, in software
development it is custom that systems go through alpha and beta testing. If these tests are
completed satisfactory, the product is released to the market (Van den Hamer and Lepoeter,
1996).

Brooks (1995) suggests some measures to control changes in software development.
Tight control is an effective technique during debugging software systems. First, a responsible
person must authorise component changes or substitution of one version for another. Then,
there must be controlled copies of the system: one locked-up copy of the latest versions, used
for component testing; one copy under test, with fixes being installed; and finally ‘playpen
copies’ where each man can work on his component, doing both fixes and extensions. In such
systems, the data in an engineer’s private workspace is not visible or accessible to others in

Chapter 3

42

the same project. When this data is promoted to a higher level, it becomes available for use by
other team members (Van den Hamer and Lepoeter, 1996).

3.6.3 Versions

Quantification of change is an essential technique to manage change (Brooks, 1995).
Designers modify systems in multiple steps, and each step results in a new version of the
design information. Systems are modified to add functionality, correct mistakes, or to
optimise the design. In all cases, a new version is created because one wants to modify the
design. Every product should have numbered versions, and each version must have its own
schedule and a freeze date, after which changes go into the next version. Philips, for example,
uses a two-level version identification scheme for change management of consolidated
product information: a 12-digit article code is updated whenever the ‘form, fit, or function’ of
the design changes, and a secondary identification (typically a date) is used for manufacturing
changes which do not normally affect the usage of the product (Van den Hamer and Lepoeter,
1996).

Versions and variants are often confused with each other. The words ‘version’ and ‘variant’
are used respectively when references are made to design evolution and to the development of
families of related products. Erens (1996) explains the essential characteristics of both:

‘A variant is a unique configuration of modules of a product family, while a version is
a semantically meaningful snapshot of a design object at a point in time. Both variants
and families can have versions.’ (Erens, 1996; p. 7)

3.7 Summary

Three architecting concepts are presented that enable architects to manage overall system
complexity. Architecting emerged as a response to complex problems, and concepts to
effectively manage complexity have been developed. Three such concepts are domains,
decomposition hierarchy, and views.

Three domains are distinguished: the functional, technology, and physical domain.
Each domain represents a typical design problem. Therefore, they must be separated, so that
designers may focus on one domain, without dealing with design problems in the other
domains. The functional and technology architectures are most important for architecting.

Hierarchical (or nested) systems are formed by means of decomposition. Systems can be
decomposed in smaller parts, which are more manageable than the original system. If the
decomposed subsystems are modular, they make the overall system easier to extend or
modify.

Views emphasise particular aspects of a system and hide the complexity of other aspects.
They allow an architect to focus on the issues that are important for his purposes. Views are
not linked to development steps or levels of abstraction.

43

4. Architecting Principles

4.1 Introduction

The previous chapter gives the architecting concepts that play a key role in managing the
complexities which are faced during system architecting. The objective of this chapter is to
present the architecting principles with which architects can design flexible systems.
These principles represent a vision about systems in which it is anticipated that systems will
be changed in the (near) future. The principles should lead to future flexibility by encouraging
an evolutionary development of systems. Just like the previous chapter, this chapter is
illustrated by some of the results of the Gordian project.

In Section 4.2, the first architecting principle is presented, namely modularisation or the
pursuit of modularity. Modularity is achieved when subsystems are moderately complex,
minimally coupled, and their internal cohesion is maximal. Furthermore, interfaces have to be
small and limited in number, they have to be precisely defined, and a clear distinction has to
be made between a module’s input interface and output interface.

Section 4.3 introduces the pursuit of structural stability as the second architecting principle.
Just like buildings, systems need to be structurally stable during their evolution, otherwise
they might collapse. A system has to be able to perform its functions, although it is not
‘finished’ yet. Some systems are foreseen to be changed in the future. The intermediate forms
have to be structurally stable, so that they do not depend on components to be added or
modified.

Layers might naturally result from a modular architecture. Layers reflect design decisions
where mapping tasks are decomposed in layers, and each layer performs a specific part of the
mapping. As such, a layer builds upon its underlying layer. Layers are discussed in
Section 4.4.

Besides facilitating change, an architect needs to express to what extent change is possible.
The consequences of architectural choices have to be made explicit. Section 4.5 focuses on the
indication of changeability.

A prerequisite to facilitate the change of a system is that the development organisation must
be prepared to change. Architects should be aware that violations of system architectures
might happen because of organisational characteristics. Section 4.6 discusses the relation
between organisations and the systems they develop.

4.2 Modularity

Hierarchical systems can often be approximated as nearly-decomposable. A distinction can be
made between the interactions among subsystems on the one hand, and the interactions within
subsystems on the other. Decomposable systems are systems where the interactions among

Chapter 4

44

individual subsystems can be neglected. In most systems, however, the individual subsystems
do have relations with each other, but the intercomponent linkages are generally (much)
weaker than intracomponent linkages. Systems are called nearly-decomposable if they can be
partitioned into subsystems with the property that the relations between the elements of each
subsystem are stronger than those between elements from different subsystems (Simon, 1981;
Van Aken, 1978).

Rather than the term ‘near-decomposability’, the term ‘modularity’ is used in this thesis.
The concept of modules has been applied in several disciplines. In the third century BC,
for example, the Chinese used modular components to produce the terracotta warriors that
guarded the tomb of Emperor Qin Shi Huang. Each individual warrior was composed of mass-
produced bodies, heads, hands, ears, and so on. No two of these figures was made the same,
since heads and armour details were sculpted individually to give every warrior its own
character (Mazzatenta, 1996). Many years later, the building architect Le Corbusier
introduced the term in the context of a system of standard measures for buildings to achieve
harmonious designs. Later on, building architects used the term for exchangeable standard
building blocks that enabled them to construct flexible houses.

The concept of modules played an important role in the development of structured
programming. One of the first proposals to apply modules to master the increasing complexity
of information systems stems from Parnas (1972) who introduces ‘information hiding’ as the
criterion that ‘every module is characterised by the design decisions it hides for other
modules.’ More detailed criteria are proposed by Yourdon and Constantine (1979) and Pels
(1988), who refine the concept of information hiding into three criteria:
• moderate complexity: the structure of a module should be understandable by its designer

and its users;
• minimal coupling: the amount of specifications that is known by other modules should be

minimised (information hiding);
• maximum cohesion: the complexity of a module should be large compared to the

complexity of its view on its environment.

Here, modularisation is the strive to design subsystems with moderate complexity, minimal
coupling, and maximum cohesion. Hence, modularity as the outcome of the modularisation
attempt is a predicate assigned to systems. A module is a subsystem with defined interfaces.
A module does not necessarily exhibit the three modularity characteristics.

In case a system has to be changed, its degree of modularity determines the impact of these
changes; depending on the modularity of the system, a change will propagate into other
subsystems. The adaptability and changeability of a system is determined by the degree of
modularity (Brooks, 1995). For example, a control protocol, i.e. the way a control system
performs its tasks, settles largely the interdependencies between the various subsystems.
Obviously, the interdependencies of the subsystem are directly related to system modularity.
In other words, controlling the amount and form of communication between modules is a
fundamental step in achieving modular architectures (Meyer, 1988).

Architecting Principles

45

For software engineering, Meyer (1988) makes a link between the modular design in the
functional, technology, and physical domain. His ‘linguistic modular units’ principle removes
any hope that good modular functional architectures may be implemented without the
appropriate technology support, i.e. solution concepts offered by the programming language.
Sometimes, developers believe that they can apply advanced modular concepts as a guide to
functional design but still use whatever language is imposed by the environment. They think
they are able to design in an Ada-like (or object-oriented) style, and then implement in C or
Pascal (or any other not object-oriented language). Meyer claims that this approach cannot
work for significant developments; the gap between ideas and their realisation is too broad, as
becomes painfully clear when the system evolves.

Besides the requirements that interfaces have to be small and limited in number, interfaces
have to be explicit. Any outside connection should be clearly marked, so that other elements
that might be impacted by a change should be obvious. The importance of an explicit
definition of interfaces is shown in the modular design of a conceptual schema of a database.
The principles of modular design with respect to data structures in information systems have
been formalised in (Pels, 1988; Pels and Wortmann, 1990). This approach has been applied to
the design of shop floor management systems by Timmermans (1993a). These studies show
that the essential properties of a module are a precise definition of its interfaces and a clear
distinction between the input interface and the output interface. By explicitly defining
interfaces, modules identify precisely the impact of changes: inside or outside the modules.

Gordian project
Before the modularity of packages is treated, decoupling integrations in the technology
domain is discussed. A table-table integration is taken as an example. Figure 4-1 (top left)
shows a table in a package B, which contains two fields: a key field called ‘code’ and an
accompanying description ‘desc’. A package A table refers to the ‘code’ field of the
package B table. The referential control delete and update modes for the ‘code’ attribute of
package B are ‘restricted’.

In the original situation, the DBMS prevents situations where deletions and updates of the
‘code’ attribute in the package B table would lead to invalid values of the ‘code’ attribute in
the package A table; the DBMS prevents referential integrity problems. However, this
coupling between two tables (via the DBMS) implies that a customer who bought package A
needs to purchase package B as well. To remedy this problem, Baan decided to decouple its
packages.

The reference could be resolved in two ways that are indicated by Figure 4-1. In the first
solution (Figure 4-1, bottom left), the reference is deleted, and a field that gives the actual
description is inserted instead of a field ‘code’ that indicates the code for the description.
However, this option is not preferred, since consistency between records with the same
description is not assured. Records that need the same description, might have differences in
the description field.

Chapter 4

46

A script A DLL

function
calls

B DLL B scriptB table
- code
- desc

reference

package B

A table
-
- code
-

package A

A B

B table
- code
- desc

A table
-
- code
-

A table
-
- desc
-

B table
- code
- desc

information
flow

Figure 4-1 Two possible decoupling options

Another option (Figure 4-1, right) is to decouple the two tables – and thus the two packages –
by using DLLs. In the current situation, deletion of the parent (a table B record) is prohibited
if any child (any table A record) refers to the parent; when the parent is deleted, all references
must be checked. A software solution that takes this into account would use two DLLs: one
related to package A and serving as the input interface for package B, and another one that is
related to package B and serves as the input interface for package A. The latter DLL should
provide functions that return the description for a specific code. The first DLL should provide
functions that check whether records are present with a specific code. These functions should
be invoked when the user deletes a code.

A double DLL has certain advantages over a single DLL. Note that a double DLL is used,
where a single call from the A script to the B DLL (without using the A DLL) would suffice
(see Figure 4-1). In that case, the A script would have information about the DLLs in other
packages. However, using a double DLL gives the advantage that the A script does not need
to know all DLLs in other packages; it only has information about its ‘accompanying’ DLL.
That DLL takes care of the proper invocation of other functions, whether they belong to
package A, another Baan Package, another Baan version, or even another vendor’s software.

In conclusion, the technical decoupling of a table-table integration is illustrated for a situation
where the referential integrity checking functionality of a DBMS is replaced by DLL
functions. This approach makes interfaces between packages more explicit. Take the DLL
belonging to package A in Figure 4-1 as an example. This DLL (like all DLLs) has a double
function:
• it contains information about other packages, so that scripts in package A can invoke

functions in other packages; these scripts do not need to know the details of the functions
in other packages; and,

• it contains functions with which other packages can access information from package A.

Architecting Principles

47

Accordingly, the A DLL provides both the outgoing and incoming interface of package A.

By the introduction of a solution for a situation in which package B is not necessarily
available, two packages can be fully decoupled concerning the table-table integrations.
This solution is presented in the next section.

The decoupling approach using a double DLL construction may be carried out for all three
types of integration as discerned in Section 3.5 (see Figure 3-9). Therefore, the other types of
integrations are not described in detail in this section. Consider the current integrations
between two packages as illustrated by Figure 4-2. The DLLs are put in the outer ring, since
they form the interface between packages. However, they write to the tables, just like the
scripts. At the moment, there are five kinds of integrations, among which a few subtypes of
the previously identified three main types (from top to bottom):
• an ‘include’ of package B is included in a script of package A. This is one type of

software-software integration.
• a script or ‘include’ of package A writes (and reads) directly into a table of package B.

This is a form of the software-table integration.
• a reference is made from a package A table to an attribute of a package B table.

This integration is called the table-table integration.
• an A script calls a DLL function of package B. This is another type of software-software

integration.
• a DLL of package A writes (and reads) directly into a table of package B. This is another

form of the software-table integration.

tables

applications

interface

scripts

DLLs

package A

package B

Figure 4-2 Current situation

After removing the five harmful types of integrations as depicted by Figure 4-2, a new,
improved situation occurs. Figure 4-3 shows two packages where all table-table, software-
table, and software-software integrations have been replaced by double DLL constructions.
Note that a double DLL creation is ‘technically’ also a kind of software-software integration,
but it is ‘technically’ more flexible than the two versions depicted in Figure 4-2. For instance,
compared to the mentioned integration types, a double DLL construction is easy to adapt and
extend since it makes the interfaces between packages (more) explicit.

Chapter 4

48

tables

applications

interface

scripts

DLLs

package A

package B

Figure 4-3 Ideal technical situation

The technical decoupling strategy as outlined above is not sufficient to realise modular
packages. Adequate technical decoupling can significantly improve system maintenance,
because it streamlines the integrations between the packages. However, it cannot prevent that
one table is updated from various packages, which threatens the integrity of the data. The fact
that packages are technically decoupled, does not mean that there are no functional
entanglements between packages.

Modularity is improved by decoupling packages in the functional domain. This is supported
by Pels’ theory on the modular design of the conceptual schema (Pels, 1988; Pels and
Wortmann, 1990). An important part of the entanglements between Baan packages lies in the
fact that tables in Baan IV can be updated from various places in the system. Pels’ theory
indicates how this can be improved. Each table should be linked to one own domain only;
update authority for a table should be located at only one place in the system. Pels provides a
sophisticated approach to assign update authority. He relies heavily on evaluating the
constraints which each module assumes about a specific table. Communication clashes result
if a module initiates an update that is in conflict with the actual value of the own data of
another module. What combinations of values are meaningful and therefore allowed in the
information base, is specified by means of constraints. Therefore, constraints play an
important role in the prevention of communication clashes.

Problems in finding the constraints complicate the application of Pels’ ideas. According to
Pels, modular decomposition makes it possible to develop and maintain an integrated
information system for arbitrary large organisations. However, the requirement to gather the
constraints that are applicable to the identified modules hinders the application of Pels’
theory. A crucial assumption is that all constraints can be deduced from the documentation
(e.g. functional design documents). In practice, this assumption does not hold and most
constraints can only be traced in the code. This limitation is of more importance to
applicability of Pels’ framework than the number of constraints in a large system such as Baan
IV. The mere number of the constraints will only make the application of Pels’ approach more
time consuming. As long as constraints are hidden, however, application is impossible. Until
documentation of constraints is significantly more developed, conceptual decoupling will be
very difficult.

Architecting Principles

49

4.3 Structural stability

The second architecting principle is structural stability. The need for stability is widely
acknowledged in engineering; unless an architect creates stable structures for the system,
it may collapse. Less well appreciated, perhaps, is the need for stability as the system is built
and evolves. Buildings, for instance, sometimes collapse during construction. Unfortunately,
this does not apply to buildings only, but to systems in general. Frequently, the underlying
reasons should be searched for in structural inadequacy until the system is fully assembled,
i.e. not every intermediate form was able to stand alone. Another reason is instability after
assembly, i.e. if the coupling between elements was wrong (Rechtin, 1991).

A system is structurally stable if it can perform its tasks with and without components that —
if present and configured — are ‘used’ by (some of) the system’s components. The system in
evolution can be seen as an intermediate form; the intermediate form is expected to be
changed. For example, it might be foreseen that in the future the system will be extended by
certain components. The system as an intermediate form is structurally stable if it can perform
its tasks with and without these components; the system does not depend upon them. If these
components are present, the system might be configured such that it does not use them. A
decomposable system, for instance, is structurally stable; in a decomposable system,
intermediate forms or collections of subsystems are naturally stable, since the subsystems do
not have relations with other subsystems. A nearly-decomposable system (a modular system)
might not be structurally stable.

The way to ensure at least some stability is to build systems only out of stable elements.
The architect works from the simplest configuration to the more complex. At each step,
he makes sure the system works before he proceeds (Brooks, 1995). Rechtin (1991) points out
that around 1990 the same approach was envisaged for the assembly in space of the US space
station Freedom; at the end of each assembly flight, a completely functional spacecraft should
remain. A similar property is demanded by customers who buy products with optional
extensions. With or without extension, the product should function well.

Simon pointed out the issue of evolution from intermediate forms by means of his famous
parable of the two watchmakers Hora and Tempus. A conclusion he draws from this parable is
that ‘the time required for the evolution of a complex form from simple elements depends
critically on the numbers and distribution of potential intermediate stable forms’ (Simon,
1981; p. 202). Simon’s final conclusion is that

‘complex systems will evolve from simple systems much more rapidly if there are
stable intermediate forms than if there are not. The resulting complex forms in the
former case will be hierarchic’ (Simon, 1981; p. 209).

However, Simon’s conclusion should not be misapplied as a rationale for bottom-up
evolution. Bottom-up evolution can have a serious drawback, since it may not be clear ahead
of time to what it will lead. Different choices of the first aggregations could result in totally
different systems. Although mankind itself proves that trial and error and survival of the fittest
results eventually in stable surviving systems, this approach is not suitable for system

Chapter 4

50

architects. After all, an architect pursues a given objective in a predictable time frame
(Rechtin, 1991).

Complex systems should evolve within an architecture. Simon’s statement was written within
the context of an architectural framework with top-down decomposition into stable elements.
Therefore, the original statement might be stated as:

‘Complex systems will develop and evolve within an overall architecture much more
rapidly if there are stable intermediate forms than if there are not’ (Rechtin, 1991;
p. 91).

The stable intermediate forms are not necessarily architecturally simple. One cannot build on
something that was not designed for it. The crucial parameter of intermediate forms is
stability, not necessarily simplicity.

It might be sensible to build in options during the architecting process. The system will
evolve, and new subsystems will be used in future versions. These versions might put
demands on components that differ from the requirements of older versions. If these new
demands can be reasonably foreseen during initial architecting, it might be justified to build in
the right measures to provide for the demands of future systems. Then, however, components
will be more complex, and a compromise has to be made between future demands and
component complexity.

In short, a functional (and a technology) architecture should incorporate stable, intermediate
components. The components should be enable to function stand-alone without collapsing.
This usually implies that these components are quite complex, since they offer the provisions
to build upon, and to evolve into more complex systems. The components have to fit within
the architecture of the overall system. Architecting is not only structuring (Rechtin, 1991), but
also ‘providing’; an architect has to provide adequate measures to provide for future flexibility
and evolution. ‘Predicting the future may be impossible, but ignoring it is irresponsible’
(Rechtin, 1991; p. 207).

Gordian project
In addition to the technical decoupling as described in Section 4.2, there should be a provision
that allows a user to invoke sessions depending on implemented packages. For example,
Figure 4-4 shows that the invocation by a DLL of package A depends on the implemented
package B. A parameter determines the functions to be invoked in which DLL, depending on
the implemented Triton and Baan versions.

A special solution is introduced for the situation that no package B is available (Figure 4-4,
bottom right). This so-called ‘minimal environment’ could for instance consist of some
primary tables. By means of those minimal environments, packages could be made
independent of each other; if a package B is not available, package A uses some of its own
functions and tables that represent the DLLs and tables of the non-existing package B.
In general, these functions and tables would not be used if package B were available.

Architecting Principles

51

Obviously, the minimal environment construction enables Baan to introduce new package
versions independently of each other. Minimal environments make stable, intermediate forms
out of packages. They are stable, because they are able to function on their own; the package
as a whole provides functionality without the need for other packages. They are intermediate,
because they are part of a larger whole, namely the set of Baan packages; a package is able to
cooperate with other packages, and together they provide more functionality. However,
the functional interfaces between a package and its neighbours should not change. This is hard
to realise in practice; new versions are introduced simply because modifications were needed
and these changes often affect the interfaces with other packages.

In the previous section and in this section, the two most important principles to construct
future-proof systems are described: modularity and structural stability. In the remaining
sections of this chapter, other measures are discussed. Layers, for example, are often a natural
consequence of modularity. The indication of changeability is merely a support during
evolution, not a guiding principle. Finally, the relation between an evolving system and its
development organisation is glanced at.

4.4 Layers

A modular architecture may naturally result in a layered architecture; modules are assigned to
specific layers. Layers reflect design decisions based on allowable relations and interfacing
constraints. The layers in an architecture represent allowable interfaces among modules.
Modules within a layer can communicate with each other. Modules in different layers can
communicate with each other only if their respective layers are adjacent (Soni et al., 1995).
A layer builds on its underlying layer, which at its turn builds on its underlying layer as well.
Consequently, a layer explicitly uses the functionality of its underlying layer, and implicitly
uses the functionality of all layers underneath its underlying layer.

Layers are used mainly to solve mapping problems. The mapping task is decomposed in
layers: each layer performs a specific part of the mapping. In this sense, the division in layers

A script

package A

Baan IVa
B table

A DLL

on case A_DLL.abcd
 ... BaaN IVa: B1_DLL
 ... BaaN IVb: B2_DLL
 ... not B: A2_DLL

Baan IVa
B1 DLL

Baan IVb
B2 DLL

A2 DLL

Baan IVb
B table

A table
(minimal
B table)

package B

Figure 4-4 Parameter dependent invocation of versions

Chapter 4

52

is part of an architecture. The advantage of layers is the flexibility: changes can be made
inside a layer without affecting other layers. A disadvantage of a layered architecture is its
rigidity: new layers are hard to be shoved in between existing layers, since this requires a
(major) change of interfaces. Examples of the application of layers in mappings are:
• the targets of an enterprise must be mapped on its physical processes; therefore, a

strategical, tactical, and operational layer are distinguished;
• data from a database must be mapped on computer screens; therefore, an internal,

conceptual, and external layer are distinguished.

A good example of a division in layers is the Open Systems Interconnection (OSI) reference
model for network architectures (see Figure 4-5). Messages are mapped from an application
via a communication medium to a partner application. Some of the design principles
underneath this reference model are that each layer should have a well-defined function, and
that the amount of information communicated via the interfaces should be as low as possible.
Every layer offers services to the next higher layer (Tanenbaum, 1988).

7 Application layer

4 Transportation layer

1 Physical layer

5 Session layer

6 Presentation layer

Applications

3 Network layer

2 Data link layer

7 Application layer

4 Transportation layer

5 Session layer

6 Presentation layer

Applications

3 Network layer

2 Data link layer

node A node B

Figure 4-5 OSI reference model for network architectures

Another example is a reference model of information systems for Manufacturing Resource
Planning (MRP II) (Bertrand et al., 1990b; Wortmann et al., 1997). Figure 4-6 shows that the
reference model constitutes of a number of concentric circles representing various system
layers. The innermost circle represents the system platform. The applications that support the
registration of state-independent data, such as product data and operation data, are found on
the second layer. The applications for the registration of state-dependent data are found on the
third layer which rests on top of the state-independent data. These data describe the state or
condition of materials and orders in the transformation process. Finally, the outermost layer is
comprised of workflow applications and systems that carry out decision processes with or
without human intervention.

Gordian project
Before the application of layers in the Baan applications can be explained, it is necessary to
describe the envisaged evolution of the Baan packages as foreseen in 1996. Within a few
years, the Triton/Baan product line will be succeeded by software resulting from the Nucleus
project. The Nucleus applications will be built from scratch, object-oriented, programmed in

Architecting Principles

53

an extension of Java, and they will apply some of the possibilities of Internet technology.
The question arises whether Baan packages or modules can be integrated with Nucleus
packages. As stated before, it is desirable to put Baan packages on the market independently
of each other. Evidently, the same holds for Nucleus packages. In the future, customers might
want to replace some of their existing Baan packages with newer Nucleus packages, thereby
gradually migrating from Baan to Nucleus. These Nucleus packages need to be integrated
with the existing Baan packages. In other words, Baan and Nucleus packages have to co-
operate with each other.

Although there are big differences in technology between the Baan and Nucleus packages,
these differences might be overcome. Baan packages are based on procedural programming
languages, whereas Nucleus packages will be object-oriented. However, their interoperability
might be assured by standard information buses and wrapping techniques, thereby treating the
Baan packages as legacy systems.

Common industrial practice to handle legacy systems is to isolate them. At a certain moment,
companies look upon the Baan IV packages as legacy systems. In order to allow the
cooperation of Baan and Nucleus packages, the Baan packages need to be isolated. Only the
isolated packages are allowed to access their own function calls, and only they are permitted
to send messages in their proprietary data formats. Then, the impact of these packages will be
minimised, and it will be technically possible to swap applications in and out based on
business needs. To accomplish this, the use of Baan’s proprietary technology and data formats
needs to be restricted by wrapping Baan applications and using standard interfaces.

RCC dataRCCP

pu
rch

a
se

Firm
 P

l. O
rd

e
rs

S
chedu

le
d
 R

e
ce

ip
ts

P
l. O

rd
e
rs

inventory
transactions

mgmt.
demand

Bills of Material

C
A
L

P
A
R

personnel,
facilities

tools, routings &
instructions

order
entry

MRP I

floor
transactions

shop-

main-
tenance

and personnel
availability

tooling

IOPCRP

MPS

DBMS and
TP moni-

toring

Figure 4-6 Reference model of MRP II systems

Source: Wortmann et al. (1997)

Chapter 4

54

Part of the solution is using messaging technologies or object request brokers, which mediate
between applications. At the end of the 1990’s, some CORBA compliant products became
available on the market. The Common Object Request Broker Architecture (CORBA) by the
Object Management Group (OMG), is an answer to the need for interoperability among the
rapidly proliferating number of hardware and software products. CORBA allows applications
to communicate with one another no matter where they are located.

The Object Request Broker (ORB) is the middleware that establishes the client-server
relationships between objects. Using an ORB, a client can transparently invoke a method on a
server object, which can be on the same machine or distributed across a network. The ORB
intercepts the call and is responsible for finding an object that can implement the request, pass
it the parameters, invoke its method, and return the results. The client does not have to be
aware of where the object is located, its programming language, its operating system, or any
other system aspects that are not part of an object’s interface. In doing so, the ORB provides
interoperability between applications on different machines in heterogeneous distributed
environments and seamlessly interconnects multiple object systems.

In addition to the ORB, the OMG specified a language that acts as the means by which a
particular object implementation tells its potential clients what operations are available and
how they should be invoked. The Interface Definition Language (IDL) defines the types of
objects by specifying their interfaces. An interface consists of a set of named operations and
the parameters to those operations. From the IDL definitions, it is possible to map CORBA
objects into particular programming languages or object systems.

Wrappers are software implementations that form a layer surrounding an application for the
purpose of presenting interface and functional behaviour required by other implementations.
The need for wrappers often arises when one migrates existing applications to embrace a new,
more advanced approach. This typically occurs when migration is preferred to wholesale
replacement for cost/benefit reasons (Sematech, 1996). Object wrappers allow companies to
transition to objects gradually from their existing base of legacy system software. The object
wrappers make the legacy code appear object-like to the object-oriented programs, tools, and
frameworks (Orfali et al., 1996).

Most probably, future Nucleus packages will reside on a CORBA compliant ORB. The legacy
Baan packages must reside on the ORB as well. In an ORB-based solution, the Baan packages
are modelled using the IDL. Then, ‘wrapper code’ is written that translates between the
standardised bus and the Baan interfaces (see Figure 4-7).

By means of a layered implementation of Baan packages, difficult technical entanglements of
the Baan packages with Nucleus products are avoided. All communication with Baan
packages use industry-standard formats and interfaces. Only Baan applications have direct
access to the Baan function calls or send messages in proprietary Baan formats. For the
scripts, the DLLs are the interface to other packages. For the wrapper code, the DLLs are the
interface to the functionality of the package in question. Scripts and wrapper code are
completely disconnected.

Architecting Principles

55

4.5 Indication of changeability

Whereas the previous principles aim to facilitate change, this principle states that it should be
indicated to what extent change is realisable. After all, every architecture has good features
and inherent drawbacks. It takes a lot of effort and objectivity to identify drawbacks inherent
to the architecture. If not considered in the beginning, the drawbacks can appear as unpleasant
surprises later on. If considered and retained, their consequences need to be understood and
accepted (Rechtin, 1991). Therefore, the reasons to make certain architectural choices and
their possible future consequences should be well documented. When the system has to be
changed, architectural choices will hinder or facilitate these changes. It might prove very
useful to have documents explaining past choices when one wants to change a system.

Although it is hard to foresee future changes, one can at least determine to what extent a
module is allowed to be changed. Some parts of a system should not be changed at all;
the unchangeable parts and the parts that are allowed to be modified should be documented.
For example, application frameworks specify the interfaces between components. Since these
frameworks act as reference models, architectures that aim to comply with them, are not
allowed to change these interfaces. Otherwise, they would not meet the reference model
anymore.

Other parts are allowed to be changed, but preferably should not. For instance, one should be
very reluctant to change the public interface of an essential module, such as the central
controller of a centralised control system; too many other modules would have to be
significantly changed as well. The interfaces of such a central module are the equivalents of
buildings’ load-bearing walls. Preferably, they should not be touched upon.

By measurement of the definitions of a module’s interfaces and interdependencies with other
modules, one obtains an indication of how easy (or hard) that module can be modified,

applications

Baan interface

scripts

DLLs

Baan package

Nucleus packages

Nucleus interface

wrapper code

Object Request Broker

IDL

Figure 4-7 Interoperability of Baan and Nucleus packages

Chapter 4

56

i.e. how many other modules have to be changed to what extent as well. Even counting the
number of modules that use the public interface will give a reasonable impression at least.

Gordian project
As stated in Section 3.2, the objective of the Gordian project was to examine the possibilities
and limitations to put the dispersed warehousing functionality into a separate package.
However, to realise this objective, an analysis of the entanglement of warehousing
functionality with the remainder of the Baan packages had to be performed.

In the entanglement analysis, a number of criteria were applied in accordance with the three
types of integrations between packages in 3.5. The first criterion was the number of references
from the (intended) Warehousing tables to other packages’ tables. Also, the reverse variable
was a valid criterion: the number of references from other packages’ tables to the warehousing
tables. Furthermore, another criterion was the number of write actions to warehousing tables
by other packages. Again, the reverse criterion was considered: the number of write actions by
warehousing tables to other packages’ tables. Finally, the last applied criteria were the number
of function calls from warehousing scripts to include or DLL functions of other packages and
v.v.

For example, the table-table integrations were analysed by means of the number of references
from other packages’ tables to the warehousing tables. It appeared that there were only
19 references from other packages’ tables to the warehousing tables. To facilitate comparison,
there were 343 references from warehousing tables to other tables of other packages. In other
words, the coupling between warehousing and other packages by means of references was
rather unilateral. This was partly caused by the fact that some warehousing modules had been
added recently; new functionality is more likely to use old functionality than vice versa.

4.6 Organisational embedding

This chapter is ended by a discussion on organisations and the systems they develop. This
section does not introduce an architecting principle, but indicates some organisational
prerequisites for system evolution.

It is generally accepted that the organisation of a development project has a large influence on
the outcome. For example, Erens states that ‘the development of a new product family with a
new architecture could require the restructuring of the existing organisation.’ (Erens, 1996;
p. 50). Brooks claims that

‘the organisation chart becomes intertwined with the interface specification, as
Conway’s Law predicts: “organisations which design systems are constrained to
produce systems which are copies of the communication structures of these
organisations (Conway, 1968; p. 31)” Conway goes on to point out that the
organisation chart will initially reflect the first system design, which is almost surely
not the right one. If the system design is to be free to change, the organisation must be
prepared to change’ (Brooks, 1995; p. 111).

Architecting Principles

57

This has led some authors to explicitly discuss ‘development architectures’. For software
architectures, for example, Kruchten (1995) writes about a development view that describes
software’s static organisation in its development environment. It focuses on the organisation
of the actual software modules. The software is packaged in small chunks – program libraries
or subsystems – that can be developed by one or more developers. Kruchten’s logical and
development view are very close, but address different concerns. He concludes that the
development view does not have a one-to-one correspondence with the logical view, i.e. the
functional architecture. The larger the project, the greater the distance between these views.
This is due to constraints such as team organisation, expected magnitude of code, degree of
expected reuse, release policy, and configuration management.

A good example of an enterprise with a strict organisation principle is Microsoft: around
1990, its development teams constituted of no more than 6-10 people in order to keep
communication within the team minimised. A consequence of this principle is that Microsoft
needed mechanisms to support communication among teams. Microsoft’s Object Linking and
Embedding (OLE) technology was primarily meant to support communication among its
development teams; later, it would be used to support communication among applications.

Brooks (1995) suggests to organise development teams like surgical teams. Instead of each
member cutting away on the problem, one does the cutting and the others support him in order
to enhance his effectiveness and productivity.

Nevertheless, Brooks acknowledges that the attitude of individual developers largely
determines the resulting quality of the system:

‘Each (developer) suboptimised his piece to meet his targets; few stopped to think
about the total effect on the customer. This breakdown in orientation and
communication is a major hazard for large projects. All during implementation, the
system architects must maintain continual vigilance to ensure continued system
integrity. Beyond this policing mechanism, however, lies the matter of attitude of the
implementers themselves. Fostering a total-system, user-oriented attitude may well be
the most important function of the programming manager’ (Brooks, 1995; p. 100).

In short, both during initial system development and system evolution, the architect guards the
integrity of the system. He should have the right of veto in case violations of the architecture
are about to take place. However, it is very hard to refrain individual developers from making
architectural violations. Therefore, management should try to provide developers with the
right attitude.

4.7 Summary

Architecting principles enable architects to design systems with the flexibility that is needed
for system evolution. An architect guards the integrity of the system during evolution.
The architect has to build in measures that provide for future flexibility and evolution.
Three principles that stimulate the design of such measures are the pursuit of modularity,
the pursuit of structural stability, and the formation of layers.

Chapter 4

58

Modularity is a characteristic of moderately complex subsystems with high internal cohesion,
and minimal coupling with other subsystems. The interface of modular components is small,
precisely defined, and a distinction is made between a module’s input and output interface.
This way, other components precisely know the possibilities and limitations of using the
functionality of a specific module. Furthermore, the interfaces of modular components restrict
the impact of changes to few modules; changes are not propagated to other components.

Structural stability is the characteristic of a system in evolution to function stand-alone
without collapsing, and with the ability to be part of a larger system or to be extended with
new components. This characteristic makes building blocks from complete ‘wholes’.
Structurally stable systems are easy to extend or modify, simply because they are made to be
extended or modified within an overall architecture.

Layers represent allowable interfaces between clusters of components, and are mainly used to
solve mapping problems. The mapping task is decomposed in layers, so that each layer
performs a specific part of the task. Layers offer the flexibility to make changes in a layer that
do not disrupt other layers, as long as its interfaces are not changed.

In addition to the three guiding principles stated above, there are some prerequisites for
system evolution. When architectural choices are accounted for, and their consequences for
system changeability are known, one knows the possibilities and limitations to change the
system. Unfortunately, the motivations for certain architectural choices are frequently
unknown, and their implications are not understood. In addition, companies must be aware of
the consequence of Conway’s Law; if they want the system they develop to change, the
organisation must be prepared to change.

59

5. Reference Architectures for Enterprise Integration

5.1 Introduction

The objective of this chapter is to investigate the practical value of enterprise reference
architectures concerning the integration of production systems.* For this, three enterprise
reference architectures have been studied, namely CIMOSA, GRAI/GIM, and PERA.
In addition, the CIMOSA reference architecture has been applied during an industrial
reorganisation project. In Section 5.2, the objectives and ideas behind enterprise reference
architectures are outlined. An essential point is that enterprise reference architectures aim to
support the whole life cycle of an enterprise integration project rather than just the
(architectural) design activities. The GERAM framework is used to indicate how the various
components in enterprise integration are related.

CIMOSA is the most well-known and most studied of the three enterprise reference
architectures. It is also the one with the most impact at the standardisation committees.
Furthermore, as explained in the introduction of this dissertation, CIMOSA is the enterprise
reference architecture that is most familiar to the author. CIMOSA is examined more closely
in order to obtain a good understanding of the concepts of reference architectures for
enterprise integration. Section 5.3 gives an explanation of CIMOSA’s view on enterprise
integration and how to accomplish it. Furthermore, the two most important elements of
CIMOSA, the modelling framework and the integrating infrastructure, are shortly discussed.

In Section 5.4, an application of CIMOSA during a reorganisation project at a machine tool
manufacturer is presented. The role of the CIMOSA modelling framework in the design of a
functional control architecture is illustrated. Due to immature specifications, the assistance of
the CIMOSA integrating infrastructure was rather limited.

Subsequently, the practical value of CIMOSA is discussed by means of the architecting
concepts and principles of Chapter 3 and 4 respectively. Although the discussion focuses on
CIMOSA, most statements apply to other enterprise reference architectures as well.
Section 5.5 shows that the realisation of CIMOSA’s true objective, namely a dynamic,
flexible, adaptive enterprise by execution of models, is far away.

Finally, Section 5.6 shows an alternative approach in the field of Enterprise Resource
Planning (ERP) that does realise some of the targets of enterprise integration thinking.
The Dynamic Enterprise Modeller of Baan Company allows users to make changes in models
that are directly reflected in changes in the underlying Baan ERP applications.

* Parts of this chapter have been published in (Zwegers and Gransier, 1995; Zwegers et al., 1995; Zwegers and

Pels, 1998).

Chapter 5

60

5.2 Enterprise reference architectures

Enterprise engineering is the discipline that identifies the need for change in enterprises and
carries out that change expediently and professionally. Enterprises face integration problems
due to necessary internal adaptations to cope with severe competition in the global
marketplace. In order to survive at the global market, efficient operation and innovative
management of change are essential. Enterprises need to evolve and be reactive so that change
and adaptation should be a natural dynamic state rather than something occasionally forced
onto enterprises and their manufacturing and information systems. Enterprise engineering
aims to cater for continuous evolution.

Several problems occur during the (re-)design of an integrated manufacturing system.
Since such a system cannot be bought off the shelf, each company has to develop its own.
Williams et al. (1994a) notice that designing an integrated manufacturing system meets with a
number of difficulties. Several viewpoints must be taken into account; not only the technical
point, but also the economic, social, and human points of view have to be thought about. By
definition, CIM systems are very complex, and the development of such systems is often quite
expensive and risky. Most systems are not designed from scratch; the existing systems have to
be considered in the development process, so that newly developed systems are integrated
with the old ones. In addition, Aguiar and Weston (1995) claim that the activities performed
during each phase of the life cycle are essentially derived from ad hoc procedures, so that the
quality of the resultant system will depend considerably upon the experience of the persons
involved. The problem is accentuated due to poor formalism with which those activities are
usually carried out. This often leads to solutions that do not adequately address business
requirements, low repeatability of successful results, lack of traceability of design decisions,
and so on.

The objective of enterprise reference architectures is to offer the framework that solves the
problems mentioned above, and with which an enterprise might develop its integrated
manufacturing system. The idea behind enterprise reference architectures is that a large part of
integration projects is in fact similar and common in every type of enterprise (Williams et al.,
1994a). This part could be standardised and utilised instead of developing it again from
scratch. Once standardised, generally accepted reference architectures can be supported by
tools, methodologies, and a range of compatible products in order to make the entire
integration project more time and cost efficient.

Wyns et al. (1996) state that the benefits of reference architectures lie among others in the
unified and unambiguous terminology, in the envisaged simplicity of designing specific
systems, and in the high quality by relying on proven concepts. In addition, a reference
architecture models the whole life span of an enterprise integration project. It indicates and
justifies how and at what stage in the development process external constraints and
engineering design decisions are introduced, thereby providing traceability between solution
independent requirements and final realisations. It provides the framework in which enterprise
integration methodologies work.

Reference Architectures for Enterprise Integration

61

The IFAC/IFIP Task Force on Architectures for Enterprise Integration has developed an
overall framework to organise existing enterprise integration knowledge. The proposed
framework was entitled GERAM — Generalised (or Generic) Enterprise Reference
Architecture and Methodology. GERAM is about those methods, models, and tools which are
needed to build and maintain an integrated enterprise. GERAM defines a tool-kit of concepts
for designing and maintaining enterprises for their entire life cycle. The scope of GERAM
encompasses all knowledge needed for enterprise engineering. Thus, GERAM provides a
generalised framework for describing the components needed in all types of enterprise
engineering processes. It gives a description of all elements recommended in enterprise
engineering and integration (IFAC/IFIP, 1997).

Figure 5-1 shows the components of the GERAM framework. The most important component
is the enterprise reference architecture, which defines enterprise related concepts
recommended for use in enterprise engineering projects. A reference architecture should point
toward purposeful organisation of enterprise concepts (Nell, 1996); it should identify and
structure concepts for enterprise integration, most notably life cycle activities and enterprise
modelling concepts such as views. GERAM distinguishes between the methodologies for
enterprise engineering and the modelling languages which are used by the methodologies to
describe and specify the structure, content, and behaviour of the enterprise. These languages
will enable the modelling of the human part in the enterprise operation as well as the part of
business processes and supporting technologies. The modelling process is supported by
guidelines (modelling methodologies), and the result of the process are enterprise models
which represent all or part of the enterprise operations, including its manufacturing or service

Enterprise
Reference

Architecture

employs
Enterprise

Engineering
Methodologies

utilise Modelling
Languages

employ Modelling
Methodologies

Modelling
Tools

implemented in

Reference
Models

Enterprise
Models

used to build

Enterprise
Modules

used to implement

Enterprise
Operational

Systems

Figure 5-1 Components of the GERAM framework

Adapted from (IFAC/IFIP, 1997)

Chapter 5

62

tasks, its organisation and management, and its control and information systems.
These models should be used to guide the implementation of the operational system of the
enterprise (IFAC/IFIP, 1997).

In the GERAM framework, the methodologies and the languages used for enterprise
modelling are supported by enterprise modelling tools. The modelling process is enhanced by
reference models which provide reusable models of human roles, processes, and technologies.
The operational use of enterprise models is supported by specific enterprise modules which
provide prefabricated products such as human skill profiles for specific professions, common
business procedures (for instance banking and tax rules), or IT infrastructure services
(IFAC/IFIP, 1997).

5.3 CIMOSA

5.3.1 Introduction

The goal of the ESPRIT project AMICE* was to develop an Open System Architecture for
CIM (CIMOSA). The project was started in the mid-1980’s and finished after some
extensions in the mid-1990’s. CIMOSA should facilitate continuous enterprise evolution and
make necessary operational improvements manageable. At the same time, CIMOSA should
provide a strategy to deal with legacy systems in order to protect current and planned
investment in an enterprise’s production process. CIMOSA aims to offer support for
enterprise integration, more precisely for ‘business integration’ and ‘application integration’
(AMICE, 1993a).

Business integration is concerned with the coordination of operational and control processes
in order to satisfy business objectives. In every enterprise, processes are present that provide
supervisory control of the operational processes and that coordinate the everyday execution of
activities. CIMOSA aims to integrate these processes by process oriented modelling of
enterprises. Modelling these processes and their interrelations can be used in decisions
regarding the requested level of business integration.

Application integration, which affects the control of applications, is concerned with the usage
of information technology to provide interoperation between manufacturing resources.
Cooperation between humans, machines, and software programs has to be established by the
supply of information through inter- and intra-system communication. CIMOSA tries to
support integration at this level by defining a sufficient infrastructure to permit the system-
wide access to all relevant information regardless of where the data reside.

Besides business and application integration, a third level of integration is discerned by the
AMICE project, namely physical system integration. This level is concerned with the
interconnection of physical systems and has led to a number of standards, such as OSI and
MAP. CIMOSA supports this type of integration by adherence to the standards.

* AMICE: European Computer Integrated Manufacturing Architecture (reverse acronym)

Reference Architectures for Enterprise Integration

63

5.3.2 CIMOSA approach

CIMOSA provides a framework that guides designers in the design and implementation of
CIM systems. In addition, it aims to guide vendors in the development of CIM system
components, so that these components can be added and removed at will. It does not provide a
standard architecture to be used by the whole manufacturing industry, but rather a reference
architecture with which a particular enterprise can derive particular architectures that fulfil its
needs. As such, CIMOSA adheres to a descriptive, rather than a prescriptive methodology
(AMICE, 1993a). Figure 5-2 gives an overview of the CIMOSA concepts.

Requirements, Design, Implementation, Release,
Maintenance

CIMOSA Reference
Architecture

Particular Enterprise
Model

Released
Implementation Model

Enterprise Engineering
Implementation Model

instantiate

Operation

CIMOSA System Life Cycle

Enterprise Engineering
Resources

Particular
Resources

TND 30 /42

Enterprise Engineering
Environment

release

release

Enterprise Operation
Resources

TND 30 /42

Enterprise Operation
Environment

CIMOSA Integrating Infrastructure

Product
Life Cycle

Requirements/
Marketing

Design/
Development

Release

Manufacturing

Distribution/
Sales

Usage

Maintenance

design

Figure 5-2 Overview of the CIMOSA concepts

Source: AMICE (1993a)

The CIMOSA modelling framework enables one to describe a particular enterprise.
Accompanying methods, called ‘model creation processes’, guide engineers in the creation
and maintenance process to obtain and maintain a consistent system description.
CIMOSA supports the explicit description of enterprise processes at different levels of
abstraction for strategic, tactical, and operational decision making. Simulation of alternatives
and evaluation of design decisions enhances the decision support. CIMOSA supports
incremental modelling of the enterprise rather than following an overall top-down approach.
In short, CIMOSA allows the end user to define, to prototype, to design, to implement, and to
execute its business processes according to his needs.

Chapter 5

64

CIMOSA facilitates a system life cycle which guides the user through model engineering and
model execution. The life cycle starts with the collection of business requirements in a
requirements definition model, and goes, through the translation of the requirements into a
system design model, to the description of the implemented system. These phases are
followed by a release of the model for operation and model execution to control and monitor
operations. However, various methodologies consisting of various system life cycle phases are
possible to instantiate particular models from the reference architecture. These methodologies
are supported by tool sets, which are defined by enterprise engineering implementation
models.

Model engineering and model execution are supported by the CIMOSA integrating
infrastructure. This infrastructure provides a set of generic services that process the released
implementation model, provide access to information, and connect to resources. In addition,
the integrating infrastructure hides the heterogeneity of the underlying manufacturing and
information technology.

In the next two subsections, the two most important parts of CIMOSA, namely the CIMOSA
modelling framework and the CIMOSA integrating infrastructure are explained in more
detail.

5.3.3 CIMOSA modelling framework

In Figure 5-3, the modelling framework is represented by the CIMOSA cube. The cube offers
the ability to model different aspects and views of an enterprise (AMICE, 1993a;
AMICE, 1993b). This three-dimensional framework has a dimension of genericity,
a dimension of enterprise models, and a dimension of views:

Organisation View
Resource View

Information View
Function View

Requirements
Definition

Design
Specification

Implementation
Description

Generic
Building
Blocks

Partial
Models

Particular
Model

Generation

Instantiation

Derivation

Figure 5-3 CIMOSA modelling framework

Reference Architectures for Enterprise Integration

65

• the dimension of genericity (and stepwise instantiation) is concerned with the degree of
particularisation. It goes from generic building blocks to their aggregation into a model of
a specific enterprise domain;

• the dimension of modelling (and stepwise derivation) provides the modelling support for
the system life cycle, starting from statements of requirements to a description of the
system implementation;

• the dimension of views (and stepwise generation) offers the possibility to work with sub-
models representing different aspects of the enterprise.

5.3.4 CIMOSA integrating infrastructure

The CIMOSA integrating infrastructure enables CIMOSA models to be executed; it allows
the control and monitoring of enterprise operations as described in the models. Furthermore, it
provides a unifying software platform to achieve integration of heterogeneous hardware and
software components of the CIM system. Applications use the generic services of the
integrating infrastructure, so that they need no longer contain the specifics of the data
processing environment. This provides increased portability and flexibility of the applications
and reduces the maintenance tasks considerably.

The integrating infrastructure is made of a number of system-wide, generic services.
The business services control the enterprise operations according to the model. Data access,
data integration, and data manipulation is provided by the information services.
The presentation services act as a standardised interface to humans, machines, and
applications. A product that is connected to the presentation services can be attached and
removed without changing any other part of the information technology environment.
Figure 5-4 displays the integrating infrastructure and the above-mentioned services.
Other services are the common services and the system management services, that provide for
system-wide data communication and facilities to set up, maintain, and monitor the
components of the integrating infrastructure.

Business
Services

Information
Services

Presentation
Services

MachinesHumans Applications

Figure 5-4 CIMOSA integrating infrastructure

Chapter 5

66

5.4 Application of CIMOSA at Traub

The ESPRIT project VOICE* validated the CIMOSA results by the development of
manufacturing control and monitoring solutions according to the CIMOSA concepts in three
types of industries. The VOICE project constituted of vendors, system integrators, research
institutes, and industrial partners. In each of the three industrial pilots, a different aspect of the
manufacturing process was addressed. This section focuses on one of these pilots, namely the
Traub pilot. Traub’s motivation regarding the validation of CIMOSA was to examine whether
CIMOSA is a useful tool to support the restructuring process of the existing manufacturing
organisation and to support the new organisation with implemented information technology
(Gransier and Schönewolf, 1995).

Traub AG is a German manufacturer of machine tools. The products cover conventional
machines as well as NC machines for turning and milling. The economic downturn in the
market and the world-wide recession forces all machine tool manufacturers to improve their
cost situation and shorten the terms of delivery. Customer demands are characterised by an
increased diversification of products, resulting in decreasing numbers of series production.
Enormous sales efforts and the introduction of new products are not the only guarantee for
survival. Enhanced demands to become more flexible and efficient forced Traub to reorganise
its production department (Schlotz and Röck, 1995).

Appendix A describes the reorganisation of Traub’s production department. In the remainder
of this section, the role of CIMOSA during the reorganisation process is summarised.

During the reorganisation of Traub’s production department, the role of CIMOSA was
twofold: the CIMOSA modelling framework assisted the definition of a functional
architecture, whereas the CIMOSA integrating infrastructure supported the design of the
technology architecture of the control system’s infrastructure.

The CIMOSA models allowed Traub to analyse and re-design its functional control
architecture. During architectural design, Traub was able to acquire knowledge of its current
manufacturing control system by means of modelling at the requirements definition level.
This knowledge was needed in order to analyse the existing system. Then, the model was
changed to take required modifications into account. By means of the specification of
operational and control functions, their inputs and outputs, and interfaces between functions, a
functional architecture was defined.

The definition of a sound functional architecture, upon which the further design of the system
is based, is one of the keys to business integration. CIMOSA takes a modular approach to
integration, i.e. enterprise operation is modelled as a set of cooperating processes which
exchange results and requests. Only this exchanged data needs to have a representation that is
common between the cooperating processes. By employing models for identification,
analysis, and coordination of existing and new functions, required functional architectures can
be designed that define modular components and their interfaces. If the detailed design

* VOICE: Validating OSA in Industrial CIM Environments

Reference Architectures for Enterprise Integration

67

and implementation of the CIM system follow the architectural specifications, the requested
integration of business processes will be obtained. This way, the required level of business
integration is achieved, which is reflected by the coordination of operational and control
processes.

CIMOSA aims to support application integration by its integrating infrastructure.
Cooperation between humans, software programs, and machines has to be established.
Whereas business integration can be regarded as the integration of functional components,
application integration affects the integration of technology components. The integrating
infrastructure aims to provide services that integrate the enterprise’s heterogeneous
manufacturing and information systems in order to satisfy the business needs as identified
with the help of the modelling framework. The CIMOSA specification of the integrating
infrastructure can be seen as a reference model. Components that are designed and
implemented according to this reference model should provide desired features such as
interoperability, portability, connectivity, and transparency.

Due to the immature specification of most integrating infrastructure services, Traub only
considered the communication services. These services are part of the common services.
An example of an implementation that fulfils the CIMOSA specifications is the
communication platform developed by the Fraunhofer institute IPK. This platform has been
developed according to the needs of Traub and the other two industrial VOICE partners, and
was based on the communication services of the integrating infrastructure. Lapalus et al.
(1995) give more information about the communication platform and application integration.

5.5 The practical value of CIMOSA

In this section, the practical value of CIMOSA is central. Its theoretic value is undoubtedly
large, since many ideas, developments, and products are inspired by it. In fact, many
contemporary products seem to be largely influenced by the CIMOSA ideas. Its value as a
means to support the design of flexible systems is evaluated by means of the architecting
concepts and principles identified in Chapter 3 and 4 respectively. In addition, CIMOSA’s
value as a suitable framework for enterprise integration in practice is evaluated by means of
the GERAM framework. This part of the evaluation can be found in Appendix B.
The conclusion regarding CIMOSA and achievement of model execution is stated in
Subsection 5.5.3.

5.5.1 CIMOSA and the architecting concepts

The architecting concepts of hierarchy, views, and domains as distinguished in Chapter 3 are
represented in CIMOSA’s modelling framework. The functional specifications are
hierarchically decomposed by means of the domain process, business process, and enterprise
activity constructs. Domain processes contain business processes and/or enterprise activities.
For example, in the Traub case as described in Appendix A, the domain process ‘Order
Processing’ is decomposed in seven enterprise activities (see Figure A-4). Business processes
contain other business processes and/or enterprise activities. Enterprise activities are the

Chapter 5

68

leaves of the decomposition tree at the requirements definition level, but can be further
decomposed at the design specification level.

The modelling framework provides an open set of four (initially defined) views to focus on
different enterprise aspects. However, some views are more appropriate for practical usage
than others. In the Traub application, Traub practically only used the framework’s function
and information view; the resource view was barely addressed and the organisation view was
not used at all. The organisation view, for example, was seen as a view to manage systems,
not to design them.

As for the three domains, going from the requirements definition level, via the design
specification level, to the implementation description level can be considered as moving from
a focus on the functional, via the technology, to the physical domain. However, the level of
detail increases as well. In other words, CIMOSA relates a low level in the design process to
implementation details (see Figure 3-4, left-hand side). It does not support the specification of
a true technology architecture, but only the detailed specification of technology modules.
In the design specification level, a relation is made between functions and technology
modules. Enterprise activities are decomposed into functional operations which are executed
by functional entities. These functional entities are provided by resources that are chosen on
technical grounds.

5.5.2 CIMOSA and the architecting principles

To discuss CIMOSA and the architecting principles as discerned in Chapter 4, a distinction is
made between the CIMOSA modelling framework and the integrating infrastructure. The first
can be seen as a layered framework. Functional specifications are described in the
requirements definition level, whereas the physical system is specified by means of the
implementation description level. The design specification level provides the mapping
between the two previous levels. Clearly, the three levels correspond to three layers. Although
layers can be discerned in the framework itself, the modelling framework does not lead to
layered systems by necessity.

The modelling framework seems to lead to modular systems, but it does not. CIMOSA claims
to provide a modular approach to integration. Enterprise operation is modelled as a set of
cooperating processes which exchange results and requests, and only the exchanged data
needs to have a representation that is common between the cooperating processes. Indeed,
the domain processes can be regarded as the functional modules of a system. However, this
does not imply that these domain processes are modular. Recall from Chapter 4 that a module,
i.e. a subsystem with defined interfaces, does not necessarily have the modularity
characteristics of moderate complexity, minimal coupling, and maximum cohesion. CIMOSA
does not state how to achieve modular domain processes. In other words, users might specify
the most bizarre contents of and relations between domain processes. Wrong boundaries
between domain processes might be chosen, which would result in rigid and inflexible
systems.

Reference Architectures for Enterprise Integration

69

The CIMOSA modelling framework does not lead to systems that are constructed according
to the architecting principles as discerned in the previous chapter. A similar argument as
stated above can be made for structural stability. CIMOSA is a descriptive framework; it does
not prescribe its users how to design a system. However, the integrating infrastructure does
incorporate some design decisions. After all, the specification of the integrating infrastructure
can be seen as a reference model for enabling technology, and can be positioned as design
specifications at the partial level. However, enabling technologies are not central in this thesis,
and therefore the evaluation of the integrating infrastructure regarding the architecting
principles is left behind.

5.5.3 CIMOSA and evolution

After time, CIMOSA models produced during an enterprise integration project are almost
certain to lose their validity. Enterprise integration is an ongoing process rather than a one-off
effort. However, there is little chance for an enterprise to keep an up to date picture of itself as
time goes by. Much of the effort initially invested in modelling an enterprise’s processes is
lost as reality diverges from those models (Bernus et al., 1996). Traub, for instance, foresees a
considerable effort in keeping its models consistent with the implementation, also due to the
complexity of the CIMOSA modelling framework (Schlotz and Röck, 1995). Note that the
consistency aspect is not a CIMOSA related issue, but rather a common problem for all
enterprise reference architectures.

In order to remedy this obstacle, enterprise models have to be actually used to drive operation
control and monitoring rather than being kept on the shelf. The transition from specification to
an operational system requires an infrastructure that supports ‘model execution’ and therefore
has to consist of what CIMOSA calls ‘business services’. The realisation of the aims behind
the business services as originally conceived might just as well prove to be an illusion for a
long time. In 1996, Bernus et al. regarded the achievement of business services a goal for the
further future.

CIMOSA fails to fulfil the objectives of model execution. The result of the specification
phase, i.e. documentation in the form of models, is useful for (onetime) business integration.
Without a real integrating infrastructure with services such as the business services, however,
it is not sufficient to fulfil the objectives of the enterprise integration philosophy.
Applying CIMOSA does not result in operational systems, let alone in flexible, adaptive,
efficient systems; the translation from models to a real system still has to be made. Given the
fact that it does not offer guidelines and reference models that support designers in the
transition from requirements to specification, the practical value of CIMOSA should be
merely seen as a framework for the generation of documentation.

Appendix C describes two other enterprise reference architectures, namely GRAI/GIM and
PERA. Both provide some solutions to some of CIMOSA’s shortcomings. They especially
provide well-defined engineering methodologies; GRAI/GIM offers its structured approach,
PERA is accompanied by the Purdue Methodology. For enterprise integration, however,

Chapter 5

70

it is necessary to keep an up to date picture of an enterprise as time goes by. None of the three
reference architectures can guarantee that.

5.6 Baan’s Enterprise Modeller

Whereas the previous sections discuss rather theoretic enterprise reference architectures,
this section looks at practice. The previous sections show that CIMOSA and other enterprise
reference architectures are far from their objective of continuous enterprise evolution.
Designers still have to make the translation from models to a real system by themselves.
Around 1995, however, some of the concepts of enterprise integration have been implemented
in tools for the configuration and implementation of Enterprise Resource Planning (ERP)
solutions. For example, the market leader in ERP applications at that time, the German
company SAP AG, developed such a tool called ‘Business Engineer’. This configuration and
implementation tool is based on the R/3 reference model. The R/3 reference model describes
business processes that are most commonly needed in practice and that can actually be
implemented with SAP’s R/3 system (Keller and Detering, 1996). Business Engineer aims to
streamline implementation of R/3, and to adapt an existing configuration to new needs or
changed circumstances. It allows users to configure their own enterprise model, and to
automatically tie the functionality of R/3 into the enterprise model (SAP, 1997).

A commercial product in which some of the concepts of enterprise integration show up is
Baan Company’s Orgware™. Baan Company recognised that enterprises attempting to
implement ERP systems went through a serial process of modelling the enterprise’s processes
and organisation, and implementation and manual configuration of the actual system.
The usual result of this static process is that customer investment in modelling activities has
not returned the expected value in the actually implemented system. This is because the
statically defined system is no longer in line with the new needs of the business. Therefore,
Baan Company developed Orgware, a set of tools and concepts which allows an enterprise to
adapt its Baan applications real-time to changing market needs. Even more, it supports a fast
implementation and optimisation of a system (Huizinga, 1995).

Dynamic Enterprise Modelling (DEM) concepts comprise the foundation for Orgware.
Basically, DEM comes down to developing a model of an enterprise and using this model to
adapt the enterprise’s processes. In this respect, it does not differ from the objectives of
enterprise reference architectures. However, since Orgware is integrated with Baan’s ERP
product, there is a direct link between the models and their realisation in the Baan software.

The Enterprise Modeller is one of Orgware’s main components. Examples of other
components are implementation methods and assisting IT services. Originally, a user made
three types of models with the Enterprise Modeller, namely business function models,
business process models, and organisation models (Huizinga, 1995). Later, a fourth type of
models has been added, namely business control models. Figure 5-5 presents an overview of
Dynamic Enterprise Modelling with the Enterprise Modeller. From top to bottom,
business functions, business processes, and organisation models are pictured.

Reference Architectures for Enterprise Integration

71

Rules

Automotive

Repository Reference Models Project Model

Company X

Engineer-to-Order

Food

Baan System
Configuration

Figure 5-5 Dynamic Enterprise Modelling with the Enterprise Modeller

The business control model describes a company’s primary process and the manner how it is
controlled. A business control model provides modelling teams with a starting point for
modelling at a high level. Functions that control the primary process are modelled by
constructs of business function models, such as major functions and main functions.
The business control model shows the interaction between those functions as well
(Boudens, 1997). Note that the business control model is not shown in Figure 5-5.

A business function model presents a functional decomposition of business functions, and is
the starting point for process selection and configuration. The decomposition tree consists of
the company, mega functions, major functions (e.g. Requirements Planning), and main
functions (e.g. Material Requirements Planning, and Statistical Inventory Control).
Interactions between functions are not modelled. Business function variants are placed
beneath the main functions. They are used depending on the phase of the implementation.
Optimisation relationships define an optimisation path in an implementation project.
Some variants are used after initial implementation (e.g. Statistical Inventory Control);
other variants are only used after optimisation phases (e.g. Calculation of SIC Data from
History, and Calculation of Economic Order Quantity).

A business process model describes formal processes and procedures, and is the basis for
configuration of the Baan software. A main process, which is directly related to a main
function, is represented by means of a Petri net-like modelling technique. In a business
process model, Baan sessions and manual actions are examples of activities. A business
process model shows all business function variants of a main function. Depending on the
(optimisation) phase of the implementation, variants are used or not (‘dimmed’
representation).

Chapter 5

72

An organisation model is a description of the organisational structure of an enterprise.
In a model for a specific company, roles are assigned to persons. A link is made with the
business process model, if roles are assigned to (activities of) business processes.

A central feature of the Enterprise Modeller is its use of reference models. In a repository,
functions, processes, rules, and roles are defined. The rules connect functions and processes to
each other. When a new implementation phase starts, the rules state the consequences for the
processes. From the components in the repository, reference models are assembled that are
specifically designed by industry consultants for a particular industry sector. For example, in
the reference organisation model for engineer-to-order enterprises, an organisational structure
is outlined that is based on the best practices of that type of industry. In the reference business
function and process models, optimisation relationships and roles are added respectively
(Huizinga, 1995).

Models for a specific enterprise called ‘project models’ can be instantiated from the reference
models. Phases are added to the project function model, and employees are added to the
project organisation model. Subsequently, employees are linked to roles, thereby providing
the connection between the process and organisation models. Finally, based on complete
project models, a configurator generates user-specific menus and authorisations, and
automatically configures the Baan system by setting parameters.

A clear advantage of Baan’s Enterprise Modeller compared to enterprise reference
architectures is its linkage with the underlying Baan ERP applications. The enterprise models
mirror the implementation and configuration of the Baan system. Even more, changes in the
models are directly reflected in changes in the Baan system. On the other hand, models made
by enterprise reference architectures might reflect the enterprise’s current systems and
processes, but changes in these models have to be ‘manually translated’ to changes of the
modelled processes and applications.

The Enterprise Modeller’s advantage of being linked with the underlying Baan ERP
applications is also its disadvantage; it covers only Baan products. It allows one to model
manual procedures and applications by other vendors besides Baan sessions. Clearly, it cannot
automatically configure these other applications. Although ERP products tend to cover more
and more functionality, they do not comprehend the processes of an entire enterprise.
Shop floor control processes, for instance, were not covered when this dissertation was
written.

In addition, the Enterprise Modeller does not model a company’s IT infrastructure; for
example, it cannot support distributed Baan applications. It only models the functional
domain, not the technology or physical domain.

Nevertheless, a product such as Orgware is a major improvement for the implementation of
ERP applications, and as such it provides a contribution to the realisation of the enterprise
integration philosophy. For the objectives of enterprise integration to become true, however,

Reference Architectures for Enterprise Integration

73

more is needed than that: model executability by an infrastructure with real business and
presentation services.

5.7 Summary

Reference architectures for enterprise integration aim to provide the necessary frameworks
with which companies might adapt their operation due to changing internal and external
conditions. The reference architecture CIMOSA strives for the facilitation of continuous
enterprise evolution. It intends to offer support for business integration by means of its
modelling framework, and for application integration by means of its integrating
infrastructure. CIMOSA was applied during a reorganisation project at Traub AG, a German
tool manufacturer. The modelling framework assisted Traub in the definition of a functional
control architecture. Due to immature specification of the integrating infrastructure, only the
specification of the communication services was helpful to Traub.

The architecting concepts of domains, hierarchy, and views are represented in CIMOSA’s
modelling framework. The modelling framework supports designers during the specification
and analysis of functional architectures of production control systems, but it does not support
the specification of a true technology architecture.

The architecting principles of modularity, structural stability, and layers are not incorporated
in the CIMOSA modelling framework. CIMOSA does not prescribe its users how to design a
system; it is a descriptive framework.

The CIMOSA reference architecture does not cover a full life cycle and lacks an
accompanying engineering methodology. However, CIMOSA does provide an eligible,
though quite complex, framework for the specification and analysis of functional architectures
for production control systems. It prescribes how to make a specification of a system, but it
does not prescribe how to design the system. In addition, a designer has to make the
translation from models to a real system himself. Therefore, CIMOSA should be merely seen
as a framework for the generation of documentation.

A product which ensures up to date models of an enterprise is Baan Company’s Enterprise
Modeller. Based on a repository and reference models, a designer makes models of its
enterprise. Since the Enterprise Modeller is integrated with the Baan applications,
it automatically configures these applications based on the models. Changes in the models are
immediately reflected by changes in the configuration of the applications.

75

6. Reference Models for Shop Floor Control

6.1 Introduction

The objective of this chapter is to discuss the suitability of reference models for the design of
flexible shop floor control systems. Chapter 5 states that CIMOSA is merely a framework for
the generation of specifications. It does not provide assistance in the architectural choices that
have to be made. Other enterprise reference architectures do not provide domain specific
support either. Reference models for shop floor control do provide application domain
specific support. However, the question arises whether these reference models lead to flexible
shop floor control systems. In this chapter, various reference models and their impact on the
flexibility of shop floor control systems are examined by means of the architecting principles
of Chapter 4.

In Section 6.2, an important property of dynamic systems and a central point of this chapter,
namely control (and coordination), is introduced. This section discusses various control levels
that might be present in a manufacturing company. Furthermore, it presents the close relation
between control applications and enabling technology.

Section 6.3 gives an overview of the evolution of research into control architectures. It shows
that advances in enabling technologies allowed a gradual transition from centralised control
forms to more distributed forms.

The following sections present a basic control form, and an evaluation of the control form on
the basis of the architecting principles of modularity, structural stability, and layers. Examples
of reference models of the basic forms are given in Appendix D.

Section 6.4 starts with the first basic control form, namely the proper hierarchical control
form. This form is characterised by vertical master-slave relations, a pyramidal structure, and
the absence of horizontal peer-to-peer control relations. Whereas layers are present,
modularity is usually low, and structural stability is absent. The ideas developed by the
ESPRIT project COSIMA is an example of a reference model of the proper hierarchical form.

The heterarchical control form in Section 6.5 is characterised by the absence of master-slave
relations, a flat structure, and the presence of horizontal peer-to-peer control relations.
No reference models are known for this form.

The proper hierarchical control form and the heterarchical form are two extreme basic
architectural forms. In addition, the modified hierarchical form and holonic manufacturing
systems are discussed. Section 6.6 considers the modified hierarchical form as a hybrid form,
since it combines hierarchical master/slave relations and heterarchical peer-to-peer relations.
Holonic manufacturing systems are able to exhibit all kinds of control behaviour that range
from proper hierarchical to heterarchical control. Holonic manufacturing systems are
presented in Section 6.7.

Chapter 6

76

6.2 Control architecture and enabling technology

6.2.1 Control levels and granularity of resources

This chapter focuses on control in shop floor control systems. In contrast to static systems,
such as houses, dynamic systems need to be controlled. In some dynamic systems, such as the
Baan applications, control is a minor aspect; they only need to be started, and do not really
have to be controlled. However, manufacturing shop floors have to be controlled. Control is
the raison-d’être for shop floor control systems. The behaviours of the individual subsystems
on the shop floor need to be coordinated in order to achieve overall system performance.

In general, a number of control responsibilities can be discerned in production control
systems. These responsibilities are grouped in control levels, which at their turn are derived
from the spatial decomposition of the shop floor into collections of one or more pieces of
equipment. Traub, for example, distinguishes the following control levels:
• production planning level, responsible for rough planning of orders on machine groups;
• area control level, responsible for machine-oriented fine-planning, order progress, and tool

management;
• machine group (or cell) control level, responsible for execution of orders from area

control, monitoring of the shop floor operations, and the collection of machine and
operation data.

• machine level, responsible for the control of an individual machine (see Appendix A and
(Schlotz and Röck (1995)).

Another example, the AMRF Reference Model by the US National Bureau of Standards
distinguishes the following five levels (see Figure 6-1, from top to bottom):

The facility is the highest level in the structure and comprises of three major sub-systems:
manufacturing engineering, information management, and production management. The shop
is responsible for the real time management of jobs and resources on the shop floor and
achieves this through two major modules, namely those of task management and resource
management. The cell level manages the sequencing of batches and materials handling
facilities. The workstation directs and coordinates a set of equipment on the shop floor.
A workstation consists of a set of equipment set up to realise a particular task; a typical
workstation might consist of a machine tool, a robot, a material handling buffer, and a control
computer. The equipment controllers are linked directly to individual pieces of equipment
within a workstation (Albus et al., 1981; Simpson et al., 1982; Jones and McLean, 1986).

Besides the AMRF reference model, several other control models have been developed to
date. The most well-known of these models are the CAM Reference Model developed by
Philips and Digital Equipment Corporation (Philips CFT, 1987), the Manufacturing Planning
and Control Systems reference model (Biemans, 1989), and the Factory Automation Model
(Graefe and Thomson, 1989). Figure 6-1 shows the production control levels as distinguished
by the four reference models and by Traub. For more information on control levels in
reference models for production control, the reader is referred to (Micklei, 1993;
Arentsen, 1995).

Reference Models for Shop Floor Control

77

Facility

Automation
module

Shop

Cell

Workstation

Equipment

Shop/Center

Factory

Cell/Line

Workstation

Device

Automation
module

Company

Factory

Cell/line

Workstation

Device

Sensor/actuator

Philips/DEC CAM
reference model

AMRF
reference model

MPCS
reference model

Production
planning

Area

Machine group

Machine

Traub

Facility

Section

Cell

Station

Equipment

Factory
Automation Model

Enterprise
Production

Facility

Figure 6-1 Reference models for production control

Adapted from Plasschaert (1996)

Although different reference models propose a different number of control levels, the various
reference models in Figure 6-1 discern more or less the same control levels. After all, they are
based on the same groupings of resources as seen in factories. This thesis regards only the
shop level, the cell or line level, and the workstation level. Higher control levels are the
responsibility of production planning functions; lower levels are the responsibility of
equipment control functions. The needed shop floor control functionality is defined by the
shop, cell/line, and workstation control levels.

Section 6.3 presents the evolution of architectural forms that structure the functionality in the
control levels as described above. First, however, the relation between the defined control
levels and accompanying infrastructure services is discussed.

6.2.2 Control levels and enabling technology

If certain technologies are chosen to implement certain functions, some additional technology
might be needed to enable a proper functioning of the first technologies. This is illustrated by
means of an example. Consider a shop floor control system where a function ‘scheduling
manufacturing cell’ is defined. This function is a component of the functional architecture of
the shop floor control system. The functional architecture defines other components and the
interrelations between those components and ‘scheduling manufacturing cell’ as well.

Chapter 6

78

Components of the functional architecture are mapped to components of the technology
architecture. The function ‘scheduling manufacturing cell’ could be carried out by a human
scheduler supported by Gantt charts. Then, a choice is made for the technology ‘human’.
One could also choose for software technology and implement the scheduling function in
software. Such a choice would demand several other choices for enabling technologies.
Software needs hardware to be executed upon; choices have to be made for computer
technology, database technology, network technology, and so on.

It is important to make a distinction between the technology architecture of a shop floor
control system and the enabling technology offered by an infrastructure upon which an
implementation resides. Furthermore, it should be clear that the (technology architecture of
an) infrastructure is not the realisation of the functional architecture of a shop floor control
system in the technology domain (or in the physical domain for that matter). Rather,
this infrastructure enables the realisation of the functional architecture, for instance by
providing the platform for software to run.

Figure 6-2 shows the relationship between control applications and their accompanying
infrastructure. The control system’s technology architecture implements its functional
architecture. Due to choices for certain technologies, infrastructure components might be
needed; the control applications are enabled by the infrastructure. This relation between
control applications and infrastructure reveals itself most at the technology domain, since the
need for infrastructure components becomes apparent in this domain.

Figure 6-2 Control applications and infrastructure

Historically speaking, shop floor control applications have been interwoven with components
of the information technology infrastructure. Rather, there has been a fixed mapping between
the functional control architecture and the technology architecture of the IT infrastructure.
Certain shop floor control functionality has traditionally been implemented on certain
enabling infrastructure components. For example, Traub implemented its production planning,
area, machine group, and machine level control functionality on an IBM mainframe, IBM
RS6000, 486-PC’s, and machine specific control equipment respectively. A frequently
occurring mapping between the control levels as defined in the previous subsection and
enabling technology components is given in Table 6-I, which is based on the AMRF
Reference Model by the former US National Bureau of Standards.

A control system’s functional architecture and infrastructure should be decided upon
separately, i.e. design decisions about either one of them should not be influenced by the

Reference Models for Shop Floor Control

79

other. Above, the historical entanglement between functional control architectures and
enabling infrastructure components is illustrated. Until the 1990’s, there was a common
mapping between the functional control architecture and the technology architecture of the
enabling infrastructure. At the end of the 1990’s, infrastructure technology had reached such a
level that it did not restrict the implementation of all kinds of functional control architectures
anymore; since then, there has been more and more freedom in defining functional control
architectures.

Various infrastructural configurations can be used to enable the proper functioning of control
applications. Figure 6-3 shows various options regarding the infrastructure for Traub’s
testbed. Appendix A explains this testbed’s hierarchical control architecture, which is the

NC-Machine Robot Round
Table

Drilling
Unit

Area Controller X-Terminal

Cell Controller

PLCProtocol
Converter

Area Controller X-Terminal

PLCProtocol
Converter

Cell Controller

PLC
Controller

a b

c

Figure 6-3 Various infrastructural configurations for Traub’s testbed

Table 6-I Mapping between control levels and enabling technology

Control applications Enabling technology
Functional domain Technology domain Technology domain

Facility ERP applications Mainframe
Shop Shop control software Mini computer
Cell Cell control software PC
Workstation Workstation control software PLC / Machine-specific control hardware
Equipment Device-specific control logic Device-specific hardware

Chapter 6

80

same for all three infrastructural configurations. The left-hand side of the figure shows the
original structure as outlined by Traub’s partner FhG-IPK. This configuration clearly
resembles the hierarchical control architecture. However, the functional control architecture
and the technology architecture of the infrastructure do not need to have similar forms.
Another option would be to use only one network to connect the various computing resources
(Figure 6-3b, top right-hand side). This configuration seems to correspond to a more
distributed control architecture. Finally, one computer could be used to enable the execution
of software for various control functionalities, such as area control and cell control (Figure 6-
3c, bottom right-hand side).

The question arises how to make decisions regarding the technology architecture of the
infrastructure. Since infrastructure is not the topic of this thesis, only the considerations of
costs, compatibility, and scalability are given. Firstly, companies regard costs as a major
issue; if they have existing computing and communication equipment available, they will be
less inclined to invest their money in new equipment (no matter how old the equipment is).
Then, there are issues of compatibility, e.g. regarding execution of software on various
platforms or protocols between computing and manufacturing equipment. Finally, scalability
concerns issues such as whether the same hardware can be properly used when the number of
manufacturing resources increases. For more information on decision making about
infrastructures, the reader is referred to Renkema (1996) who takes a broader perspective on
infrastructures and who gives guidelines for investments in information infrastructures.

This section shows that control levels have been interwoven with levels in enabling
computing technology. The next section presents the evolution of research in control
architectures at the end of the twentieth century which was accompanied by an evolution of
enabling technology.

6.3 Evolution of control architectures

From the 1970’s to the 1990’s, an evolution is noted in research in control architectures.
Technological advances in computing and communication technology have made it possible
to consider a wide range of possibilities in the design of control architectures. This rapid
growth in technology in addition to an increasingly demanding manufacturing environment
has been accompanied by an evolutionary growth in control architectures. Figure 6-4 shows
the evolution of research in control architectures, which is characterised by an increase in the
autonomy of the controllers, a reduction of the use of aggregated information, and a relaxation
of master-slave relations (Dilts et al., 1991). Note that Figure 6-4 displays a research
evolution, rather than an evolution of the application of control architectures in industry. At
the end of the 1990’s, the heterarchical form was still hardly applied in industry, although it
was extensively studied by universities and research institutes.

Centralised form
Early control architectures employed a centralised approach. Before this approach, control
types were based on the primary process and without much supervisory control.
The conventional approach at that time was decentralistic in nature (Meal, 1984;

Reference Models for Shop Floor Control

81

Timmermans, 1993a). In the 1970’s, industry became aware of the possibilities of information
technology, and decided to put all control logic in a central point. In the centralised form,
shop-level and cell-level responsibilities are concentrated in a single software application,
which is usually executed on a powerful mainframe. Simple workstation controllers are
dispersed throughout the factory. The central controller issues commands in order to
coordinate the manufacturing process, and it receives monitoring information from the
workstation controllers to make global control decisions.

Proper hierarchical form
After the centralised form, the proper hierarchical form emerged. The dependence on a single
controller and the difficulty to make modifications or extensions required that designers
considered other options in the development of control architectures. In order to reduce the
complexity of the centralised form, control functionality was distributed over several
controllers that were organised in a hierarchy. Hierarchical control architectures were
developed primarily because designers had been conditioned through training and experience
to approach complex system designs from a hierarchical control standpoint. After all,
many organisations are designed according to the hierarchical paradigm.

Modified hierarchical form
Galbraith (1973) notices that hierarchies may become overloaded as more exceptions are
referred upward. As the organisation’s subtasks increase in uncertainty, more exceptions arise
which must be referred upward in the hierarchy. Local controllers typically do not have
sophisticated capabilities, whereas higher level controllers do not have access to detailed
information. Due to each controller’s finite capacity for handling information, serious delays

Centralised Form

Modified Hierarchical Form

Heterarchical Form

Controlling Element

Executing Element

Control Relations
among Elements

Proper Hierarchical Form

Figure 6-4 Evolution of research in control forms

Source: Dilts et al. (1991)

Chapter 6

82

may develop between the upward transmission of information about new situations and a
response to that information downward. In this situation, the organisation must develop new
processes to supplement rules and hierarchy. Besides goal setting, Galbraith proposes four
design strategies that aim to reduce the number of exceptional cases referred upward into the
organisation through hierarchical channels (see Figure 6-5).

Creation
of slack

resources

Creation of
self-contained

tasks

Reduce the need for
information processing

Investment in
vertical

information
systems

Creation
of lateral
relations

Increase the capacity
to process information

Figure 6-5 Organisation design strategies

Source: Galbraith (1973)

The modified hierarchical form results from the employment of lateral decision processes.
This strategy moves the level of decision making authority down to where the information
exists rather than bringing it up to the points of decision. The use of vertical master/slave
relations and horizontal peer-to-peer relations characterise the modified hierarchical form. It is
enabled by technological advancement in the area of distributed computing and the rapidly
declining price/performance ratio of hardware.

Heterarchical form
The heterarchical control form is characterised by coordination among controllers that is
purely done by lateral relations. A heterarchical control architecture creates a flat architecture
that divides control responsibilities among cooperating controllers. It is an attempt to
overcome the disadvantages associated with each of the previous control forms (Dilts et al.,
1991). The heterarchical control form shows that control levels are separated from controllers.
In other words, the necessity of some form of coordination between components (such as
individual workstations) is recognised, but the need for a higher level controller (such as a
cell/line controller) by definition is rejected. A cell/line controller is not needed if the
coordination between the individual workstations is done by the workstations themselves.

Up to this point, this chapter describes the relation between control applications and enabling
technology, and the evolution of both. History has shown an entanglement between control
forms and enabling information and communication technology. The rest of this chapter
discusses the various functional control forms, and their impact on the flexibility of shop floor
control systems. The interested reader may find more details in (Dilts et al., 1991; Solberg and
Heim, 1989; Duffie et al., 1988; Duffie, 1990; Smit, 1992; Veeramani et al., 1993; Duffie and
Prabhu, 1996). It should be noted, however, that most authors have studied the heterarchical
control concepts. Most of them have taken the disadvantages of the hierarchical control form
and the promises of heterarchical control architectures as their points of departure.

Reference Models for Shop Floor Control

83

To illustrate the various control architectures, an example is used, which is based on the
flexible assembly system of the Catholic University of Leuven, Belgium. This assembly
system comprises four assembly robots and a transport system. The latter consists of a central
loop and a buffer at each station. Besides the workstations and the transport system (which is
ignored in this example), a scheduler, a controller, and order modules make up the control
system. Figure 6-6 shows the various components. Order modules are components that are
responsible for the execution of a certain order. The scheduler defines schedules in which
operations of a certain order are planned and allocated to the four workstations.
The workstations present themselves to the controller, requesting new operations to carry out.
Similarly, order modules present themselves to the controller, offering the next operations to
be carried out. Finally, the controller may act as a dispatcher or as a broker; it may allocate the
operations of the orders to the workstations, or it may provide the place where orders and
workstations meet to allocate operations themselves (Valckenaers et al., 1994; Bongaerts
et al., 1995; Bongaerts et al., 1997).*

Transport
system

Workstation Order

Controller

Scheduler

Figure 6-6 Various components of the flexible assembly cell

Note that in Figure 6-6, order modules are separate entities with own intelligence. In contrast,
in Figure 6-4 orders or jobs are passive entities; controllers command or negotiate with other
controllers about jobs. The separate order modules do not influence the forms possible to
control the flexible assembly cell.

The next sections present the basic control forms of Figure 6-4 (except the centralised form,
and with holonic manufacturing systems). In addition, their suitability to lead to flexible shop
floor control systems is evaluated by means of the architecting principles of modularity,
structural stability, and layers. Examples of reference models that correspond to the control
forms are given in Appendix D.

* Parts of this chapter have been published in an article by Zwegers et al. (1997c). The author wishes to thank

the Catholic University of Leuven for their cooperation in this work.

Chapter 6

84

6.4 Proper hierarchical control

Before the proper hierarchical control concept is discussed, a distinction should be made
between two properties: hierarchy and stratification. Van Aken (1978) notices that next to
hierarchy, the parts-within-parts or boxes-within-boxes structure, organisational structures
usually have a second property, namely stratification, the bosses-above-bosses structure.
He defines a stratified system as follows:

‘A stratified system is a system the elements of which are ordered, individually or
combined to subsets, according to a given priority criterion’ (Van Aken, 1978; p. 35).
For example, Traub’s manufacturing cells consist of a cell controller and various
machines. The former is responsible for the control of the latter.

Van Aken recognises that organisational structures usually involve a combination of
stratification and hierarchy. In such cases, the structure can be described as a stratified
hierarchical system, for which he gives the following definition:

‘A stratified hierarchical system is a hierarchical system having at each level one or
more subsystems which have priority over the other subsystems at that level’
(Van Aken, 1978; p. 36). In Traub’s big part manufacturing hall, for instance, an area
controller and various machine groups (cells) can be discerned. The area controller
controls the cells, which at their turn constitute of cell controllers and various
machines.

Hierarchy and stratification form two distinct design issues, which should not be confused.
Hierarchy can be used to cope with complexity; stratification can be used to cope with
conflicts between subsystem interests and the interests of the system as a whole (Van Aken,
1978).

In this chapter, the terminology as in (Dilts et al., 1991) is adopted. Where the words
‘hierarchy’ or ‘control hierarchy’ are used, Van Aken’s stratification or bosses-above-bosses
structure is meant. Note that in Chapter 3, ‘hierarchy’ and ‘decomposition hierarchy’ stand for
the boxes-within-boxes structure.

6.4.1 Characteristics of the proper hierarchical control form

In a proper hierarchical control system, a specific controller dictates all activities of the
subordinate level. The subordinates – whether they are production modules or lower level
controllers – are not allowed to refuse the commands from the upper level controller.
Controllers at each level make decisions based on commands received from the level above,
and feedback received from the level below. Master/slave relationships are created between
levels with command information flowing ‘downward’ through the hierarchy and feedback
information flowing ‘upward’ through the hierarchy (Duffie, 1988). Note that there is a
distinction between control paths and communication paths (Jones and Saleh, 1990). In the
proper hierarchical form, peer-to-peer communication is allowed for the transfer of data, but
not for commanding peer controllers.

Reference Models for Shop Floor Control

85

A configuration of hierarchical controllers is characterised by a philosophy of ‘control levels’
and contains several control modules arranged in a pyramidal structure. Each level has its own
purpose and function. At the top of the hierarchy is a single controller which is responsible for
setting global goals and formulating long-range strategies. These strategies commit the entire
hierarchical structure to coordinated actions which would result in achievement of the selected
goals. Aggregate decisions are made at the highest levels. These decisions are decomposed
into more detailed commands and passed on to the next lower level in the hierarchy. Detail of
information increases with each lower control level, whereas the time period for its
consideration decreases. Classical examples of a proper hierarchical control system are the
army and the Roman Catholic Church.

A proper hierarchical control strategy in the example of the flexible assembly system of the
University of Leuven functions as follows. The controller follows exactly the sequence of
tasks as prescribed by the scheduler. If necessary, the controller waits until the planned
workstations become available or until an operator has restored the system such that it can
continue along the prescribed schedule. The workstations and the order modules are obliged
to report to the controller, and to wait for permission to continue.

6.4.2 Evaluation

Compared to the centralised control architecture, the distribution of the control tasks over
various layers reduces the functionality and complexity of an individual controller. Therefore,
large amounts of data can be handled efficiently; fast response times are achieved, since each
(controller within a) layer has its own tasks. In normal, stable circumstances the control
system operates effectively and efficiently, resulting in near-optimal performance.
Adaptive behaviour may be obtained since the status information from subordinates can be
used to close a control loop in a controller. Another advantage of proper hierarchical control is
the possibility to incrementally add vertical slices of the control architecture. For example,
new workstations may easily be added to existing cells (Dilts et al., 1991; Duffie et al., 1988).
Note that adding vertical slices means adding new modules to existing layers, and that
interfaces between layers remain unchanged. On the other hand, it is very hard to add an extra
layer, since interfaces between layers have to be changed.

However, Conant shows that ‘the requirements on a system for selection of appropriate
information (and therefore blockage of irrelevant information), internal coordination of parts,
and throughput are essentially additive and therefore compete for the computational resources
of the system’ (Conant, 1976; p. 240). Hierarchical controllers are inclined to spend a large
part of their computational resources in the selection of appropriate information and passing it
to other controllers. According to Conant, this is at the expense of the true function of the
system, the throughput. The result is an information overload and bad overall system
performance. Galbraith (1973) reaches a similar conclusion for hierarchically structured
organisations.

Some disadvantages of the proper hierarchical control concept relate to changing conditions.
The hierarchy is unable to flexibly handle changes as a result of rush orders, machine

Chapter 6

86

breakdowns, or other disturbances. It often takes (too) long before the new circumstances are
known at the right controllers. If a workstation in a line breaks down, workstations
downstream are waiting for input (starvation), and workstations upstream are blocked.
Individual workstations are not structurally stable; they depend on other components to make
decisions for them. Without those orders, the workstations become helpless.

Moreover, the hierarchy is hardly modifiable due to lack of modularity. Entanglements
between the various controllers are especially created by fault-tolerance measures. If a
controller breaks down, its subordinates are also down, unless extensive fault-tolerance
measures have been taken. In that case, a common solution is to give a controller at a given
level in the hierarchy substantial knowledge of the controller above it in the hierarchy as well
as the controllers below it. If a controller has to be changed, its neighbours have to be changed
as well. Even more, it is quite likely that also the neighbours of the neighbours have to be
modified. Changes propagate through the system.

Hatvany (1985) and Solberg and Heim (1989) claim that hierarchical systems are ‘resistant to
evolution’ due to their structural rigidity. A hierarchical system requires relatively complete
design prior to implementation and, once completed, is not easily changed. In most cases,
there is no single, obviously correct decomposition of authority into units, so it is quite likely
that any first attempts could be improved upon if modifications were not so difficult because
of absence of modularity. Duffie and Piper conclude that ‘the complexity of computer
integrated manufacturing systems with hierarchical architectures grows rapidly with size,
resulting in accompanying high costs of development, maintenance, operation, and
modification’ (Duffie and Piper, 1986; p. 137).

6.5 Heterarchical control

6.5.1 Characteristics of the heterarchical control form

In a heterarchical control system, distributed, autonomous subsystems communicate with each
other without the master/slave relationship. Full local autonomy and a cooperative approach
to decision making are the main features. Supervisory decision making is located locally at
the point of information gathering rather than in a central location.

Cooperation between subsystems is arranged via a cooperation protocol. This protocol is often
called a negotiation procedure, although there is no real negotiation involved, but only
allocations based on a set of simple rules (Van Brussel, 1995). Each subsystem must conform
to certain rules, in order to obtain certain privileges. Hatvany states that for a heterarchical
system ‘to function in a manner that permits the maximum of autonomy and flexibility to its
members, great care must be taken first to establish and codify these rules, whose observance
is absolutely mandatory’ (Hatvany, 1985; p. 104).

Each subsystem has a dual set of goals: one related to its internal behaviour, the other related
to the operation of the overall system. The latter should be dominant, thereby assuring that the
subsystem cooperates with other subsystems to arrange operations such as scheduling and

Reference Models for Shop Floor Control

87

routing of work parts. However, to obtain full autonomy, subsystems are allowed to refuse
requests from other subsystems based on their own status. A classical example of
heterarchical control is a cattle market, where suppliers and demanders fully autonomously try
to achieve their goals.

A heterarchical control strategy in the flexible assembly system of the Catholic University of
Leuven is as follows. Order modules request the execution of operations. Workstations
respond to these requests by offering bids. In a bid, a ‘price’ is mentioned that is determined
by factors such as operation costs, lead time, and quality. Then, a negotiation process takes
place between order modules and candidate workstations. Order modules choose the
workstation that issued the best ‘price’. A schedule results from this negotiation process.
In most cases, this takes place opportunistically by scheduling the next operation when the
previous one is finished. The controller acts as a broker, where supply (orders) and demand
(workstations) of operations meet.

6.5.2 Evaluation

Heterarchical control systems are supposed to be more robust, adaptable, and extensible than
hierarchical control systems. This is only true if the heterarchical control system is properly
organised. Officially, a heterarchical control system is a control system without hierarchical
relations. This means that the possible rigidity of the hierarchy is absent. However, the control
system might still be rigid, for instance if each individual controller only knows and
negotiates with its successor and predecessor in the line or has no negotiation capabilities to
handle disturbances. Then, the system is heterarchical, but not robust. If a controller breaks
down, the whole line is down. A controller does not know what to do if a neighbour breaks
down; it is not structurally stable.

Another example is a situation where each workstation knows the operational capabilities of
each other workstation. This way, each controller knows which workstations are able to
execute the next operation. If a workstation breaks down, other workstations know the
alternatives; the overall system is robust. However, if a new workstation is added to the
manufacturing system, all workstations have to be updated with information about the
capabilities of the new workstation. In this case, the control system is not modular.

However, such information as described above does not have to be incorporated in a
component. It can also be made explicit. For example, suppose a workstation reports to a
central component that it finished operation on a job, and that it wants a new job.
The workstation provides enough information to the central component, so that the latter
knows what type of operation is wanted next to complete a job, and what type of operation the
workstation wants next. The central component matches demands with offers of operations,
and acts as a broker. Note that workstations do not have information about other workstations
anymore. The key is to remove such type of global information from individual subsystems;
by doing so, the system becomes more modular.

Chapter 6

88

An advantage of a heterarchical control system with properly implemented negotiation
capabilities is its flexible reaction to changing conditions. Schedules and routings are not
fixed but are opportunistically established. A control system with autonomously functioning
components that coordinate their operations by negotiation, should be able to function as
usual if a component fails. In addition, the implicit fault-tolerance and the reduced coupling
among control components leads to reduced control software complexity. For example,
Kompass (1993) reports a reduction from 500 to four print pages of control software for
robotised paint booths, when a General Motors plant shifted from a deterministic scheduling
approach to a heterarchical, negotiation-based approach.

Moreover, the improved modularity leads to higher maintainability and modifiability of
individual components. However, reconfigurability and adaptability of the overall system by
modification of the negotiation protocol is hard. The negotiation protocol is incorporated in
each workstation controller. Every workstation knows the negotiation protocol. Changes in
the negotiation protocol require changes in possibly every module.

The main disadvantage of the heterarchical control concept is that normal operation may not
be effective and efficient; individual controllers do not have an overview of the complete
process and are likely to make suboptimal decisions. In addition, Prabhu and Duffie state that
‘systems consisting of highly autonomous entities cooperating through communication
without master-slave relationships and with minimal global information have been noted to be
seemingly chaotic and sometimes unstable from a controls point of view’ (Prabhu and Duffie,
1995; p. 425).

Another frequently quoted disadvantage is that lead times and due dates are quite
unpredictable, since schedules and routings are not known when a work order is released.
When an order is launched, the system cannot assure when it will finish (Van Brussel et al.,
1993). Arentsen concludes that ‘because there is no higher level control, an off-line
scheduling function may principally not be implemented within a heterarchical control
system. As a consequence of the fact that there is no reference against which the order
progress can be monitored, it is impossible to deal with inaccuracies and disturbances in an
adequate way. The heterarchical control system is not able to predict whether the due dates of
the orders can (still) be met, nor is it possible to control adequately the execution of the
manufacturing tasks’ (Arentsen, 1995; p. 22). However, this is not a valid argument.
Central, off-line schedulers may be present in a heterarchical control system, as long as they
are used to provide reference information rather than to control the operations.

Both the proper hierarchical and the heterarchical control architecture are two extremes on the
wide spectrum of possible control architectures. If master/slave relations are taken to the
extreme, the result is a proper hierarchical control architecture. Similarly, only peer-to-peer
negotiations lead to a heterarchical control architecture. If master/slave and peer-to-peer
relations are combined in one control architecture, a hybrid form occurs.

Reference Models for Shop Floor Control

89

6.6 Modified hierarchical control

6.6.1 Characteristics of the modified hierarchical control form

A hybrid control model is the modified hierarchical control architecture as described by Dilts
et al. (1991).* Just like in the proper hierarchical control form, supervisor/subordinate
relations exist between controllers. However, controllers in the modified form are equipped
with a certain degree of autonomy with respect to higher level controllers. This relative
autonomy loosens the master/slave relationships between controllers; a controller acts as an
intelligent assistant to the host and not as a slave.

An example of the modified hierarchical control form is a situation where a higher level
controller passes an order to a controller. Besides the order, additional information is given to
the controller, with which it can cooperate with peer controllers in order to carry out a
sequence of activities to complete the job. Exceptions are referred upward in the hierarchy
where appropriate actions are taken. This is the control strategy that is usually associated with
the modified hierarchical form. Other strategies, however, are also possible in this form, as
long as there is a combination of master/slave and peer-to-peer relations.

6.6.2 Evaluation

As with all basic forms, the modularity and structural stability of the modified hierarchical
form depend largely on the specific control strategy chosen. If the prevailing interpretation is
chosen, the advantages and disadvantages are roughly equal to those of the proper hierarchical
form. In case the system has to react to changed circumstances, it still uses
supervisor/subordinate relationships. These relationships reduce the modularity of the system.
Because subordinates are more intelligent and because tasks are shifted to these subordinates,
however, a certain controller might react faster to requests from its subordinates.
Nevertheless, the prevailing interpretation of the modified hierarchical form performs badly
on modularity and structural stability.

A control strategy as chosen by FACT (Arentsen, 1995) might perform better on modularity
and structural stability. In FACT’s modified hierarchical control architecture, stations have the
possibility to solve a problem by mutual arrangement. ‘Direct requests’ are sent from one
station to the other (see Appendix D). Information about other workstations that is needed for
‘direct requests’ should not be stored inside the workstations, but either in a central place or
organised by a broker. Then, global information is made explicit, modularity is high, and the
system is easily modifiable and extensible. Workstations are no longer dependent on other
workstations. By means of the direct requests, workstations are also less dependent on their
supervisors; structural stability is higher.

* It could be argued that the description of the behaviour of the modified hierarchical control form as in

(Dilts et al., 1991) is contradictory. Therefore, here an own interpretation is given.

Chapter 6

90

6.7 Holonic manufacturing systems

6.7.1 Characteristics of holonic manufacturing systems

During the 1990’s, the Holonic Manufacturing Systems (HMS) project was part of the world-
wide research programme Intelligent Manufacturing Systems (IMS). IMS was one of the
largest research programmes in manufacturing in its time. Initiated by Prof. Yoshikawa from
Tokyo University, the IMS programme was envisaged to create a manufacturing science that
would meet the needs of the 21st century. The concept of ‘holonic systems’ had been put
forward as the paradigm likely to satisfy the requirements of expected future generations of
manufacturing systems. A holonic manufacturing architecture should enable easy
(self-)configuration, easy extension and modification of the system, and allow more flexibility
and a larger decision space for higher control levels (Valckenaers et al., 1994; Wyns et al.,
1996).

The ideas on holonic systems originated from Koestler (1967). He noted that a universal
characteristic of hierarchies, i.e. ‘boxes-within-boxes’ structures, is the relativity and
ambiguity of the terms ‘part’ and ‘whole’ when applied to any of the sub-assemblies.
‘Part’ and ‘whole’ suggest something absolute; a ‘part’ means something fragmentary and
incomplete, whereas a ‘whole’ is considered as something complete. However, ‘wholes’ and
‘parts’ in this absolute sense do not exist anywhere. Intermediary structures are found:
‘sub-wholes’ which display, according to the way one looks at them, some of the
characteristics commonly attributed to wholes and some of the characteristics commonly
attributed to parts. Just like the Roman deity Janus who was the keeper of doorways,
the members of a hierarchy have two faces looking in opposite directions: the face turned
towards the subordinate levels is that of a self-contained whole; the face turned upward
towards the apex, that of a dependent part. One is the face of the master, the other the face of
the servant. Since Koestler did not find a satisfactory word to refer to these Janus-faced
entities, he proposed the term ‘holon’. The word ‘holon’ is a contraction of the Greek ‘holos’,
which means whole, and the suffix ‘on’, which suggests a particle or part, as in ‘proton’ or
‘neutron’. As such, the concept of the holon reconciles the atomistic and holistic approaches
of looking at sub-assemblies (Koestler, 1967).

A holon exhibits two kinds of tendencies. Its self-assertive tendency is the manifestation of its
unique wholeness and independence as a holon. Its integrative tendency expresses its
dependence on the larger whole to which it belongs. As such, the integrative tendency is an
expression of its ‘part-ness’.

The main properties of holons are autonomy and willingness to cooperate. Autonomy
concerns the ability of an entity to control the execution of its own plans and strategies.
It ensures that holons are stable forms capable of dealing with disturbances, since holons
handle contingencies without asking higher authorities for instructions. Cooperation is the
process in which a set of entities develop and carry out mutually acceptable plans. Holons are
components that provide the right functionality to the larger whole. Holons are subject to
control from (multiple) higher authorities (HMS, 1996).

Reference Models for Shop Floor Control

91

A holarchy is a system of holons that can cooperate to achieve a goal or objective.
The holarchy defines the basic rules for cooperation of the holons are thereby limits their
autonomy. A holonic manufacturing system is a holarchy that integrates the entire range of
manufacturing activities from order booking through design, production, and marketing to
realise the agile manufacturing enterprise (HMS, 1996).

Holonic manufacturing systems aim to combine the best features of various control forms.
They employ the stability and optimality of the hierarchy and the dynamic flexibility of the
heterarchy (HMS, 1996). Holonic manufacturing systems are designed for flexible customised
production (Linssen, 1989), and as such, they are a possible next step in the evolution of
(research in) control architectures as depicted by Figure 6-4. An example of a commercial
product that appeared on the market is the “Holonical Cell” by Hitachi Seiki Co. (Hitachi,
1996).

At the time of writing this thesis, there was no ultimate architecture which fully described
holonic behaviour in all its aspects. Various HMS partners have different views on the way
holonic manufacturing systems should be controlled. For example, Bongaerts et al. (1995)
and Tönshoff and Winkler (1995) differ on the role of a central scheduler. Moreover,
many HMS partners seem to abolish hierarchical control levels completely, although HMS
defines that holons can also receive instructions from and, to a certain extent, be controlled by
higher level holons. The control architectures suggested by these HMS members resemble the
heterarchical form, rather than that of a holonic manufacturing system. Even worse, the hype
around holonic manufacturing systems made many researchers call their heterarchical designs
‘holonic’. This dissertation adopts the views which it considers closest to the original
conception, namely those of the Catholic University of Leuven and the Osaka Prefecture
University (Valckenaers et al., 1994; Bongaerts et al., 1995; Sugimura, 1996).

A specific feature of holonic manufacturing systems is that the control strategy they apply is
not fixed, but rather adaptable to the manufacturing situation. Therefore, both hierarchical
control and heterarchical control can be performed with the same hardware and software.
Even more, a whole range of intermediate strategies can be used, depending on the situation
on the shop floor.

In a holonic architecture in the flexible assembly system of the Catholic University of Leuven,
a combination of the hierarchical and heterarchical control strategies takes place.
The following hybrid control strategy could take place. The controller and the scheduler
cooperate; the controller regards the schedules as advises, which it will follow in principle.
If the scheduling advises are unfeasible or clearly suboptimal (for instance because of rush
orders or workstation breakdowns), the controller adapts itself autonomously to the prevailing
situation, and it tries to approximate the advised schedule as good as possible. This is
accomplished by using the negotiation capabilities of the order modules and the workstations
in a heterarchical manner. Meanwhile, the scheduler takes more time to consider the
consequences of these disturbances to the globally optimised schedule and adapts its schedule.
When ready, the scheduler provides the controller with the new schedule.

Chapter 6

92

The holonic approach looks similar to the modified hierarchical form (Arentsen, 1995), but it
is not. Both approaches are characterised by the combination of peer-to-peer and (relaxed)
master-slave relations. However, since the control strategy of a holonic manufacturing system
is adaptable, a modified hierarchical control strategy could be applied as one of the options. In
that case, the behaviour of a holonic manufacturing system resembles that of the modified
hierarchical form. Many other control strategies could be employed just as well, depending on
the situation on the shop floor. The control strategy of the modified hierarchical form is
(usually) not adaptable; only one control strategy can be applied.

Furthermore, the possible control strategy as described above results in a behaviour that is in
fact the opposite of most modified hierarchical control strategies. After all, the control
behaviour that is usually associated with the modified hierarchical form is that controllers
cooperate in principle heterarchically, whereas exceptions are solved hierarchically.
The described strategy makes a holonic manufacturing system function hierarchically in
principle, whereas it deals with exceptions in a heterarchical way. It can be compared with the
brains of a chicken that are distributed down its spinal column, and not totally in its head.
When its head (hierarchical controller) is cut off, the rest of the body still runs around,
controlled by the remaining intelligence (heterarchical controllers). Obviously, running
around will be less smoothly without the head.

6.7.2 Evaluation

In a holonic manufacturing system, the (control) behaviour of the system is decoupled from
the (control) structure. In previous chapters is stated that a major part of system architecting is
the definition of the structure of the system. It is argued as well that during system
architecting the desired behaviour of the system is specified. This chapter focuses on the
control aspect in shop floor control systems. Architecting shop floor control systems involves
the definition of a control structure and (accompanying) control strategy in order to obtain
certain desired control behaviour. Usually, the control strategy is interwoven with the control
structure, and only one behaviour is possible. If other system behaviour is desired, both the
control strategy and the control structure need to be updated, which is quite hard in practice.
In holonic manufacturing systems, however, each holon contains the abilities needed to
perform its tasks under various control strategies, ranging from hierarchical to heterarchical
approaches. Therefore, the same basic building blocks can be used together with various
control strategies, resulting in various system behaviours. The control behaviour is practically
decoupled from the control structure.

A combination of different holons should improve the flexibility and optimality of the control
system. Appendix D describes two types of holons: basic holons, such as resource holons and
order holons, and staff holons, such as a central scheduler. Staff holons assist the basic holons
in performing their tasks. They allow for the presence of central elements in the architecture
without introducing a hierarchical rigidity into the system. The basic holons still have the last
word. Van Brussel et al. show that the combination of basic and staff holons results in system
flexibility and system optimisation: ‘Due to the distributed basic architecture, the holonic
manufacturing system delivers robustness and agility and is simple to extend and reconfigure.

Reference Models for Shop Floor Control

93

The holonic manufacturing system can be optimised by optional staff functions, such as
centralised schedulers. When the staff holons provide good advise, the basic holons will
follow this advice as well as possible. When disturbances and changes in the system cause bad
performances of the hierarchical staff holons, the advice may be ignored by the basic holons,
which again take autonomous actions to do their work. On the other hand, when disturbances
are absent, a holonic manufacturing system can be configured such that the basic holons
follow (in a hierarchical way) the advice of the staff holon. This configuration is determined
by the basic rules that determine the cooperation of the holons and thereby limit the autonomy
of the individual holons’ (Van Brussel et al., 1998). Whatever control strategy is chosen, the
choice is not restricted by the structure of the control system.

A holon should be structurally stable because of its autonomy and willingness to cooperate.
A holon is able to control the execution of its own plans and strategies, yet providing the right
functionality to a larger whole. Because holons are able to handle contingencies without
asking other holons for instructions, they are stable forms capable of dealing with
disturbances.

The rules for cooperation of the holons restrict the autonomy of a holon, and largely
determine the modularity of a holonic manufacturing system. These rules could decrease a
holon’s modularity by defining many interfaces between the holon and other holons.

6.8 Summary

Reference models for shop floor control aim to support one in the design of effective shop
floor control systems. Compared to enterprise reference architectures, reference models
contain application domain specific knowledge, and they do prescribe how to make certain
architectural choices. The reference models for shop floor control can be categorised into
basic forms. This chapter evaluates three such basic forms and a paradigm called ‘holonic
manufacturing systems’ on the basis of the architecting principles of Chapter 4.

During the 1970’s and the two decades afterwards, the focus of (research in) control
architectures was gradually shifting from centralised to more distributed forms. This evolution
was accompanied by an evolution in enabling technology, which gave designers more
freedom in the definition of technology and functional architectures.

The overall conclusion of the evaluation of the basic forms is that the basic forms do influence
system flexibility, but that within the forms a lot of variation is possible. For instance, a factor
that influences system flexibility more than the basic forms, is how an architecture deals with
global information. Whether or not global information is made explicit or incorporated within
each component influences a system’s future flexibility considerably.

95

7. Shop Floor Control Architecting

7.1 Introduction

The objective of this chapter is to demonstrate the (practical) value of the previously
described architecting concepts and principles for the shop floor control domain.
The architecting concepts of domains, decomposition hierarchy, and views are presented in
Chapter 3, whereas the architecting principles of modularity, structural stability, and layers are
introduced in Chapter 4. Chapter 5 shows that enterprise reference architectures do not lead to
flexible systems. The basic control forms of Chapter 6 are too rough for a precise evaluation;
too many architectural decisions that influence system flexibility have to be taken which are
not prescribed by the basic forms. This chapter shows an example in which those decisions
are taken, guided by the architecting principles.*

To demonstrate the value of the architecting concepts and principles for shop floor control, a
control architecture based on autonomous agents is defined for a model factory. The control
system is completely specified and simulated by means of a formalism called χ. The model
factory is shortly introduced in the next section.

In addition, this chapter discusses the suitability of a control form which is not commonly
used in industry, namely one based on autonomous agents and negotiation. In the previous
chapter, the evolution of (research in) control architectures is outlined. The evolution ended
with the heterarchical control form. Architectures based on autonomous agents can be
classified under this control form. Section 7.3 elaborates on the ideas behind the application of
autonomous agents in shop floor control systems, and describes the properties of agents and
their accompanying negotiation protocol.

The next sections describe the design of the agent based control system for the model factory.
Section 7.4 defines the system boundaries. In Section 7.5, the design of the system in the
functional and technology domain is described. Section 7.6 identifies the workstation agents,
i.e. the components with negotiation capabilities. The control strategy and a specific feature of
this strategy, namely subcontracting, are outlined in Sections 7.7 and 7.8. Section 7.9 presents
the components and the structure of a workstation agent.

Finally, the design is evaluated and compared to a previous design in Section 7.10.
Compared to the agent based control system, the previous design did not incorporate
negotiation capabilities in the workstation controllers.

* Parts of this chapter have been published in (Zwegers et al., 1996; Zwegers et al., 1997a; Zwegers et al.,

1997b).

Chapter 7

96

7.2 The model factory

The model factory is a miniaturised, though still complex, model of a real Printed Circuit
Board (PCB) assembly and test plant. The function of the model factory is to assemble and
test pseudo PCBs. Each PCB consists of a board and a maximum of six components.
Currently, two different types of boards and three types of components are used in the model
factory.*

The model factory emulates operations which are performed on real PCBs during the
manufacturing process. The operations of the model factory have been derived from case
studies of real PCB manufacturing facilities. These operations are:
• screen printing: the bare PCB is positioned in the workstation. Then, a PCB-specific

screen is selected and moved into position, and a squeegee is reciprocated horizontally
over the screen in order to simulate the attachment of solder paste.

• component placement: the pasted PCB is positioned in the workstation, and components
are placed on positions with imaginary solder paste according to the component-placement
recipes for that product.

• reflow and cleaning: PCBs are passed through an oven and cleaning station
• test and repair: the PCB is inspected to see if it contains the components in the designated

position, and component and functional tests are performed. If the PCB fails the test,
it is routed to an off-line diagnosis and repair workstation. Upon successful repair,
the PCB is routed back to the test station.

In addition to the operations described above, the model factory contains some other features.
Raw material and components are automatically supplied from a centralised raw material
store and component store respectively. The model factory can support mixed model flow
production, where different types of products can be manufactured at the same time.
The model factory is designed for batch production, but the batch size can vary from batch to
batch, as well as product to product. The maximum batch size in the model factory is three.

The process layout is depicted in Figure 7-1. The operations are indicated by square boxes,
whereas stock points are indicated by triangles. The first stock point contains the two different
empty board types. All products pass the screen printer, but alternative routings are possible
between the two component placement stations. After the reflow and cleaning station, the
batches may be stored in the in-process-store which consists of three locations for three
products each. Here, a batch can be split or concatenated with other batches. Then, products
are tested and – if necessary – repaired. In the test and repair cycle, a maximum of one batch
can reside in the buffer. Finally, nine individual products can be stored in the final-product-
store.

An additional feature is a loop from the in-process-store to the screen printer. This loop is
necessary to manufacture PCBs that have components on both sides. These products have to
pass the process twice, since only one side can be finished in one pass. The buffer in this
second-side loop may contain only one batch.

* The description of the model factory is based on (Timmermans, 1993a).

Shop Floor Control Architecting

97

All workstations in the model factory are fully automated, with the exception of the repair
station, where a manual operator is required. Besides the actual operation, each workstation
has to manage temporary storage and retrieval of PCBs, indexing of PCBs through the
process, inventory of raw materials, and so on. This necessitates many sensors in the model
factory in addition to solenoid stops, motors, lights, conveyers, pneumatics, etc. All logical
I/O signals to and from these sensors and actuators are controlled by a PLC program.
In addition to the PLC program, a higher level supervisory system manages the overall
production process. This latter control software is executed on a VAX computer
(Timmermans, 1993a; Timmermans, 1993b; Timmermans and Szakal, 1996).

Past research on control architectures with the model factory include the specification and
implementation of a hierarchical and a distributed control architecture. The latter architecture
is shown in Figure 7-2. It is characterised by autonomous controllers for each self-contained
unit of the model factory, and by a pull-oriented control strategy. The last controller in the line
receives a work order which is consecutively passed to other controllers as requests for
production. This architecture can be considered as an example of the heterarchical form

raw
material

store

second side
buffer

in
process

store
final product

store

repair
buffer

screen
printer

component
placement 1

component
placement 2

reflow &
cleaning

repair

component
store

flow of products

flow of components

test

Figure 7-1 Primary process of the model factory

reflow & cl.
controller

test & repair
controller

FPS
controller

screen printer
controller

material

handler

second-side
controller

raw
material

store

second side
buffer

in
process

store

test

final
product
store

repair
buffer

screen
printer

IPS
controller

placement
controller 2

placement
controller 1

component
placement 1

component
placement 2

reflow &
cleaning

repair

component
store flow of material

flow of requests

control flow

Figure 7-2 Heterarchical control architecture

Source: Timmermans (1993a)

Chapter 7

98

without negotiation. Compared to the hierarchical control system, the heterarchical approach
brought faster design and better adaptability (Timmermans, 1993a). However, the routing of
products can only follow the communication links between the workstations as in Figure 7-2.

After the specification and implementation of a hierarchical and distributed control
architecture, a logical next step in the research on control architectures with the model factory
is the specification and implementation of an agent based control architecture. An agent based
control architecture is an example of the heterarchical control form with negotiation.

In 1995, the Eindhoven University of Technology decided to restructure the model factory’s
control software, mainly the PLC program. This program contained information about product
routings and Bills of Material. Preferably, execution functions that depend on the physical
equipment configuration had to be separated from decision making functions that depend on
the specific part types and the production mix. In the PLC program, however, execution
functions were entwined with decision making functions. Changes in for instance routings had
to be programmed in the PLC software. Therefore, a new PLC program without unwanted
information was specified. However, at the time of writing this thesis, the new PLC software
was not realised yet. An agent based control system with variable, product type independent
routings could not be realised. A feasibility study with simulation experiments was conducted
to examine the possibilities to use an agent based approach to control the model factory. This
chapter describes the feasibility study. The next section focuses on the principles behind agent
based control systems.

7.3 Agent based control systems

Decision responsibilities are more and more distributed to lower control levels. Manufacturing
processes are highly dynamic and unpredictable; it is difficult to completely separate the
planning and sequencing of required activities from their execution. Detailed time plans are
often disrupted by unpredictable delays and other unanticipated events. As a result, a tendency
exists within manufacturing systems to decentralise the ownership of the tasks, information, and
resources involved in the various processes. Different groups within manufacturing systems
become relatively autonomous; how their resources are consumed, by whom, at what cost, and
in which time frame lies within their own prerogative.

Given these characteristics, it is quite natural to model the processes in a manufacturing system
as a collection of autonomous, problem solving agents which interact when they have
interdependencies. In such a context, an agent can be seen as an encapsulated problem solving
entity that exhibits the following properties:
• Autonomy: agents perform the majority of their problem solving tasks without the direct

intervention of other agents; they control their own actions and their own internal state.
• Social ability: when they deem appropriate, agents interact with other agents in order to

complete their problem solving and to help others with their tasks. This implies that agents
have a means by which they can communicate their requirements to others and an internal
mechanism to decide what and when social interactions are appropriate (both in terms of
generating requests and judging incoming requests).

Shop Floor Control Architecting

99

• Responsiveness: agents perceive their environment and respond in a timely fashion to
changes that occur in it.

• Proactiveness: in addition to responding to their environment, agents exhibit opportunistic
behaviour and take the initiative where appropriate (Jennings et al., 1996).

Agents use negotiation to coordinate their interactions. Each agent is able to perform one or
more services or tasks. If an agent requires a service that is managed by another agent, it cannot
simply instruct the other agent to start the service; agents are autonomous, and control
dependencies between them do not exist. Instead, the agents must come to a mutually acceptable
agreement about the terms and conditions under which the desired service will be performed.
The mechanism for making these agreements is negotiation, a joint decision making process in
which the parties verbalise their demands and then move towards agreement by a process of
concession.

To negotiate with one another, agents need a protocol that specifies the role of the current
message interchange, e.g. whether the agent is making a proposal or responding with a
counterproposal, or whether it is accepting or rejecting a proposal. A well-known example of
such a protocol is the Contract Net protocol (Smith, 1980). According to this protocol,
agents decide upon their actions by exchanging demand and offer for services among
themselves, together with varying amounts of status information. As noticed in the previous
chapter, however, this protocol is often called a negotiation procedure, but there is no real
negotiation involved. The protocol only defines a set of rules that state how agents react to
events (Van Brussel, 1995).

Note that the agents mentioned here should not be confused with the mobile agents concept in
software engineering. Mobile agents can be transported over a network. If considerable
network traffic is needed to transport data between an agent and a database on a different
network node, it might be more effective to transport the agent instead of the data
(Orfali et al., 1996).

The agent based approach is a logical step after Timmermans’ heterarchy, which is
characterised by a rigid routing along the stations. The negotiation mechanism results in a
variable routing. The price is increased complexity within the agent, but the simplicity of
interfaces is maintained.

7.4 Scope

The agent based control system provides for the control of and the coordination among the
various workstations in the model factory. It processes a set of jobs and it reports the
completion of this set. Its interfaces with the outside world are quite simple. It is assumed that
a higher level control system is available, for example an MRP II based planning system.
This system gives orders by releasing a set of jobs with process plans to the model factory.
It does not provide the model factory with a schedule for the jobs. It is the responsibility of
the model factory’s control system to make such a schedule.

Chapter 7

100

Figure 7-3 presents the system that is controlled by agents. To demonstrate the applicability of
the autonomous agent concept, only part of the model factory is considered. It is the part from
the Raw Material Store to the Final Product Store, the loop for second side printed circuit
boards, and the component delivery subline. The In-Process-Store is not used as such, and is
therefore disregarded, just like the Test & Repair loop. Only the workstations that perform
operations are taken into account; movers between those workstations are ignored and
decisions about the material flow are entrusted to the workstations.

raw
material

store

second side loop

final product
store

screen
printer

component
placement 1

component
placement 2

reflow &
cleaning

component
store

flow of products

flow of components

Figure 7-3 Part of the model factory to be controlled by agents

The agent based control system is compared to a previously designed heterarchical control
system (see Figure 7-2), and is evaluated on the basis of performance, flexibility,
and robustness criteria. The performance concerns the throughput of the system, and the jobs’
cycle times. These characteristics are measured by simulation of various samples of a large
number of jobs. Routings are determined on the basis of the actual situation in the system,
rather than being determined by the product type. Therefore, the agent based control system
should outperform the previously designed control system, i.e. its throughput should be higher
and cycle times lower. The flexibility concerns the ‘ease’ with which the control system can
be extended, cut down, or modified, if a workstation is added, deleted, or changed.
Information about product routings and Bills of Material is no longer inside the various
controllers, but is negotiated between agents, and transferred from higher level controllers.
Therefore, the agent based control system should be less reluctant to change than its preceding
control system. Robustness concerns the ability to deal with disturbances. The robustness of
the control system has not been evaluated by means of simulation.

The next sections describe different parts of the model factory’s agent based control
architecture. Section 7.5 illustrates the use of the functional and technology domain in the
agent based control architecture.

7.5 Control functionality and enabling technology

Domains
Design decisions are made in the functional domain and the technology domain. In the
functional domain, Hakkesteegt (1993) defined three layers for the model factory: the physical

Shop Floor Control Architecting

101

layer, the logic layer, and the application layer. These three names are adopted in this chapter,
although they are clearly influenced by implementation matters. Figure 7-4 shows the three
layers of an individual workstation. The physical layer comprises the functionality that
operates on boards, such as screen printing and component placement. The other two layers
make up the control system which controls the physical layer. The logic layer contains
functions that command the manufacturing functions in the physical layer and receive sensory
information from that layer. The application layer provides for the coordination among
workstations, commands the logic layer, and receives status information from the logic layer.

Application layer

Physical layer
= controlled system

Logic layer

Control system

Workstation

Figure 7-4 Layered functional architecture of the model factory’s control system

At the physical layer, a decomposition in stations is evident. An architectural decision is made
to follow this division at the logic layer and to handle control per station. For the application
layer, various architectural choices are possible. Timmermans (1993a) advocates a
heterarchical approach, but he defines fixed routings that depend on the product types.
His control system cannot adapt to disturbances of the flow. In the feasibility study, agents are
supposed to be robust to disturbances, since they decide upon routings by means of actual
system status. However, the robustness aspect is not investigated in the feasibility study.

Besides the functional architecture, the technology architecture and enabling technologies are
defined (see Figure 7-5). The functional architecture is mapped to the technology architecture.
For instance, the application layer is implemented in control software written in C++, and
needs a computer to be executed. Here, a VAX computer is chosen. The logic layer is
implemented in PLC (Programmable Logic Controller) software, obviously enabled by a
PLC. To connect the control software in the VAX with that in the PLC, an integration
platform is used. This platform only provides connectivity, and no control functionality.
The choices for enabling technologies are inspired by historical reasons; previous control
systems were enabled by the VAX computer, the PLC, and the integration platform as well.

The advantage of using two domains for the definition of the control system is the separation
of concerns. The two domains make a distinction between essential functionality and the way
to achieve that functionality. It is a difference between the ‘what’ and ‘how’ of control.
Furthermore, within the technology domain a distinction can be made between technologies

Chapter 7

102

that realise the desired functionality and enabling technologies. For example, in Figure 7-5 the
PLC program and the PLC itself are indicated.

Layers
The identified layers separate concerns between (clusters of) components within a domain.
Within a layer, changes can be made that do not affect other layers, as long as the interfaces
remain unchanged. In the functional domain, each layer is responsible for specific control
functionalities (see Figure 7-4). The identified layers are clearly associated to the identified
control levels in the previous chapter. The application layer corresponds to the workstation
level, whereas the logic layer corresponds to the automation module level. Cell/line level
control functionality is incorporated in the application layer as well.

Also, layers can be identified in the technology domain. Besides the two control layers,
an intermediate layer is present that provides for connectivity between the two software
programs. This ‘connectivity’ layer is realised by an integration platform. By means of this
platform, the PLC program is independent of the application layer control software.
Two different kinds of data points exist in the integration platform, namely physical points
and logical points. Physical points are directly coupled to addresses, such as memory
addresses in the PLC. Logical points are memory locations (i.e. variables) which can be
accessed by an application program. These logical points can be connected to physical points.
In that case, a change of the value of a logical point will result in a value change of the
corresponding physical point (Van Stipdonk, 1997).

In this section, the architecture of the control system in the functional and technology domain
is outlined. The division in various layers is a characteristic of the architecture. The next
section describes the identification of the workstation agents which is inspired by the pursuit
of modularity.

Logical points

Physical points

Integration platform

Model factory

Application layer
control software

Logic layer
control software

PLC

VAX

VAX,
PLC

Figure 7-5 Technology architecture of the model factory’s control system

Shop Floor Control Architecting

103

7.6 Identification of agents

The control system consists of workstation agents, a component store, a generator, and a
network. The expression ‘workstation agent’ indicates a workstation in which the application
layer is equipped with capabilities to negotiate about jobs. The identified workstation agents
are all workstations in Figure 7-3, except the component store. The component store does not
have capabilities to negotiate, and acts merely as a server for the workstation agents.
For simulation purposes, the generator is introduced to simulate the transfer of sets of orders
from a higher level control system by the generation of these orders.

A network is used for message transfer among agents. Figure 7-6 shows that the network
connects the workstation agents. The component store and the generator are drawn with
dashed lines; they are connected to the network too, but they are no agents. Compared to
direct channels between every pair of workstations, the network significantly reduces the
number of channels. The network consists of a switch element, which is connected to the
network interfaces for each of the connected entities. A network interface acts as an interface
between the switch element and a workstation. For a connected agent, the network interface
arranges the message reception from and transmission to other agents. It decouples the agents
from the switch element and vice versa. This way, deadlocks are avoided where the switch
element and (the controller of) an agent are waiting for each other (Coenen, 1995).

Component
Store

Final
Product
Store

Reflow
&

Cleaning

Component
Placement

2

Component
Placement

1

Screen
Printer

Raw
Material

Store
Generator

Figure 7-6 Agents connected by a network

Only the workstations are considered as autonomous agents. The workstations negotiate
among each other about the execution of the jobs. Batches/jobs are passive entities flowing
through the system; they do not have agent-like capabilities, and therefore are incapable of
negotiation. This choice is made in particular because the used specification language assumes
fixed communication channels, so components such as job agents cannot be created and
deleted, but have to exist permanently. Nevertheless, some tricks might get around this
restriction, since the number of jobs simultaneously being operated upon cannot exceed a
certain maximum (see e.g. (Coenen, 1995)).

Modularity
The identification of the agents is inspired by the pursuit of a modular system. In order to
achieve a modular control architecture, workstation agents have as little information about

Chapter 7

104

other workstations as possible. The aim is to minimise the coupling between workstations.
The line-layout of the model factory allows little variation in the product routings. The only
variations are the distribution of component placing process steps among the two component
placers and the option of the second side loop. A workstation such as the raw material store,
however, always sends processed batches to the screen printer. The raw material store does
not need to negotiate with other workstations about the question which station will perform
the next operation; it is known beforehand. A design decision could be made to incorporate
this knowledge in the specification of the raw material store, thereby avoiding a negotiation
procedure. However, this decision was not made. Such type of information would have to be
modified in the future if batches would not necessarily have to go from the raw material store
to the screen printer anymore, or if another screen printer would be added.

Before the structure of the workstation agents is explained, it is necessary to define the control
strategy. The minimisation of information that workstation agents have about other
workstations has some consequences for the control strategy.

7.7 Control strategy

Batches can be pushed through or pulled out of the factory. With a pull-approach, a schedule
is made in advance. The last station in the line, in casu the final product store, is requested to
deliver a batch of finished products at a certain due date. Then, the last station requests the
appropriate batch from its preceding station, which – at its turn – asks for semi-finished
batches to its predecessors, and so on. When a complete schedule is made, the order is
released and production starts. Wiendahl and Ahrens (1995) give an example of such a
system.

For the model factory, an opportunistic push-approach is chosen. Within this strategy,
a schedule is not made in advance. The job is brought into the system at the first point of the
line, namely the raw material store. Subsequently, the job finds its way through the system.
However, in the model factory a convergent material flow is present at the component
placement stations; both the boards and the component trays lead to these assembly stations.
In general, since operations are not planned before job dispatch, stock points should be
created in order to decouple the main stream from the branches. These buffers can be
replenished by means of simple inventory control heuristics. Just in front of the model
factory’s component placement stations, small buffers are located in which two component
trays are stored, each containing four components. If the first tray in a buffer is out of
components, a new tray is ordered from the central component store. Upon arrival of the new
tray at the buffer, the empty tray is removed. In the feasibility study, new components are
ordered if the number of present components is not sufficient to fulfil a job.

The main advantage of an opportunistic dispatch method is that decisions concerning the
distribution of work on the shop floor are based on the prevailing system status rather than on
some projection of that status (as would be the case with a pull approach). Disadvantages
include the fact that opportunistic schedulers are myopic, that they may ignore interactions
with other components, and that they may only handle priorities in a rather cumbersome way

Shop Floor Control Architecting

105

(Upton et al., 1991). Advantages and disadvantages of both opportunistic and planned
approaches are displayed in Table 7-I.

Table 7-I Advantages and disadvantages of opportunistic and planning approaches

Advantages Disadvantages

Opportunistic • Robust, capable of dealing with
disturbances

• Based on actual status; routing flexibility

• Less suitable for convergent material flows
• Only short-term vision, possibly myopic

Planning • Suitable for convergent material flows
• Foresees the future

• Excessive planning needed
• More sensitive to disturbances

In order to coordinate the negotiations between workstation agents, a protocol is needed.
The points of departure are the opportunistic strategy and the fact that agents only have
information at their disposal about the workstations they represent; they have no information
about other workstations. Furthermore, the physical construction of the model factory imposes
some restraints; workstations do not have output buffers, so they have to put processed boards
in the input buffer of the next workstation. A workstation agent that is about to execute an
operation has to search for a workstation that can execute the next operation first. The next
workstation has to be known before a workstation can start its operation.

The negotiation protocol is as follows. A workstation agent sends a task announcement for the
next operation of the job that is about to be executed by that workstation. The task
announcement is sent to all workstation agents connected to the network, a so-called
‘broadcast’. Note that a broadcast to all workstation agents is needed since an agent does not
have any information about other workstations in the system. A workstation agent that
receives a task announcement only replies with a bid if the operation can be performed at that
workstation. The message saying that a workstation cannot perform an operation would only
cause more communication via the network, and is not sent. After a certain period of time, the
agent that sent the task announcement chooses the best bid that has been received up to that
moment. The time limit is needed because a workstation agent does not know how many
agents will react to a task announcement. Another option would be to choose the agent that
has sent the first incoming bid. It is clear that this might cause a suboptimal overall system
performance. Due to the assumption that the production system is capable of executing the
process steps of a job, an agent that sent a task announcement will always receive at least one
bid. After a bid has been selected, a task offer is sent to the workstation agent with the best
bid. Compared to the original version of the Contract Net Protocol by Smith (1980), the task
offer acceptance message is omitted (see Figure 7-7).

task offer
task offer acceptance

bid
task announcement

A B

Figure 7-7 Negotiation protocol

Chapter 7

106

7.8 Subcontracting

A specific feature of the control strategy is the possibility to subcontract process steps.
A job is made up from a number of operations. An operation might consist of multiple process
steps that are all of the same type of operation. In that case, a workstation might execute all
process steps in an operation, or it might distribute execution of the process steps among itself
and another workstation.

Because of subcontracting, the negotiation protocol changes. Figure 7-8 shows the messages
that agents exchange as function of time. If an agent receives a task announcement for an
operation that consists of multiple process steps, it sends subcontracting task announcements
by means of a broadcast throughout the network. Note that both agents B and C can fulfil the
task announcement from agent A in Figure 7-8. The subcontracting task announcements are
meant for all combinations of half or less of the total number of process steps to be contracted.
Main contractors never perform fewer process steps than subcontractors.
Possible subcontractors are not allowed to subcontract the subcontracted process steps again.
The agent (e.g. agent C) receives one or more subcontracting bids. It combines the best
subcontracting bid (to be executed by agent B) with the accompanying main contract (to be
executed by agent C itself). Agent C compares this bid with the bid in which it performs all
process steps itself. The best bid is sent to the workstation agent that broadcasted the task
announcement. Task offers are only sent to main contractors. So, if a task offer is received for
a bid with subcontracting, the main contractor (agent C) notifies the subcontractor (agent B)
with a subcontracting task offer.

task announcements

bids

task offer

subcontracting
task announcements

subcontracting bids

subcontracting
task offer

agent A agent B agent C agent D

tim
e

Figure 7-8 Messages between agents as function of time for the negotiation protocol

Structural stability
The subcontracting option can be considered as an extension to the original negotiation
protocol. With or without the subcontracting option, the control system is stable. The system
evolved from a configuration without the subcontracting option to a more complex (with the
subcontracting option). Before the subcontracting option was added, it was made sure that the
system worked. Before and after adding subcontracting, a complete control system was
functional.

Shop Floor Control Architecting

107

To illustrate how stability was achieved with or without subcontracting, it is necessary to
focus on the structure of an agents. The next section shows that the design of the structure is
guided by the pursuit of structural stability. The various components can be mapped on the
identified layers.

7.9 Structure of a workstation agent

All workstation agents are based on the same generic structure. Figure 7-9 is a simplified
picture of the workstation components and their relations. The following components are
distinguished: a request handler, a subcontractor, a controller, a database, a sender, a machine
controller, and a network interface. The only differences among workstations are their
capabilities, their operation times, possible component supply and its duration, their place in
the manufacturing system, and the conveyors with which they are connected to other
workstations. All differences are instantiated, except the physical part of the workstation.
More information is found in Appendix E.

NIN

SEL

WSC

MAC

PHY

SEL:
NIN:
WSC:
CON:
REQ:
SUB:
DBS:
SEN:
MAC:
PHY:

Switch Element
Network Interface
Workstation Controller
Controller
Request Handler
Subcontractor
Database
Sender
Machine Controller
Physical part

DBS SEN

REQ

SUB

CON

Figure 7-9 Internal structure and components of a workstation (simplified)

Hierarchy
Decomposition of the workstation agents results in a hierarchical structure. Figure 7-9 shows
a decomposition of a workstation agent as represented in Figure 7-6. The components in
Figure 7-9 could be further decomposed. The Sender, for example, consists of subcomponents
that are responsible for the initialisation of a new task announcement, the broadcast of the task
announcement, the processing of incoming bids, and the sending of a task offer. By means of

Chapter 7

108

the hierarchical structure, the overall complexity of a workstation agent is made more
manageable. The subcomponents of the Sender are less complex than the Sender itself. In
addition, the hierarchical structure stimulates modularity. The four subcomponents of the
Sender have to comply to the interface between the Sender and the Controller. They may
ignore the remainder of the agent’s components, let alone other agents.

Structural stability
The subcontracting option was added in an iterative way. The option to subcontract process
steps is an extension of the original negotiation protocol. A fully ‘operational’ component,
the Subcontractor, was needed. In the initial simulations, however, the specification of the
Subcontractor was kept at a minimum, i.e. only incoming and outgoing channels were
defined. Provisions were taken in the Request Handler to invoke the Subcontractor, and in the
Controller to direct incoming messages to the Subcontractor as if it were ‘operational’.
Furthermore, similar measures were taken in the Request Handler, Database, and Controller to
handle messages from the Subcontractor. These measures allowed to add subcontracting
functionality step by step. After each step, an agent was able to perform its tasks adequately,
although an agent which could subcontract process steps was only available after all steps had
been taken. An agent was stable during ‘assembly’.

Furthermore, a control system consisting of a number of agents is stable as well.
Structural stability concerns the stability during development but also during evolution.
Workstations can easily be added to or removed from the control system. The structure of an
agent as depicted in Figure 7-9 is the same for all workstation agents, except for the physical
part PHY. There, workstation specific information is present such as the place of the
workstation in the PCB assembly line. The remainder can easily be instantiated from a generic
definition. The structure of an agent may not be simple. However, it allows one to easily add
and remove workstations; it is designed to build upon. Furthermore, an agent with
subcontracting capabilities can be added to a control system where subcontracting is no part
of the control strategy.

Layers
The components in Figure 7-9 can be easily mapped to the various layers in Figure 7-4.
The physical layer consists of the physical part of the workstation, PHY. The logic layer
consists of the Machine Controller. In the feasibility study, the Machine Controller is identical
for all workstations. They are not identical in reality, simply because for instance the Machine
Controller of the Screen Printer needs information about screens, and the Machine Controllers
of the Component Placers need information about components. All other components are part
of the application layer. They control the underlying layers and coordinate the interactions
among workstations.

7.10 Evaluation

In this section, the design of the control system is evaluated. Appendix E presents the results
of the simulation experiments. In Section 7.4, three evaluation criteria are given, namely
performance, robustness, and flexibility. The robustness of the agent based control system can

Shop Floor Control Architecting

109

not be evaluated, since disturbances are not simulated. However, it is expected that robustness
in the agent based control system is increased compared to the distributed system without
negotiation, due to the fact that routings were fixed in the latter system, whereas they are
opportunistically ‘composed’ during operation in the agent based system. Defective
workstations can be avoided. The effect is largely determined by the possibilities the
manufacturing system offers. The effect is only marginally in the model factory, since in the
present situation only the component placers can be interchanged to deal with malfunctions. If
another station breaks down, the up-stream part of the system will be blocked, and the down-
stream part will ‘starve’.

The system extensibility is better in the agent based system than in the previously
implemented heterarchical control system. Stations in the implemented heterarchical control
system have knowledge about other stations. For instance, each station knows its direct
‘neighbours’. If the factory is extended with a new workstation, the information its neighbours
have of other stations needs to be updated. This is not necessary in the agent based system,
since the agents communicate messages via the network. If a new agent is added to the
system, the switch element in the communication network needs to be updated.

It is hard to compare the two control systems in terms of modifiability. Workstation
controllers in the previously implemented heterarchical control system have information about
other controllers, which hampers extensibility as well as modifiability. However,
the controllers in the agent based control system probably have more states and make more
assumptions about the behaviour of other agents. This is not determined into detail.

The performance of the agent based control system is compared to that of the heterarchical
control system without negotiation. Appendix E shows that throughput and cycle times of the
agent based system are slightly better than those of the heterarchical system without
negotiation. Whereas the latter does not have routing flexibility at all, the possibilities of the
agent based system to avoid a busy station and direct the batch to a less busy station are
limited. This is caused by the absence of alternative workstations, except for placing
components.

As compared to hierarchical control systems, studies show that the overall cycle times of
agent based systems are worse than those of hierarchical control systems. After all,
hierarchical control systems do not have the myopic view of agents; a hierarchical controller
overlooks a larger area than an individual controller and is capable of making more global
optimal decisions. The result of such a myopic view can be a deadlock, which could have
been prevented by a global system view.

The characteristics of the physical production system cause the agent based control system to
perform only slightly ‘better’ or even worse than other control systems. This leads to the
conclusion that the model factory is not a suitable production system for the application of an
agent based control system. Obviously, agent based systems are more suitable in systems with
many interchangeable workstations.

Chapter 7

110

7.11 Summary

This chapter gives an example of the design of an architecture for a shop floor control system.
The role of the architecting concepts and principles as described in Chapters 3 and 4 is
illustrated. It is indicated how the architecting concepts support the structuring of the system
and how the architecting principles affect its design.

The specified system controls the operation of a model factory by means of autonomous,
cooperating agents. A specific characteristic of this form of control systems is the use of
negotiation; agents negotiate with each other to coordinate their actions. When this thesis was
written, agent based control systems were hardly applied in practice. The model factory’s
agent based control system can be characterised as a logical successor of earlier control
systems. Earlier control systems are a hierarchical one and a heterarchical control system
without negotiation.

The agent based control system is specified and simulated by means of the specification
language χ. Simulation experiments show that this relatively new type of control system
performs better than a heterarchical control system without negotiation. The throughput and
cycle time of the agent based control system for a specific work in process level are ‘better’
than those of the earlier designed heterarchical control system. In addition, system
extensibility is improved in the agent based system compared to the heterarchical control
system without negotiation. Stations in the first system have no knowledge about other
workstations, whereas stations in the latter system know their direct ‘neighbours’.

111

8. Conclusions and Suggestions

8.1 Conclusions

The subject of this thesis is systems architecting. Originally, it was conceived that this
research project should examine several basic forms for shop floor control. However,
during the project it became clear that more research was needed to clarify the essence of
architecting. The research focus shifted from architectural forms to architecting. In addition,
this research project studied various reference models and reference architectures.

The concept of an ‘architecture’ shifted from a user-oriented perspective in building science
and digital systems engineering to a more system-oriented perspective in software engineering
and Computer Integrated Manufacturing. Similarly, architecting was no longer considered as a
one-time activity in which a system architecture was specified; nowadays, architecting is
regarded as a continuous process that preserves the integrity of a system.

In Chapter 2, a system architecture is defined as the manner in which the components of a
specific system are organised and integrated. An architecture, a reference model, and a
reference architecture are three system-related terms with increasing genericity.
An architecture is related to a specific system, a reference model to a set of systems in a
certain domain, and a reference architecture to a framework to analyse and design systems.

Architecting concepts and principles
Domains, decomposition hierarchy, and views are introduced in Chapter 3 as the main
architecting concepts. These three architecting concepts enable architects to manage overall
system complexity.

Domains can be used to represent typical design problems. Three domains are distinguished:
the functional, technology, and physical domain. As such, system complexity is distributed
over three domains. The functional and technology architectures are most important for
architecting, since it is part of an architect’s role to span the boundary between what his
principal wants and what engineers are able to build. Furthermore, architectures in the
functional and technology domain should ‘match’ in order to prevent maintenance problems
when the system changes.

Hierarchical decomposition can be used to divide systems into separate subsystems.
The complexity of each subsystem is more manageable than that of the original system.
Hierarchical decomposition is applicable to all domains. For the architecting process,
it implies that an architect should simultaneously refine its models in the functional and
technology domains. Then, the decomposition of the functional model should be validated by
the possibilities to realise the decomposed functions by means of technology modules.

Views can be used to emphasise particular aspects of a system and hide the complexity of
other aspects. Views discern aspect systems, whereas hierarchical decomposition discerns

Chapter 8

112

subsystems. Architects can focus on the issues that are important for their purposes by means
of views.

In addition to architecting concepts, architecting principles are needed to achieve future
flexibility. The architecting concepts enable architects to manage the complexity of
architectural problems. With only architecting concepts, however, architects cannot create
flexible systems. Guiding principles are needed with which the system flexibility can be
obtained that is needed for evolution. An architect guards the integrity of a system during
evolution. These systems have to last for a long time, and they have to be adapted to changing
requirements. The architect has to build in measures that provide for future flexibility and
evolution. Future flexibility is an architectural criterion; the value of a ‘good’ architecture
compared to other architectures is in its future flexibility. Chapter 4 introduces modularity,
structural stability, and layers as the architecting principles that stimulate the design of
measures providing for future flexibility.

Modularity is a characteristic of a system which consists of moderately complex subsystems
with high internal cohesion, and minimal coupling among the subsystems. In modular
systems, the impact of changes is restricted to few modules. Changes in a component are
propagated to only few components, and thereby modularity increases the future flexibility of
a system.

Structural stability is the characteristic of a system in evolution to function stand-alone
without collapsing, and with the ability to be part of a larger system or to be extended with
future components. Complex systems are implemented step-by-step, and evolve regularly
after initial implementation. At every point in their evolution, the system has to function well.
The structural stability characteristic makes building blocks from complete ‘wholes’,
and ‘wholes’ from building blocks. Structurally stable elements are made to function within
an overall architecture.

Layers represent possible interfaces between clusters of components, and are mainly used to
solve mapping problems. The mapping task is decomposed in layers, so that each layer
performs a specific part of the task. Layers offer the flexibility to make changes in a layer that
do not disrupt other layers, as long as its interfaces are not changed. Layers build upon
underlying layers, and provide a guide for structuring a hierarchical decomposition process.

Architecting is an answer to increasingly complex and rigid systems. The architecting
concepts and principles are suitable ‘tools’ for supporting architects in their activities.
The architecting concepts allow one to deal with system complexity. The architecting
principles guide one to obtain the flexibility that is needed for the system to be changed in the
future. The concepts and principles were applied in the Gordian project. This project showed
that the application of these ideas contributed to the realisation of Baan applications that have
the flexibility to be adapted to future requirements.

Conclusions and Suggestions

113

Reference architectures and reference models
Chapter 5 discusses reference architectures for enterprise integration, which aim to provide
the necessary frameworks with which companies might adapt their operation. The reference
architecture CIMOSA strives for the facilitation of continuous enterprise evolution. It intends
to offer support in the functional and technology domain by means of its modelling
framework and its integrating infrastructure, respectively. The modelling framework assists
enterprises in the definition of a functional control architecture. Support in the technology
domain is insufficient; due to immature specification of the integrating infrastructure, only the
specification of the communication services might be helpful.

CIMOSA is a suitable framework for managing system complexity. The architecting concepts
of domains, hierarchy, and views are represented in CIMOSA’s modelling framework.
CIMOSA does provide an eligible, though quite complex, framework for the specification and
analysis of functional architectures for production control systems. It does not support the
specification of a true technology architecture.

The architecting principles of modularity, structural stability, and layers are not incorporated
in the CIMOSA modelling framework. CIMOSA does not prescribe its users how to design a
system; it is a descriptive framework. It prescribes how to make a specification of a system,
but it does not prescribe how to design the system. The translation from models to a real
system has to be made by a designer. Therefore, CIMOSA should be merely seen as a
framework for the generation of documentation.

In Chapter 6, reference models for shop floor control are presented, which aim to support
architects in the design of effective shop floor control systems. Unlike reference architectures,
they contain application domain specific knowledge, and they prescribe how to make certain
architectural choices. The reference models for shop floor control can be categorised into
basic forms, such as the centralised form, the proper hierarchical form, the modified
hierarchical control form, and the heterarchical form. During the 1970’s and the two decades
afterwards, the focus in (research on) control architectures was gradually shifting from the
centralised form to more distributed forms.

Enabling technology has evolved as well. In the past, it used to be a limiting factor in the
design of functional control architectures. Nowadays, it gives designers more freedom in the
definition of technology and functional architectures. Within the technology domain,
a distinction can be made between technologies that realise the desired control functionality
and enabling technologies.

The basic forms influence system flexibility to a certain extent, but a lot of variation is
possible within the forms. The modularity of a system, for example, is determined more by
how the architecture deals with global information than by its basic form. Whether or not
global information is made explicit or incorporated within each component influences a
system’s future flexibility considerably.

Chapter 8

114

An agent based control system for a model factory is architected in Chapter 7.
Global information was made more explicit in its control architecture; the various agents had
no knowledge of other agents and had to ask other agents about their capabilities.
The extensibility of the agent based control system was improved compared to a previously
implemented heterarchical control system. The agent based control system scored better
regarding future flexibility. However, a lot of message traffic was needed to compensate for
the absence of global information. Therefore, an agent based control system is a quite
inefficient system compared to other forms.

Reference architectures and reference models support an architect, but are no panacea.
Especially reference architectures tend to promise more than they offer. Reference
architectures are useful during the specification and analysis of functional architectures for
production control systems. By applying a reference architecture, an architect adopts a ‘mental
framework’ with which he can deal with system complexity. A reference architecture does not
prescribe how to design a system, and there is no ‘magic button’ with which one can turn
models into operational systems.

Reference models provide templates with which architects can design specific systems.
Still many architectural choices have to be made, which are not prescribed by the reference
models. Both reference models and reference architectures are first steps, but not the final
answers in architecting. Together with the architecting concepts and principles, they are
necessary ‘tools’ for every architect.

8.2 Suggestions for further research

More architecting concepts and principles
In this thesis, a number of architecting concepts and principles are formulated which help
architects in managing complexity and designing future-proof systems. These concepts and
principles are an initial attempt. It is not claimed that these concepts and principles are
sufficient for architecting; other (and perhaps ‘better’) concepts and principles might be
formulated. In addition, concepts and principles might be formulated for specific domains or
types of systems, such as real-time systems.

Behavioural aspects
Most research on shop floor control (including this thesis) concentrates on structural aspects
of shop floor control systems. Behavioural, dynamic aspects are barely treated. It is very well
possible that an architectural description is implemented in a manner where components make
assumptions about the state and behaviour of other components. Such a dependency might
hinder system operation and evolution. Timmermans (1993a) proposes to use dynamic
constraints in the specification of behaviour. Nevertheless, the consequences of concurrency
need to be understood.

Conclusions and Suggestions

115

Human involvement
Shop floor control systems are combinations of production resources, information technology,
and humans. Most research focuses on the automated control systems and/or their relation
with the production equipment. The role of the human has not been studied in-depth, but is
essential for a learning organisation. Humans need IT tools rather than IT systems, so that
continuous changing is possible in a learning organisation.

Dealing with legacy systems
In the scientific world, hardly any attention is paid to dealing with legacy systems. When this
thesis was written, industry focused on the ‘Millennium’ problem. Science, however, takes a
green-field approach: new systems are developed, rather than old systems are modified or
extended. Researchers often do not take into account that legacy systems are present.
Some technologies have been developed that ease the problem of migration.

Reference models for heterarchical control systems
As stated in Appendix D, no reference models for the heterarchical control form existed at the
time of writing this thesis. Several applications had been published, but no reference models
had been defined. If reference models for heterarchical systems are to be defined, they should
be based on the architecting principles formulated in this dissertation.

Shop floor control in the extended enterprise
The consequences of the extended enterprise for shop floor control need to be examined.
Traditionally, CIM has been discussed mainly in terms of the ‘four walls’ of the
manufacturing process. However, much more emphasis is being placed on closer interaction
with the suppliers and the customers (Higgins et al., 1996). The extended enterprise becomes
reality. An example of a possible consequence of the extended enterprise for shop floor
control is the requirement that certain test data is available in multiple places throughout the
chain.

The profession of systems architecting
Universities should attempt to find ways to teach systems architecting to students.
The University of South California is the first to offer a graduate degree in systems
architecting and engineering with the focus on systems architecting (Rechtin and Maier,
1997). When this research project was conducted, systems architecting was a young,
immature discipline. Chapter 1 states that systems architecting was a science in a ‘pre-
paradigm phase’ (Kuhn, 1970). One could not learn it from study books. More research is
needed to transform the ‘art’ of systems architecting to a true discipline.

117

References

Aalst, W.M.P. van der. (1994). Putting high-level Petri nets to work in industry. Computers in
Industry, Vol. 25, No. 1, pp. 45-54.

Aguiar, M.W.C., I. Coutts, and R.H. Weston. (1994). Model Enactment as a Basis for Rapid
Prototyping of Manufacturing Systems. In: Proceedings of the European Workshop on
Integrated Manufacturing Systems Engineering (IMSE ’94), pp. 86-96.

Aguiar, M.W.C., and R.H. Weston. (1995). A model-driven approach to enterprise
integration. International Journal of Computer Integrated Manufacturing, Vol. 8,
No. 3, pp. 210-224.

Aken, J.E. van. (1978). On the control of complex industrial organizations. PhD Thesis
Eindhoven University of Technology. Martinus Nijhoff, Leiden.

Albus, J.S., A.J. Barbera, and R.N. Nagel. (1981). Theory and Practice of Hierarchical
Control. In: Proceedings 23rd IEEE Computer Society International Conference,
September 1981, pp. 18-39.

Amdahl, G.M., G.A. Blaauw, and F.P. Brooks jr. (1964). Architecture of the IBM
System/360. IBM Journal, April 1964, pp. 87-101.

AMICE Consortium. (1989). Open System Architecture for CIM. Springer, Berlin.
AMICE Consortium. (1993a). CIMOSA: Open System Architecture for CIM. Springer, Berlin.
AMICE Consortium. (1993b). CIMOSA: Open System Architecture for CIM – Technical Base

Line, Version 2.0. Esprit Consortium AMICE
Arends, N.W.A. (1996). A Systems Engineering Specification Formalism. PhD Thesis.

Eindhoven University of Technology, Eindhoven.
Arentsen, A.L. (1995). A generic architecture for Factory Activity Control. PhD Thesis.

Twente University of Technology, Enschede.
Bakker, J.J.A. (1989). DFMS: Architecture and implementation of a distributed control

system for FMS. PhD Thesis. Delft University of Technology, Delft.
Bauer, A., R. Bowden, J. Browne, J. Duggan, and G. Lyons. (1991). Shop Floor Control

Systems – From design to implementation. Chapman & Hall, London.
Bax, M.F.T. (1996). De rijkdom van architectuur : Terug naar de Bouwkunde. Eindhoven

University of Technology, Eindhoven. (in Dutch)
Bemelmans, T. (1990). Invoering Case tools: Een langdurig en kostenintensief proces. CA

Techniek, Vol. 8, No. 2, pp. 8-13. (in Dutch)
Berg, R.J. van den, and A.J.R. Zwegers. (1996). Decoupling Functionality to Facilitate

Controlled Growth. In: Proceedings of ASI ’96, (P.P. Groumpos (Ed.)). Also published
in Studies in Informatics and Control, Vol. 6, No. 1, March 1997, pp. 57-64.

Berg, R.J. van den, and A.J.R. Zwegers. (1997). Gordian Project. Report EUT/BDK/83.
Eindhoven University of Technology, Eindhoven.

Berg, R.J. van den. (1998). Rigour and Relevance in information management. PhD Thesis.
Eindhoven University of Technology, Eindhoven (to be published).

Bernus, P., L. Nemes, and T.J. Williams. (1996). Architectures for Enterprise Integration.
Chapman & Hall, London.

References

118

Bertrand, J.W.M., J.C. Wortmann, and J. Wijngaard. (1990a). Production control :
a structural and design oriented approach. Elsevier, Amsterdam.

Bertrand, J.W.M., J.C. Wortmann, and J. Wijngaard. (1990b). Produktiebeheersing en
material management. Stenferd Kroese, Leiden. (in Dutch)

Biemans, F.P.M. (1989). A Reference Model for Manufacturing Planning and Control.
PhD Thesis. Twente University of Technology, Enschede.

Biemans, F., and C.A. Vissers. (1989). Reference Model for Manufacturing Planning and
Control Systems. Journal of Manufacturing Systems, Vol. 8, No. 1, pp. 35-46.

Blaauw, G.A. (1966). Door de vingers zien. Inaugural address, Technische Hogeschool
Twente. Twente college, Enschede. (in Dutch)

Blaauw, G.A. (1971). The use of APL in computer design. Proceedings of the MC-25
Informatica Symposium. Mathematisch Centrum, Amsterdam.

Blaauw, G.A. (1976). Beschrijven en begrijpen. Technische Hogeschool Twente, Enschede.
(in Dutch)

Black, J.T. (1983). Cellular Manufacturing Systems Reduce Setup Time, Make Small Lot
Production Economical. Industrial Engineering, Vol. 15, No. 11, pp. 36-48.

Böhms, H.M. (1991). Reference Models for Industrial Automation. PhD Thesis. Delft
University of Technology, Delft.

Bongaerts, L., P. Valckenaers, H. Van Brussel, and J. Wyns. (1995). Schedule Execution for a
Holonic Shop Floor Control System. In: Pre-prints of ASI ’95, (P.P. Groumpos and A.
de Oliveira (Eds.)).

Bongaerts, L., J. Wyns, J. Detand, H. Van Brussel, and P. Valckenaers. (1996). Identification
of Manufacturing Holons. In: Pre-Proceedings of the European Workshop on Agent-
Oriented Systems in Manufacturing, pp. 13-29.

Bongaerts, L., H. Van Brussel, P. Valckenaers, and P. Peeters. (1997). Reactive Scheduling in
Holonic Manufacturing Systems: Architecture, Dynamic Model and Co-operation
Strategy. In: Proceedings of ASI ’97, (P.P. Groumpos and G.L. Kovács (Eds.)),
pp. 1-8.

Boudens, G. (1997). Eenduidig opstellen van het business control model in de dynamic
enterprise modeler. MSc Thesis. Eindhoven University of Technology, Eindhoven.
(in Dutch)

Brandts, L.E.M.W. (1993). Design of industrial systems. PhD Thesis. Eindhoven University
of Technology, Eindhoven.

Brooks, F.P. jr. (1995). The Mythical Man-Month : Essays on Software Engineering,
Anniversary Edition. Addison-Wesley, Amsterdam.

Browne, J. (1988). Production activity control—a key aspect of production control.
International Journal of Production Research, Vol. 26, No. 3, pp. 415-427.

Brussel, H. Van, P. Valckenaers, and F. Bonneville. (1993). Programming, Scheduling, and
Control of Flexible Assembly Systems. In: Proceedings of the 25th CIRP
International Seminar on Manufacturing Systems. Also published in Manufacturing
Systems, Vol. 23, No. 1, pp. 25-36, 1994.

119

Brussel, H. Van. (1995). “Navigation” issues in intelligent autonomous systems. In:
Proceedings of the International Conference on Intelligent Autonomous Systems (IAS
’95), (U. Rembold, R. Dillmann, L.O. Hertzberger, and T. Kanade (Eds.)), pp. 42-52.
IOS Press, Amsterdam.

Brussel, H. Van, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. (1998). Reference
Architecture for Holonic Manufacturing Systems. (to be published).

Cantamessa, M. (1995). A few notes upon Agent-based Modelling of Manufacturing Systems.
In: Proceedings of the CIM at Work conference, (J.C. Wortmann (Ed.)), pp. 301-317.

Cantamessa, M. (1997). Agent-based modeling and management of manufacturing systems.
Computers in Industry, Vol. 34, No. 2, pp. 173-186.

Chen, D., B. Vallespir, and G. Doumeingts. (1990a). An Integrated CIM Architecture –
A Proposal. In: Proceedings of the CIMCON ’90, (A. Jones (Ed.)), pp. 153-165. NIST
Special Publication 785, Gaithersburg.

Chen, D, G. Doumeingts, and L. Pun. (1990b). An Integrated Inventory Model based upon
GRAI Tools. Engineering Costs and Production Economics, Vol. 19, pp. 313-318.

Chi. (1996). Example available at the Chi homepage. URL: http://se.wtb.tue.nl/
Coenen, F.W.J. (1995). A Heterarchical Control structure for Flexible Production Systems (in

Dutch). MSc Thesis. Eindhoven University of Technology, Eindhoven.
Conant, R.C. (1976). Laws of Information which Govern systems. IEEE Transactions on

Systems, Man and Cybernetics, Vol. 6, No. 4, pp. 240-255.
Conway, M.E. (1968). How do committees invent? Datamation, Vol. 14, No. 4, pp. 28-31.
CRISC. (1997). Various WWW pages on http://www.pe.chalmers.se/projects/crisc/
Crowther, J. (1995). Oxford Advanced Learner’s Dictionary of Current English. Fifth edition.

Oxford University Press, Oxford.
Didic, M.M., F. Couffin, E. Holler, S. Lampérière, F. Neuscheler, J. Rogier, and M. de Vries.

(1995). Open engineering and operational environment for CIMOSA. Computers in
Industry; special issue on Validation of CIMOSA, Vol. 27, No. 2, pp. 167-178.

Dilts, D.M., N.P. Boyd, and H.H. Whorms. (1991). The evolution of control architectures for
automated manufacturing systems. Journal of Manufacturing Systems, Vol. 10, No. 1,
pp. 79-93.

Dolan, T., R. Weterings, and J.C. Wortmann. (1998). Stakeholders in Software-system Family
Architectures. In: Proceedings of the second international workshop on the
Development and Evolution of Software Architectures for Product Families. Springer-
Verlag (to be published).

Doumeingts, G., B. Vallespir, D. Darricau, and M. Roboam. (1987). Design Methodology for
Advanced Manufacturing Systems. Computers in Industry, Vol. 9, No. 4, pp. 271-296.

Doumeingts, G., D. Chen, and F. Marcotte. (1992). Concepts, Models and Methods for the
Design of Production Management Systems. Computers in Industry, Vol. 19, No. 1,
pp. 89-111.

Doumeingts, G., B. Vallespir, and D. Chen. (1995). Methodologies for designing CIM
systems: A survey. Computers in Industry; special issue on CIM in the Extended
Enterprise, Vol. 25, pp. 263-280.

Duffie, N.A., and R.S. Piper. (1986). Nonhierarchical Control of Manufacturing Systems.
Journal of Manufacturing Systems, Vol. 5, No. 2, pp. 137-139.

References

120

Duffie, N.A., R. Chitturi, and J. Mou. (1988). Fault-Tolerant Heterarchical Control of
Heterogeneous Manufacturing System Entities. Journal of Manufacturing Systems,
Vol. 7, No. 4, pp. 315-327.

Duffie, N.A. (1990). Synthesis of Heterarchical Manufacturing Systems. Computers in
Industry; József Hatvany Memorial: Total Integration — Analysis and Synthesis,
Vol. 14, No. 1-3, pp. 167-174.

Duffie, N.A., and V.V. Prabhu. (1994). Real-Time Distributed Scheduling of Heterarchical
Manufacturing Systems. Journal of Manufacturing Systems, Vol. 13, No. 2,
pp. 94-107.

Duffie, N.A., and Prabhu, V.V. (1996). Heterarchical control of highly distributed
manufacturing systems. International Journal of Computer Integrated Manufacturing,
Vol. 9, No. 4, pp. 270-281.

Erens, F.-J. (1996). The Synthesis of Variety: Developing Product Families. PhD Thesis.
Eindhoven University of Technology, Eindhoven.

Erens, F., and K. Verhulst. (1997). Architectures for Product Families. Computers in Industry,
Vol. 33, No. 2-3, pp. 165-178.

Esch, J. (1995). A Fine MES. Byte, Dec. 1995, pp. 67-75.
FACT. (1997). Various WWW pages on http://www.wb.utwente.nl/pt/projects/shopfloor/
Faure, J.M., A. Bassand, F. Couffin, and S. Lampérière. (1995). Business process engineering

with partial models. Computers in Industry; special issue on Validation of CIMOSA,
Vol. 27, No. 2, pp. 111-122.

Galbraith, J. (1973). Designing Complex Organizations. Addison-Wesley, Reading,
Massachusetts.

Garlan, D., R. Allen, and J. Ockerbloom. (1995). Architectural Mismatch: Why Reuse Is So
Hard. IEEE Software; special issue on Architecture, Vol. 12, No. 6, pp. 17-26.

Garlan, D., and D.E. Perry. (1995). Introduction to the Special Issue on Software Architecture.
IEEE Transactions on Software Engineering; special issue on Software Architecture,
Vol. 21, No. 4, pp. 269-274.

Germann, G. (1980). Einführung in die Geschichte der Architekturtheorie. Wissenschaftliche
Buchgesellschaft, Darmstadt. (in German)

Graefe, U., and V. Thomson. (1989). A reference model for production control. International
Journal of Computer Integrated Manufacturing; special issue on CIM Architecture,
Vol. 2, No. 2, pp. 86-93.

Gransier, T., and W. Schönewolf. (1995). Editorial: Validation of CIMOSA. Computers in
Industry; special issue on Validation of CIMOSA, Vol. 27, No. 2, pp. 95-100.

Hakkesteegt, R. (1993). Client-server computing in shop floor management (in Dutch).
MSc thesis. Eindhoven University of Technology, Eindhoven.

Hamer, P. van den, and K. Lepoeter. (1996). Managing Design Data: The Five Dimensions of
CAD Frameworks, Configuration Management, and Product Data Management.
Proceedings of the IEEE, Vol. 84, No. 1, pp. 42-56.

Hammer, D.K. (1997). IT-Architecture: A Challenging Mix of Aspects. In: Workshop on
Engineering of Computer Based Systems (ECBS) – Architecture, Metrics and
Measurements, (J. Rozenblit, T. Ewing, and S. Schulz (Eds.)), pp. 304-311. IEEE
Computer Society Press, Brussels.

121

Hatvany, J. (1985). Intelligence and cooperation in heterarchic manufacturing systems.
Robotics & Computer-Integrated Manufacturing, Vol. 2, No. 2, pp. 101-104.

Hee, K.M. van. (1993). Systems engineering : a formal approach. Eindhoven University of
Technology, Eindhoven.

Higgins, P., and J. Browne. (1990). The monitor in production activity control systems.
Production Planning & Control, Vol. 1, No. 1, pp. 17-26.

Higgins, P., P. Le Roy, and L. Tierney. (1996). Manufacturing Planning and Control :
beyond MRP II. Chapman & Hall, London.

Hill, S. (1995). Is one enough? Can a single vendor meet your shop-floor information needs?
Manufacturing Systems, Vol. 13, No. 1, pp. 42-54.

Hionides, H.T. (1978). Collins contemporary Greek dictionary. Collins, London.
Hitachi. (1996). Holonical Cell. Hitachi Seiki commercial leaflet.
HMS. (1996). Various WWW pages on http://hms.ncms.org/
Hopp, W.J., and M.L. Spearman. (1996). Factory Physics : Foundations of Manufacturing

Management. Irwin, Chicago.
Huizinga, J. (1995). Een gereedschapkist vol software- en businesskennis. Software

Magazine, Vol. 12, No. 10, pp. 68-71. (in Dutch)
IFAC/IFIP Task Force on Architectures for Enterprise Integration. (1997). GERAM:

Generalised Enterprise Reference Architecture and Methodology. (available to
download from http://www.cit.gu.edu.au/~bernus/taskforce/geram/V1_2.html)

Janusz, B. (1996). Modeling and Reorganizing of Process Chains Using CIMOSA. In:
Proceedings of the IFIP TC5/WG5.3/WG5.7 international conference on the Design of
Information Infrastructure Systems for Manufacturing (DIISM ’96), (J. Goossenaerts,
F. Kimura, and H. Wortmann (Eds.)), pp. 140-151. Chapman & Hall, London.

Janusz, B. (1997). Model based business process redesign. In: Proceedings of ASI ’97,
(P.P. Groumpos and G.L. Kovács (Eds.)), pp. 106-111.

Jennings, N.R., P. Faratin, M.J. Johnson, P. O’Brien, and M.E. Wiegand. (1996). Using
Intelligent Agents to Manage Business Processes. In: Proceedings of the First
International Conference on the Practical Application of Intelligent Agents and Multi-
agent Technology (PAAM96), pp. 345-360.

Jones, A.T., and C.R. McLean. (1986). A Proposed Hierarchical Control Model for
Automated Manufacturing Systems. Journal of Manufacturing Systems, Vol. 5, No. 1,
pp. 15-25.

Jones, A., E. Barkmeyer, and W. Davis. (1989). Issues in the design and implementation of a
system architecture for computer integrated manufacturing. International Journal of
Computer Integrated Manufacturing; special issue on CIM Architecture, Vol. 2,
No. 2, pp. 65-76.

Jones, A. (1990). Proceedings of the CIMCON ’90. NIST Special Publication 785. National
Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg.

Jones, A., and A. Saleh. (1990). A multi-level/multi-layer architecture for intelligent
shopfloor control. International Journal of Computer Integrated Manufacturing,
Vol. 3, No. 1, pp. 60-70.

References

122

Keller, G., and S. Detering. (1996). Process-Oriented Modeling and Analysis of Business
Processes using the R/3 Reference Model. In: Proceedings of the IFIP TC5 Working
Conference on Models and Methodologies for Enterprise Integration (P. Bernus and
L. Nemes (Eds.)), pp. 69-87. Chapman & Hall, London.

Koestler, A. (1967). The ghost in the machine. Hutchinson, London.
Kompass, E.J. (1993). Can Control Run Better At The Edge of Chaos? Control Engineering,

Vol. 40, No. 1, p. 127.
Kroonenberg, H.H. van den. (1975a). Een bijdrage voor een algemene ontwerpmethode (1).

De Constructeur, No. 9, pp. 51-59. (in Dutch)
Kroonenberg, H.H. van den. (1975b). Een bijdrage voor een algemene ontwerpmethode (2).

De Constructeur, No. 10, pp. 55-61. (in Dutch)
Kruchten, P.B. (1995). The 4+1 View Model of Architecture. IEEE Software; special issue on

Architecture, Vol. 12, No. 6, 1995, pp. 42-50.
Kuhn, T.S. (1970). The structure of scientific revolutions. Second edition. University of

Chicago Press, Chicago.
Lapalus, E., S.G. Fang, C. Rang, and R.J. van Gerwen. (1995). Manufacturing integration.

Computers in Industry; special issue on Validation of CIMOSA, Vol. 27, No. 2,
pp. 155-165.

Linssen, M. (1989). Assemblage-trends in Japan. Philips CFT report. (in Dutch)
Maglica, R. (1995). Improving the PAC Shop-floor Control Architecture to Better Support

Implementation. In: Pre-prints of the CIM at Work Conference, (J.C. Wortmann
(Ed.)).

Mazzatenta, O.L. (1996). China’s Warriors Rise From the Earth. National Geographic,
October 1996, pp. 68-85.

Meal, H.C. (1984). Putting proudction decisions where they belong. Harvard Business
Review, Vol. 62, No. 2, pp. 102-111.

Meester, G.J. (1996). Multi-Resource Shop Floor Scheduling. PhD Thesis. Twente University
of Technology, Enschede.

Merriam. (1993). Merriam-Webster’s collegiate dictionary, Tenth edition. Merriam-Webster,
Springfield.

MESA. (1997). Various WWW pages on http://www.mesa.org/
Meyer, B. (1988). Object-oriented software construction. Prentice-Hall, London.
Micklei, E.M. (1993). Methodisch ontwerpen van de besturingsstructuur. MSc Thesis.

Eindhoven University of Technology, Eindhoven. (in Dutch)
Morgan, M.H. (1960). Vitruvius : The ten books on architecture. Translated by Morris Hicky

Morgan. Dover, New York.
Morris, C.R. and C.H. Ferguson. (1993). How Architecture Wins Technology Wars. Harvard

Business Review, March-April 1993, pp. 86-96.
Mortel-Fronczak, J.M. van de, J.E. Rooda, and N.J.M. van den Nieuwelaar. (1995).

Specification of a Flexible Manufacturing System Using Concurrent Programming.
Concurrent Engineering: Research and Applications, Vol. 3, No. 3, pp. 187-194.

123

Mortel-Fronczak, J.M. van de, and J.E. Rooda. (1996). On the integral modelling of control
and production management systems. In: Proceedings of the Advances in Production
Management Systems conference (APMS ’96), (N. Okino, H. Tamura, and S. Fujii
(Eds.)), pp. 171-176. IFIP, Laxenburg.

Mortel-Fronczak, J.M. van de, and J.E. Rooda. (1997). A Case Study in the Design of Control
Systems for Flexible Production Cells. In: Proceedings of the Workshop on
Manufacturing Systems: Modelling, Management and Control (MIM ’97).

Nell, J.G. (1996). Enterprise Representation: An Analysis of Standards Issues. In:
Proceedings of the IFIP TC5 Working Conference on Models and Methodologies for
Enterprise Integration (P. Bernus and L. Nemes (Eds.)), pp. 56-68. Chapman & Hall,
London.

Orfali, R., D. Harkey, and J. Edwards. (1996). The Essential Distributed Objects Survival
Guide. Wiley, Chichester.

Parnas, D.L. (1972). On the criteria to be used to decompose systems into modules.
Communications of the ACM, Vol. 15, No. 12, pp. 1053-1058.

Pels, H.J. (1988). Geïntegreerde informatiebanken : Modulair ontwerp van het conceptuele
schema. PhD Thesis Eindhoven University of Technology. Stenfert Kroese, Leiden.
(in Dutch)

Pels, H.J., and J.C. Wortmann. (1990). Modular design of integrated databases in production
management systems. Production Planning and Control, Vol. 1, No. 3, pp. 132-146.

Perry, D.E., and A.L. Wolf. (1992). Foundations for the Study of Software Architecture. ACM
SIGSOFT, Vol. 17, No. 4, pp. 40-52.

Philips CFT. (1987). CAM Reference Model. CFT Report 13/87.
Plasschaert, A.W.A. (1996). A Study on Shop Floor Control : Principles, Practice and

Products. Internal EUT report.
Prabhu, V.V., and N.A. Duffie. (1995). Modelling and Analysis of Nonlinear Dynamics in

Autonomous Heterarchical Manufacturing Systems Control. Annals of the CIRP,
Vol. 44, No. 1, pp. 425-428.

Rappaport, A.S. and S. Halevi. (1991). The Computerless Computer Company. Harvard
Business Review, July-August 1991, pp. 69-80.

Rathwell, G.A., and T.J. Williams. (1996). Use of the Purdue Enterprise Reference
Architecture and Methodology in industry (the Fluor Daniel example). In: Proceedings
of the IFIP TC5 Working Conference on Models and Methodologies for Enterprise
Integration (P. Bernus and L. Nemes (Eds.)), pp. 12-44. Chapman & Hall, London.

Rational. (1997). Unified Modelling Language. Version 1.0. (available to download from
http://www.rational.com/)

Rechtin, E. (1991). Systems Architecting: Creating & Building Complex Systems. PTR
Prentice Hall, Englewood Cliffs.

Rechtin, E. (1992). The art of systems architecting. IEEE Spectrum, Vol. 29, No. 10,
pp. 66-69.

Rechtin, E., and M.W. Maier. (1997). The art of systems architecting. CRC Press, Boca
Raton.

References

124

Reithofer, W. (1996). Bottom-up Modelling with CIMOSA. In: Proceedings of the IFIP
TC5/WG5.3/WG5.7 international conference on the Design of Information
Infrastructure Systems for Manufacturing (DIISM ’96), (J. Goossenaerts, F. Kimura,
and H. Wortmann (Eds.)), pp. 128-139. Chapman & Hall, London.

Renkema, T.J.W. (1996). Investeren in de informatie-infrastructuur : richtlijnen voor
besluitvorming in organisaties. PhD Thesis. Eindhoven University of Technoloy,
Eindhoven. (in Dutch)

Rooda, J.E. (1996). The Modelling of Industrial Systems. Uncorrected preliminary version,
lecture notes, Eindhoven University of Technology.

SAP AG. (1997). R/3 Business Engineer : Knowledge-based, interactive R/3 configuration
and continuous change management. (available to download from
http://www.sap.com/products/imple/media/pdf/50014850.pdf)

Schlotz, C., and M. Röck. (1995). Reorganization of a production department according to the
CIMOSA concepts. Computers in Industry; special issue on Validation of CIMOSA,
Vol. 27, No. 2, pp. 179-189.

Schönewolf, W., C. Rang, W. Schebesta, and M. Röck. (1992). TRAUB/IPK Pilot/Testbed
Volume – Specification Phase. VOICE report R92073.

SEI, the Software Engineering Institute. (1997). What is software architecture? (available to
download from http://www.sei.cmu.edu/technology/architecture/definitions.html)

Sematech. (1996). Computer Integrated Manufacturing (CIM) Application Framework.
Specification 1.3. Sematech Technology Transfer # 93061697F-ENG.

Simon, H.A. (1981). The Sciences of the Artificial. Second edition. MIT Press, Cambridge.
Simpson, J.A., R.J. Hocken, and J.S. Albus. (1982). The Automated Manufacturing Research

Facility of the National Bureau of Standards. Journal of Manufacturing Systems,
Vol. 1, No. 1, pp. 17-32.

Smit, H. (1992). A Hierarchical Control Architecture for Job-Shop Manufacturing Systems.
PhD Thesis. Eindhoven University of Technology, Eindhoven.

Smith, R.G. (1980). The Contract Net Protocol: High-Level Communication and Control in a
Distributed Problem Solver. IEEE Transactions on Computers, Vol. C-29, No. 12,
pp. 1104-1113.

Solberg, J.J., and J.A. Heim. (1989). Managing Information Complexity in Material Flow
Systems. In: Advanced Information Technologies for Industrial Material Flow
Systems, (S.Y. Nof and C.L. Moodie (Eds.)), pp. 3-20. Springer Verlag, Berlin
Heidelberg.

Soni, D., R.L. Nord, and C. Hofmeier. (1995). Software Architecture in Industrial
Applications. In: Proceedings of the International Conference on Software
Engineering, (R. Jeffrey and D. Notkin (Eds)), pp. 196-207. ACM, New York.

Sorge, W. van. (1997). Fact biedt integrale aansturing. CA Techniek, Vol. 16, No. 3,
pp. 74-79. (in Dutch)

Spur, G., K. Mertins, and W. Süssenguth. (1990). Integrated Information Modelling for CIM.
In: Proceedings of the CIMCON ’90, (A. Jones (Ed.)), pp. 373-389. NIST Special
Publication 785, Gaithersburg.

Stevens, M., P. van der Putten, and R. van Weert. (1994). Systematisch specificeren van
electronica. Centrum voor Micro-Elektronica, Veenendaal. (in Dutch)

125

Stipdonk, G.J.H. van. (1997). Specification for the PLC-program of the Model Factory.
MSc Thesis. Eindhoven University of Technology, Eindhoven.

Sugimura, N. (1996). Personal communication.
Suh, N.P. (1990). The Principles of Design. Oxford series on advanced manufacturing.

Oxford University Press, Oxford.
Tanenbaum, A.S. (1988). Computer networks. Second edition. Prentice-Hall, Englewood

Cliffs.
Timmermans, P.J.M. (1993a). Modular Design of Information Systems for Shop Floor

Control. PhD Thesis. Eindhoven University of Technology, Eindhoven.
Timmermans, P. (1993b). Control architectures and modular information systems:

a comparative experiment. In: Proceedings of the international conference on
Advances in Production Management Systems (APMS ’93), (I.A. Pappas and I.P.
Tatsiopoulos (Eds.)), pp. 387-394. Elsevier Science Publishers.

Timmermans, P., and L. Szakal. (1996). A comparative experiment of control architectures.
Computers in Industry, Vol. 28, No. 3, pp. 185-193.

Tönshoff, H.K., and M. Winkler. (1995). Shop Control for Holonic Manufacturing Systems.
In: Proceedings of CIRP ’95, (Y. Koren (Ed.)), pp. 329-336. Also published in
Manufacturing Systems, Vol. 25, No. 3, pp. 277-281, 1996.

Upton, D.M., M.M. Barash, and A.M. Matheson. (1991). Architectures and auctions in
manufacturing. International Journal of Computer Integrated Manufacturing, Vol. 4,
No. 1, pp. 23-33.

Valckenaers, P., F. Bonneville, H. Van Brussel, L. Bongaerts, and J. Wyns. (1994). Results of
the Holonic Control System Benchmark at KULeuven. In: Proceedings of the
Rensselaer's 4th International Conference on Computer Integrated Manufacturing and
Automation Technology (CIMAT), pp. 128-133. IEEE Computer Society Press,
Los Alamitos.

Veeramani, D., B. Bhargava, and M.M. Barash. (1993). Information system architecture for
heterarchical control of large FMSs. Computer Integrated Manufacturing Systems,
Vol. 6, No. 2, pp. 76-92.

Waes, R.M.C. van. (1991). Architectures for Information Management. PhD Thesis,
Tinbergen Institute research series no. 11. Thesis Publishers, Amsterdam.

Ward, P.T., and S.J. Mellor. (1985). Structured Development for Real-Time Systems, Volumes
I, II, and III. Yourdon, London.

Wiendahl, H.-P., and V. Ahrens. (1995). Knowledge-Based Support for Planning and Control
in Distributed Production Systems. In: Proceedings of the IFIP 5.7 Working
Conference on Managing Concurrent Manufacturing to Improve Industrial
Performance, pp. 429-443.

Williams, T.J. (on behalf of the CIM Reference Model Committee, Purdue University).
(1989). A reference model for computer integrated manufacturing from the viewpoint
of industrial automation. International Journal of Computer Integrated
Manufacturing; special issue on CIM Architecture, Vol. 2, No. 2, 1989, pp. 114-127.

Williams, T.J. (1994). The Purdue Enterprise Reference Architecture. Computers in Industry;
special issue on CIM Architectures, Vol. 24, No. 2-3, pp. 141-158.

References

126

Williams, T.J., P. Bernus, J. Brosvic, D. Chen, G. Doumeingts, L. Nemes, J.L. Nevins,
B. Vallespir, J. Vlietstra, and D. Zoetekouw. (1994a). Architectures for integrating
manufacturing activities and enterprises. Computers in Industry; special issue on CIM
Architectures, Vol. 24, No. 2-3, pp. 111-139.

Williams, T.J., J.P. Shewchuk, and C.L. Moodie. (1994b). The role of CIM architectures in
flexible manufacturing systems. In: Computer control of flexible manufacturing
systems (S.B. Joshi and J.S. Smith (Eds.)), pp. 1-30. Chapman & Hall, London.

Wortmann, J.C., D.R. Muntslag, and P.J.M. Timmermans. (1997). Customer-driven
Manufacturing. Chapman & Hall, London.

Wyns, J., H. van Brussel, P. Valckenaers, and L. Bongaerts. (1996). Workstation Architecture
in Holonic Manufacturing Systems. In: Proceedings of the 28th CIRP International
Seminar on Manufacturing Systems, Johannesburg, South Africa.

Yourdon, E., and L.L. Constantine. (1979). Structured design: Fundamentals of a Discipline
of Computer Program and Systems Design. Prentice-Hall, Englewood Cliffs.

Zachman, J.A. (1987). A framework for information systems architecture. IBM Systems
Journal, Vol. 26, No. 3, pp. 276-292.

Zelm, M., F.B. Vernadat, and K. Kosanke. (1995). The CIMOSA business modelling process.
Computers in Industry; special issue on Validation of CIMOSA, Vol. 27, No. 2,
pp. 123-142.

Zwegers, A.J.R., and T.A.G. Gransier. (1995). Managing re-engineering with the CIMOSA
architectural framework. Computers in Industry, Vol. 27, No. 2, pp. 143-153.

Zwegers, A.J.R., S.G. Fang, and H.J. Pels. (1995). Evaluation of Architecture Design with
CIMOSA. In: Pre-prints of ASI ’95 (P.P. Groumpos and A. de Oliveira (Eds.)). Also
published in Computers in Industry, Vol. 34, No. 2, 1997, pp. 187-200.

Zwegers, A.J.R., H.J. Pels, R.L.J. Schrijver, and R.J. van den Berg. (1996). An agent based
control system for a model factory. In: Proceedings of the Advances in Production
Management Systems conference (APMS ’96), (N. Okino, H. Tamura, and S. Fujii
(Eds.)), pp. 293-298. IFIP, Laxenburg.

Zwegers, A., R. Schrijver, and A. Santana Alguacil. (1997a). Modelling of an agent based
control system for a model factory with the specification language χ. Report
EUT/BDK/88. Eindhoven University of Technology, Eindhoven.

Zwegers, A.J.R., L.H.Th.M. van Beukering, D. van Schenk Brill, and H.J. Pels. (1997b).
A Comparison of Three Agent Based Control Systems. In: Proceedings of ASI ’97
(P.P. Groumpos and G.L. Kovács (Eds.)), pp. 209-216.

Zwegers, A., M. Verweij, and R. van den Berg. (1997c). Flexibel produceren door middel van
holonic manufacturing. CA Techniek, Vol. 16, No. 5, pp. 22-26. (in Dutch)

Zwegers, A.J.R., and H.J. Pels. (1998). Application of Reference Architectures for Enterprise
Integration. In: Computer Aided and Integrated Manufacturing Systems Techniques
and Applications (C.T. Leondes (Ed.)). Gordon and Breach, Newark (to be published).

127

A. Application of CIMOSA at Traub

A.1 Introduction

This appendix describes the project, in which Traub AG reorganised its production
department. The main reason to initiate the project was the desire to obtain a more flexible
and efficient production department, and hence to react in a better way to changing customer
demands, and to contribute to the company’s competitiveness in the global market.

Figure A-1 shows Traub’s production control system before the reorganisation. At that time, it
consisted of a mainframe with the Production Planning System, an IBM RS6000 for area
control functionalities, and several cell controllers. Traub made a global production planning
for a year and a half in advance. In this planning, machine types, options and number of

TND 30 /42

NC-machine

NC-machineTerminal

Transport

IBM host

Token Ring

Cell controller

IBM RS6000

NC Programming

TND 30 /42

NC-machine

NC-machineTerminal

Transport

Ethernet

Cell controller

Terminal

Other applications:
- CAD
- Purchase

Figure A-1 Traub’s production control system before the reorganisation

Appendix A

128

products were incorporated. Every ten days, a partial planning was made, which consisted of
timed orders for design, purchase, and production control. It was possible to control the order
flow from the area controller by releasing orders, standing in a ‘ten days order pool’.
Dedicated applications established the transmission of NC-programs between the area
controller and the cell controllers. The worker at the NC-machine got a list of order data,
and could transfer and edit NC-programs from and to the machines, and transmit the
optimised programs to the area controller. Order progress and other monitoring data could be
automatically sent from the machines to the area controller or by entering a message on a
terminal. Monitoring information was sent to the mainframe at the production planning level
from terminals on the shop floor located at several places near the machines.

One of the problems associated with the old situation at Traub was its flexibility to respond to
changes in customer needs. Shorter delivery times with simultaneous reduction of stocks were
already forcing Traub to shorten machining times and to link all processes in design, planning,
and shop floor more closely. Even more, it became frequently necessary to rearrange plans at
short notice because of changes in demand, machine downtimes, missing production facilities,
urgent contracts with large customers, absence of staff, or rejects. Re-scheduling of
manufacturing jobs became difficult due to limited feedback from the shop floor, and
expenditure for short-notice re-work and machine modifications increased sharply.

Especially the preparatory sectors were the areas where increased deadline pressure and the
tendency towards smaller and smaller batch sizes added to planning complexity and
expenditure. Most notably, tool management became problematic, since the lack of up to date
information concerning the availability of machine tools and their components also reduced
the production capacity while operators waited for resources. Furthermore, production
management had to cope with a growing amount of specialised tools necessary to produce
individually designed machine parts. There were nine machine centres that each had a stock of
approximately 120 tools. Each tool consists of eight to ten components. At that time, there
was no registration of which tool or component was in which machine (Schönewolf et al.,
1992).

A.2 Reorganisation objective

The most important target of the reorganisation was to optimise the order throughput time.
In order to achieve this, a number of changes had to be implemented related to the cooperation
on optimised order scheduling between the area controller and the cell controllers. Other
changes concern tool management, monitoring data acquisition, and so on. In this subsection,
only a few major changes are discussed.

The old, process-oriented manufacturing departments such as turning, milling, and grinding,
were changed for a more flexible organisation. The new organisation is based on the
principles of cellular manufacturing, which involved the creation of clusters of machines that
are designed and arranged to produce a specific group of component parts (Black, 1983).
In particular, Traub expected the cellular manufacturing principles to result in a decrease of
set-up times.

Application of CIMOSA at Traub

129

An area control system was required that had to perform the fine planning of manufacturing
device utilisation under rescheduling conditions with the help of a production scheduling
simulation tool. This area control system had to be linked enterprise-wide with existing
production planning, CAD, and CAM applications. It had to control not only the
manufacturing processes but also the delivery of material, tools, and equipment. Furthermore,
it had to take into account the actual status of each NC machine. This information had to be
transferred on-line – without any influence of the working people – directly from the machine
controller to the planning application of the area controller.

Fine-planning had to be supported by efficient tool management to get a tool-optimised order
sequence in order to decrease the set-up time for each machine. This system would provide
information of the location and states of tools by means of a tool identification system and a
central database with tool information. It was necessary to integrate the tool logistics
application with the entire existing infrastructure (Schlotz and Röck, 1995).

A.3 Requirements definition

Conform the three domains identified in Chapter 3, Traub defined requirements in a
functional sense for the application to be developed, and in a technological/physical sense for
the application’s underlying infrastructure. In other words, requirements were defined for both
the functional and technology aspects of the various components in the manufacturing system.
In addition, requirements were imposed on the re-engineering process, influenced by financial
and time aspects.

Traub described its requirements from a functional point of view in terms of a scenario. In this
scenario, the needed functions and information flows, and their places in the total
manufacturing system were outlined. For instance, part of the scenario for the fine-planning
activity (precision planning) was described as follows:

‘The work sequences released are assigned to the individual machines during the automatic
precision planning. During a planning sequence, only the machine capacity is taken into
account. Starting from the terminating time given by the order pool system, timing is done
backwards. If the calculated starting time lies in the past, the timing is done forwards while
considering the transition time. If the given terminating time is not observed during this
forward scheduling, this is explicitly displayed in the system. No alternative machine groups
are considered in the automatic precision planning’ (Schönewolf et al., 1992).

Requirements for the technology to be used were given as well. Besides Traub’s current
needs, requirements took into consideration the existing manufacturing system, strategic
aspects like standards, the factory environment, and production process constraints.
Traub mainly defined its requirements of the infrastructure in terms of the CIMOSA
integrating infrastructure, for instance:

Appendix A

130

• ‘multiple machines must be connected to a homogeneous system’ (presentation services),
• ‘connectivity to multiple databases on heterogeneous networks must be achieved from

different kinds of computer systems’ (information services),
• ‘the network must be transparent’ (common services) (Schönewolf et al., 1992).

A.4 Architectural design

After requirements were defined, the design of the CIM system commenced. The design
activities of Traub’s reorganisation project could be distributed over two phases:
architectural design and detailed design. In the architectural design phase, the system’s
functional and technology architecture were defined, supported by the CIMOSA framework.
In the detailed design phase, the system was worked out in more detail, based on the defined
architectures.

Area control was positioned between the production planning level (not in the scope of the
reorganisation project) and the shop floor. As an autonomous decision centre in a distributed
order planning structure, it processes the order pool coming from the production planning
system, and performs scheduling and management tasks for machine level planning.
The incoming orders are scheduled for a ten days period on the various machine groups.
For each machine group, the area controller performs a daily planning to achieve an optimised
order schedule with time slices of two days. The new order sequence on a machine is
calculated on the basis of the available tools and the list of needed tools, which is extracted
from the NC programs for the new orders. Tools available at NC machines or in the tool store
can be requested. Tool handling is supported by the tool management process.

Being intermediate between production planning and shop floor, area control not only has to
provide the shop floor with orders, it also allows to feed back information from the shop floor
to the production planning system. Then, this system may use data that reflect the actual
situation in the shop floor in order to optimise the planning process. Based on on-line
messages from the cell control level, the area controller also supports processing and
visualisation of data such as the actual status of orders.

The scheduled orders in the time frame of two days are sent to the cell controller for
execution. Tool management has allocated the tools required for the orders, and the NC
programs are downloaded from the NC program server. Subsequently, the cell controller acts
as an autonomous decision centre, responsible for the execution of the orders, for the
collection of machine and operational data, and for monitoring the shop floor processes.

Traub defined its production control and tool management system by means of modelling this
system and its environment with the CIMOSA requirements level. Firstly, Traub built a user
model with the Systems Analysis and Design Technique, since a tool and knowledge covering
this modelling method was available. Later, Traub converted the user model to a CIMOSA
model at requirements definition level. For modelling at requirements level, Traub used the
modelling tool ‘GtVOICE’, which is described by Didic et al. (1995). Traub specified the
functions and their interrelations for both the tool logistic system and its direct neighbours. By

Application of CIMOSA at Traub

131

modelling, Traub structured its system component functions, defined the components’
allowed inputs and outputs, and specified the relations between these components. In other
words, by modelling at requirements definition level a functional architecture was designed.

Figure A-2 shows a CIMOSA model that presents a global view on Traub’s production
control functions. The principal control functions are captured in CIMOSA domains, the
constructs that embrace the main enterprise processes. Figure A-2 gives the identified
domains and their relations in the form of domain relationships. Non-CIMOSA domains are
parts of the enterprise which have not been considered for the moment and which could be
detailed in the future such as ‘Purchase’ and ‘DNC-Node’, or which are closed applications
that can not be described such as the ‘Area Control’ application. Usually, these applications
are legacy systems.

Area
Control

New
Orders

Tool Data
Consign

Messages
NC-Program

Version

Cell
Control

Manufacturing
Messages

Tool
Movement

NC-Program Exception

NC-Machine
Handling

Exception
Handling

Tool
Management

NC-Program
Administration

Purchase DNC-Node

Domain
Relationship

Non-CIMOSA
Domain

CIMOSA
Domain

Figure A-2 Overview of Traub’s production control functions

Traub also made some models that showed more details than Figure A-2. Figure A-3 is a
partial refinement of the previous figure, showing domains and domain processes.
CIMOSA represents main enterprise functionalities as domain processes. CIMOSA offers a
modular modelling approach; the system can be extended with new domain processes, and
system modifications can be limited to few domain processes. Enterprise operation is
structured into a set of interoperating domain processes exchanging results and requests.
They encapsulate a well-defined set of enterprise functionality and behaviour to realise certain
business objectives under given constraints. In the Traub case, examples of concurrent
processes are the processing of tool data and the preparation of tools. These processes are
represented in domain ‘Tool Management’ by two independent domain processes, namely
‘Tool Data Processing’ and ‘Prepare Tools’. Note that the domain processes in Figure A-3
influence each other’s behaviour.

Appendix A

132

CIMOSA
DOMAIN

Cell
Control

NON-CIMOSA
Domain

Area Control

Process
Monitoring

Order
ProcessingMonitoring

Data

CIMOSA
DOMAIN

Tool
Management

Tool Data
Processing

Prepare
Tools

P
ro

ce
ss

 N
e
w

 O
rd

e
r

O
rd

e
r

S
ta

tu
s

T
o
o
ls C

o
n
sig

n
e
d

Prepare N
ew

 O
rder

Manu-
facturing

Set Up
NC-Machine

CIMOSA
DOMAIN

NC-Machine
Handling

M
achine D

ata

S
ta

rt M
a
n
u
fa

ctu
rin

g

In
st

al
l T

oo
ls

O
ut

pu
t T

oo
ls

= Domain Process

Figure A-3 Partial refinement of Traub’s domains

Domain processes are the root of the decomposition tree; they employ business processes
which are in the middle of the tree. The leaves are named enterprise activities and are
employed by business processes or, if there are no business processes, by domain processes.
The behaviour of a certain business or domain process is defined by rules, according to which
enterprise activities belonging to this process are carried out. Enterprise activities represent
the enterprise functionality as elementary tasks, and they are defined by their inputs, their
outputs, their function and their required capabilities. Figure A-4 presents a part of the
behaviour of domain process ‘Order Processing’; for clarity, some relationships have been
deleted. Events, which are either received from or sent to other domain processes, are
represented by a Z-shape; enterprise activities are shown as boxes labelled ‘EA’. Note that
there are no business processes specified for this domain process. The large triangles indicate
behavioural rules according to which enterprise activities or business processes are carried
out. Figure A-4 was made by using the GtVOICE tool.

Note that the requirements definition level of the CIMOSA modelling framework is used at
architectural design activities and not during the requirements definition process. The reason
is that CIMOSA does not support a ‘true’ definition of requirements in the sense as described
in the previous subsection. Instead, the CIMOSA requirements definition level offers support
in structuring a manufacturing system, i.e. in defining a functional architecture.

Application of CIMOSA at Traub

133

Along with defining a functional architecture, Traub also outlined a technology architecture,
which was influenced by the existing infrastructure. When defining functional components,
one immediately maps these components on technological ones; the functional architecture is
depicted on the technology architecture. For instance, when a designer defines a control
function, he decides to execute this function by a certain type of software module. In addition,
the designer determines the interaction of this component with other technology components.

Together with its partner, FhG-IPK* in Berlin, Traub built a testbed for demonstrating the
viability of the new production concepts. Traub initially defined three production management
domains which it considered in its manufacturing system (or rather in its testbed), namely tool
management, order planning (‘cell control’ in Figure A-2), and machine handling.
Subsequently, Traub distributed these three functions over an area controller, a cell controller,
and attached machines.

The technology architecture of the testbed is shown by Figure A-5. The area control level
comprised of a DecStation 5100 for long term order planning and tool management.
The area controller’s user interface was implemented via the X.11 protocol on a terminal that

* FhG-IPK: Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik (IPK)

Figure A-4 Process behaviour of domain process ‘Order Processing’ (partly)

Appendix A

134

was connected to the area controller via TCP/IP on Ethernet. Communication with the cell
controller was established via MMS. The cell controller was a 486 PC running OS/2, enabling
cell controller applications to run in a multitasking environment. A MAP network connected
the cell controller with shop floor devices. The cell controller received orders from the area
controller, after which it processed the orders, controlling the shop floor devices via MMS.
These devices consisted of a robot controller, which was connected to an industrial robot,
a Traub NC machine, and a PLC that controlled a conveyor and a round-table. Whereas the
PLC had a MAP interface and connected directly to the MAP network, the NC machine and
the robot controller communicated with the network via a ‘protocol converter’. The converter
presented functionalities of both the NC machine and the robot controller as MMS Virtual
Machine Devices to the MAP network. The machine and the robot controller connected to the
protocol converter via V.24/LSV2.

Ethernet

MMS X.11

MMS

MMS MAP

MMS

V24/LSV2

NC-Machine
Robot Controller
Robot

Round Table
Drilling Unit

Area Controller X-Terminal

Cell Controller

PLC

Protocol Converter

Figure A-5 Technology architecture of Traub’s testbed

A.5 Detailed design

In the second design phase, Traub specified its production control system in more detail,
elaborating on the architectures that were defined in the architectural design phase.
Both architecture definitions were further decomposed and worked out into detailed system
specifications.

By means of the CIMOSA design specification level, a designer is able to detail a
manufacturing system’s functionality, taking the model at requirements level as starting point.

Application of CIMOSA at Traub

135

The requirements definition modelling level supports a user in the definition of his system’s
functional architecture, whereas the role of the design level is to restructure, detail,
and optimise the required functionality in a consistent model. System optimisation can be
supported by simulation, taking all business and technical constraints into account.
By the specification of a model at design level, a designer describes the full functionality of a
CIM system, while staying within the definition of the functional architecture. If the model at
design specification level reveals inconsistencies, or the model lacks optimisation, it might be
necessary to adjust the model at requirements definition level.

In addition to detailing the functionality of the system, the designer specifies the technology
to be employed in order to achieve the required system functionality. Simply stated, CIMOSA
prescribes that for each of the most detailed specified functions, called functional operations,
a specified resource is assigned that provides the required capabilities. The prime task of the
design specification modelling level is to establish a set of (logical) resources that together
provide the total set of required capabilities. Some of these required capabilities are offered by
the generic services of the integrating infrastructure.

For instance, Traub made a model at design specification level, elaborating on the previously
made model at requirements definition level. Traub specified the required information
structure, it defined its most elementary functions, and it assigned resources to these
functions. During the creation of the models, the function and information view were
extensively used, whereas the resource and organisation view were barely addressed.
It was not sensible to consider other factors such as responsibility (specified by constructs of
the organisation view) before Traub was satisfied with the new control structure regarding
functionality and information flow. Part of the specified information structure is given by
Figure A-6.

Customer Order
(0,1)

generates
(1,n) Shop Floor

Order

Order

(1,1)

assigned to

(1,n)

WorkpieceMaterial
(1,1) described

by

(1,n)
Work Schedule

(1,n)

contains

(0,n)

Program
(1,n) set into

operation
(1,n)

(0,n)
triggers

(1,n)

(1,n)

order
sequence

(n,m) Distribution
Data

(1,n) controlled
by

(1,n)

Subset Relation

Relation

Entity

Figure A-6 Model at Particular Design Specification Level, Information View (partially)

A refinement of specified functions is accompanied by a refinement of the technology that
provides the desired functions. An enterprise looks for adequate products, either commercial

Appendix A

136

ones or user developed. The technology components, which are defined in the architectural
design phase, are specified completely. The definitions of the CIMOSA integrating
infrastructure support this specification. Then, the products that fulfil the design specifications
are selected, considering enterprise policies and constraints. CIMOSA states that the final
build/buy decisions should result in a model that describes the implemented system.
Appropriately, CIMOSA calls this model the implementation description model. However,
since the AMICE consortium defined this part of the modelling framework after Traub
reorganised its production department, Traub does not have any experience with it.

In order to implement a prototype, Traub identified candidates that might help to implement
software modules or that might be used as complete software modules within the testbed.
From the system specification and the analysis of possible candidates, Traub defined products,
tool kits, and tools to implement the functionalities of the area controller and the cell
controller. Furthermore, network interfaces were adopted and products fulfilling integrating
infrastructure services were chosen. For example, Oracle 6 was selected as the product that
had to provide the information services. It was connected by an SQL-gateway to EasyMAP,
which was used to provide the testbed’s communication services. The communication
services are part of the common services. In a later stage, FhG-IPK’s communication platform
was chosen in order to offer the desired communication services to the operational system.

A.6 Implementation

The final phase contains the implementation and release for operation of the specified CIM
system. Implementation is based upon the results and decisions of the previous phases.

Implementation activities concern those tasks needed to bring the system into operation.
During the implementation phase, Traub procured and built the necessary new physical
components. These components were tested on the testbed and the correctness of the
underlying logical model was verified. Traub decided to implement its physical system in an
evolutionary way, with stable, intermediate forms. This ways, Traub hoped to achieve a stable
implementation of all products and their interactions. When the system passed the tests with
satisfactory results, the system was prepared for transfer to production.

Traub felt that user acceptance was a major concern. It realised that the complex changes of
the manufacturing system had to be put carefully to the operators in the production
environment. Therefore, after testing single components as prototypes in the test environment,
training sessions for the users of the area controller and the cell controller were held. In order
to make the workers familiar with the new system, parts were transferred to the production
without being integrated in the existing system. In addition, the graphical user interface was
adapted according to the users’ needs, which was done to get a greater acceptance. When
Traub believed that the operators were ready to use the new technologies, the new
components were integrated in the existing system and released for operation.
Finally, the accepted production control system was released for operation. Figure A-7 shows
the technology architecture of Traub’s production control system as it was implemented
during the reorganisation project.

Application of CIMOSA at Traub

137

Cell Controller 1 Cell Controller 2 Cell Controller 3 Cell Controller 4 Cell Controller 5

Consign Tools Tool PreparationNC Program ServerHost Area Controller

Token Ring Serial

TND 30 /42 TND 30 /42 TND 30 /42 TND 30 /42 TND 30 /42

Machine Group
Scharmann

Machine Group
Scharmann 2

Machine Group
Heller

Machine Group
Heller 2

Machine Group
Böhringer

Ethernet

Figure A-7 Technology architecture of Traub’s new production control system

139

B. CIMOSA and the GERAM Framework

B.1 Introduction

By means of the GERAM framework (see Figure B-1), the overlaps and differences of
enterprise reference architectures can be identified. After all, the ways enterprise reference
architectures try to achieve their objectives differ from one reference architecture to the other.
The following components are the minimal set of elements a reference architecture should be
accompanied with:
• enterprise engineering methodologies, which can be thought of as road-maps and

instructions of how to use a reference architecture in an enterprise integration project;
• modelling languages, which are needed to support enterprise integration, and which

should be placed in relation to each other by means of the reference architecture;
• a modelling methodology, which comprises a set of guidelines that define the steps to be

followed during a modelling activity.

In addition, the following components are elements that should preferably accompany an
enterprise reference architecture:
• modelling tools, which are computer programs that help the construction, analysis, and,

if applicable, the execution of enterprise models as expressed in enterprise modelling
languages;

• reference models, which contain a formal description of a type (or part of an) enterprise;
• enterprise modules, which are products that implement (parts of) a reference model,

for example an integrating infrastructure, or components thereof.

Enterprise
Reference

Architecture

employs
Enterprise

Engineering
Methodologies

utilise Modelling
Languages

employ Modelling
Methodologies

Modelling
Tools

implemented in

Reference
Models

Enterprise
Models

used to build

Enterprise
Modules

used to implement

Enterprise
Operational

Systems

Figure B-1 Components of the GERAM framework (reprinted for convenience)

Appendix B

140

B.2 CIMOSA and the GERAM framework

This section evaluates CIMOSA’s value as a suitable framework for enterprise integration in
practice. For this, the sets of essential and desirable elements that should accompany reference
architectures are used.

On the eligibility of the reference architecture
Subsection 5.5.1 states that the architecting concepts of domains, hierarchy, and views are
represented in CIMOSA’s modelling framework. A reference architecture should allow the
specification of functional control architectures, either by refinement of reference models,
or by design from scratch. Reference models were not used during the Traub reorganisation
project; instead, models were made from scratch. These models proved their usefulness by
revealing some bottlenecks and inconsistencies in the organisation (Schlotz and Röck, 1995).
The Traub case shows that the CIMOSA modelling framework supports designers during the
specification and analysis of functional architectures of production control systems.

Most characteristics of functional control architectures can be specified by means of the
CIMOSA modelling framework (Zwegers et al., 1995). Domain processes, events, and object
views are adequate constructs to specify concurrent processes and the exchange of
information and products between these processes. By defining domain processes and by the
establishment of relations between them, any type of functional control architecture may be
modelled. However, CIMOSA does not support the specification of a true technology
architecture, as shown in Subsection 5.5.1.

On the inadequacy of the enterprise engineering methodology
CIMOSA lacks a ‘true’ engineering methodology, which provides instructions of how to go
about an enterprise integration project or programme. Williams et al. (1994a) notice that
CIMOSA does have a ‘life history’ for CIM systems, namely the CIMOSA system life cycle,
but that this description has not been extended into a ‘true’ methodology. Zwegers and
Gransier (1995) give a description of the engineering approaches adopted by the three
industrial partners of the VOICE project, which used CIMOSA during their re-engineering
trajectories. However, these engineering approaches have not been extended into a
methodology either. Possible users are not supported by knowledge on how to apply
CIMOSA to carry out integration projects. This point cannot be emphasised too much;
an enterprise reference architecture without matching methodology defeats its own object.

On the complexity of the modelling languages
Industry almost unanimously regards the modelling languages in the modelling framework as
too complex. In Traub’s view, the high complexity of the CIMOSA modelling framework
requires well-trained engineers (Schlotz and Röck, 1995). For example, Traub intensively
used the modelling framework’s function and information view, but the resource view and
organisation view were barely addressed. They were of little use to Traub. In addition,
the great number of constructs and their sometimes ambiguous definitions hamper a practical
application. A tool was needed to unambiguously define the meaning of constructs.

CIMOSA and the GERAM Framework

141

On the novelty of the modelling methodologies
A modelling framework should be accompanied by guidelines, called ‘model creation
processes’ by CIMOSA. A designer must be guided to navigate through the modelling
framework in a consistent and optimised path, in order to ensure complete, consistent,
and optimal models. During the modelling process for the Traub application, no such
modelling guidelines were available. After the AMICE project finished, some guidelines have
been defined, but their practical value for industry had not been established when this thesis
was written.

At the moment, CIMOSA provides a methodology to guide users in the application of its
modelling framework. Zelm et al. (1995) describe this so-called CIMOSA Business
Modelling Process. As for modelling at the requirements definition level, for example,
the top-down modelling process starts with the identification of domains, the definition of
domain objectives and constraints, and the identification of relationships between the
domains. Afterwards, the domains are decomposed into domain processes, which are further
decomposed in business processes and enterprise activities. The modelling process at
requirements definition level ends with some analyses and consistency checking.

Recently, new methodologies were proposed that aim to be improvements or alternatives to
the CIMOSA Business Modelling Process. For instance, Reithofer (1996) proposes a bottom-
up modelling methodology for the design of CIMOSA models. He claims that the CIMOSA
Business Modelling Process can hardly be focused on processes and activities that are relevant
to solve a concrete problem. His bottom-up modelling approach should not have this
disadvantage. In addition, Janusz (1996, 1997) asserts that existing CIMOSA models of
particular enterprises are not complete, not consistent, and not optimal. Also, these models
often describe only functions or sub-processes limited by department borders of an enterprise.
Therefore, she developed an algorithm that filters out process chains of an existing CIMOSA
model. Using the algorithm, the completeness and the consistency of the considered process
chains can be checked.

On the availability of the modelling tools
A modelling language should be supported by a software tool. During the creation of models,
problems might occur regarding the size and complexity of the architectural models.
Models become too big to be overlooked by the user, and they become inconsistent.
Furthermore, the modelling process without tool support is tardy, and maintainability and
extendibility of the models are jeopardised.

Some tools have been developed for modelling with CIMOSA, such as ‘GtVOICE’
(Didic et al, 1995) and ‘SEW-OSA’ (Aguiar et al., 1994). GtVOICE was developed by the
VOICE project. This tool ensures model consistency and reduces modelling time by easy
model modification and extension. In addition, it provides non-ambiguous interpretation of
CIMOSA constructs and a uniform way to present models among CIMOSA users.
Finally, GtVOICE makes communication with other tools feasible; interfaces were made to an
SQL data server and a rapid prototyping tool kit.

Appendix B

142

SEW-OSA (System Engineering Workbench for CIMOSA) was developed at the
Loughborough University of Technology in England. It combines the CIMOSA concepts with
Petri net theories, object-oriented design, and the services of an infrastructure called CIM-
BIOSYS (Aguiar et al., 1994). Both SEW-OSA and GtVOICE support the design of
CIMOSA models according to the CIMOSA Business Modelling Process as described by
Zelm et al. (1995).

On the absence of reference models
Perhaps most important for industry are guidelines that support designers to make the right
architectural choices, i.e. choices that result in flexible, effective systems. Industry needs
guidelines for the architectural design of systems in order to discard inadequate options early
in the design process, and to enable the selection of the best options. Clearly, such guidelines
are not present at the moment. However, it is not an objective of CIMOSA to provide such a
prescriptive methodology. The CIMOSA modelling framework aims to support system
designers with descriptive modelling of enterprise operation; it is a descriptive rather than a
prescriptive framework.

Nevertheless, the CIMOSA modelling framework offers the ability to develop reference
models with its partial modelling level. Best-practice reference models are the encapsulations
of the prescriptive guidelines mentioned above. As such, they are recognised as major tools to
support CIM system development projects (Faure et al., 1995). They should be based on the
architecting principles of modularity, structural stability, and layers as distinguished in
Chapter 4. Aguiar and Weston (1995) signal the need to populate workbenches with a library
of reference models. However, virtually no CIMOSA compliant reference models are
available at this moment.

CIMOSA lacks the guidelines and reference models that are needed to make a transition from
requirements to specification. After all, it prescribes how to make a specification of a system,
but is does not prescribe how to design the system. In terms of Chapter 3 and 4, it offers the
architecting concepts, not the principles or the business knowledge. It gives the ruler and
compass to draw a house, but it does not give the construction theory.

On the promises of the integrating infrastructure
The promises of the CIMOSA integrating infrastructure seem too good to be true.
Integration of hardware and software components, model execution, vendor independence,
reduced maintenance, and increased application portability and flexibility appeal to companies
facing a heterogeneous world. However, the CIMOSA specifications of the services as used
by Traub (AMICE, 1993b) reveal many gaps. Even more, no commercial product supporting
the CIMOSA specifications is present at the moment. Nevertheless, enterprises appear to be
more attracted by application integration promised by the integrating infrastructure than by
business integration as actually supported by the modelling framework.

143

C. GRAI/GIM and PERA

This appendix discusses two other enterprise reference architectures besides CIMOSA,
namely the GRAI Integrated Methodology and the Purdue Enterprise Reference Architecture.

C.1 GRAI/GIM

The GRAI laboratory of the University of Bordeaux, France, has been rather active in the field
of enterprise reference architectures. Besides developing their own ideas, the GRAI laboratory
contributed to the ESPRIT projects IMPACS* and AMICE. Here, the main elements of what
has become known as the GRAI Integrated Methodology (GIM) are described, namely a
‘global model’, a modelling framework, and a structured approach to guide the application of
the methodology.

The global model describes the invariant parts of a CIM system: the subsystems,
their relationships and their behaviour. The global model (sometimes called ‘macro reference
model’ or ‘reference model’) is based upon the concepts of three activity types and their
corresponding executional subsystems. These three subsystems are:
• the physical subsystem, which performs the activities of product transformation using

human and technical resources;
• the decisional subsystem, which guides production towards its goals;
• the informational subsystem, which feeds the other subsystems with information.
Sometimes, a fourth subsystem is distinguished, namely the functional subsystem
(Doumeingts et al., 1987; Doumeingts et al., 1992).

The modelling framework uses IDEF0 formalisms to model the physical and functional
subsystems, GRAI formalisms for the decisional subsystem, and MERISE formalisms for the
informational subsystem. The GRAI formalisms are shortly described; for the other
formalisms, the reader is referred to (Doumeingts et al., 1995). The GRAI formalisms consist
of the GRAI grid and the GRAI nets. The GRAI grid allows to model a decision system.
It is displayed as a table-like frame, and it uses a functional criterion to identify production
management functions and a decision cycle criterion to identify decisional levels.
Each function is decomposed into several levels according to the decision horizon H and
revision period P. A decision period is a time interval through which decisions are valid;
a revision period is a time interval at the end of which decisions are revised. The building
block of a grid is a decision centre which is the intersection of a production management
function and a decisional level. Decision centres are mutually connected by decision links and
information links. The GRAI nets allow to model the various activities of each decision centre
identified in the GRAI grid. The results of one discrete activity can be connected with the

* IMPACS: Integrated Manufacturing Planning And Control System. IMPACS was one of the first attempts to

design integrated planning tools that would bridge the gap between production planning and production
control.

Appendix C

144

support of another discrete activity. Since this is done for each decision centre, the links
between decision centres are shown (Chen et al., 1990b).

GIM’s structured approach (see Figure C-1) aims to cover the entire life cycle of the
manufacturing system. The approach consists of four phases: initialisation, analysis, design,
and implementation. Initialisation consists of defining company objectives, the domain of the
study, the personnel involved, and so on. The analysis phase results in the definition of the
characteristics of the existing system in terms of four user-oriented views. The design phase is

Existing
System

User
Requirements

Initialisation

Definition of the domain of the study
(First levels of the functional model)

Analysis
Phase

Consolidated user
requirements

User oriented
design

Implementation

Technical oriented
design

New
System

Functional
View

Analysis

Decisional
View

Analysis

Physical
View

Analysis

Informational
View

Analysis

Detection of
inconsistencies

Functional
View

Design

Decisional
View

Design

Physical
View

Design

Informational
View

Design

User oriented
specifications

Manufacturing
Design

Organisation
Design

Information
Design

Technical oriented
specifications

Figure C-1 GIM structured approach

Source: Doumeingts et al. (1995)

GRAI/GIM and PERA

145

performed in two stages: user oriented design and technical oriented design. User-oriented
design uses the results of the analysis phase to establish requirements for the new system,
again in terms of the four user-oriented views. Technical-oriented design consists of
transforming the user-oriented models of the new system design to technical-oriented models.
These models express the system requirements in terms of the required organisation,
information technology and manufacturing technology. Finally, the new system is
implemented (Doumeingts et al., 1995).

GRAI/GIM covers the whole life cycle of a manufacturing system, except the operation and
decommission phases. Its four views differ from CIMOSA’s; it introduces a decisional and
physical view. However, the models of the physical view do not describe physical attributes;
they describe functional attributes of physical elements. The four views used during the
analysis and user oriented design phases are translated to three implementation views during
the technical oriented design phase. Concerning modelling languages, GRAI/GIM is less
formal than CIMOSA. After all, CIMOSA aims to achieve model execution, and that requires
formal modelling languages. GRAI/GIM uses several known modelling techniques such as
IDEF0 and MERISE, and it developed the GRAI grids and nets. Although the GRAI
laboratory has completed many projects with its modelling framework, there is no modelling
methodology known in literature. Obviously, this does not imply that there is no such
methodology. GIM’s structured approach offers an enterprise engineering methodology.
However, this structured approach is focused on the initial phases of a system life cycle;
GRAI/GIM mainly supports designers during the analysis and design phases.

As for modelling tools, there is no tool known in literature that supports modelling with the
GRAI/GIM modelling framework. The same applies to reference models. GRAI/GIM is based
on a ‘global model’, a kind of generic model of an enterprise. However, no reference models
that encapsulate industry type or area specific knowledge are known. GRAI/GIM does not
aim to provide generic enterprise modules such as parts of an integrating infrastructure.

C.2 PERA

The Purdue Enterprise Reference Architecture (PERA) and its accompanying Purdue
Methodology were developed at the Purdue University, USA. This university took a leading
role in the definition of reference models for computer integrated manufacturing as well.

The Purdue Methodology is based on an extensive Instructional Manual that guides the
preparation of Master Plans. According to the methodology, an overall Master Plan is
necessary before attempting to implement any CIM programme. A Master Plan includes a
CIM Program Proposal, i.e. a set of integrated projects whose completion will assure the
success of the desired integration of the enterprise. The Purdue Enterprise Reference
Architecture provides the framework for the development and use of the Instructional Manual,
the resulting Master Plan, and the ultimately implemented CIM Program Proposal. PERA is
the glue that holds all aspects of the CIM programme together (Williams, 1994).

Appendix C

146

Figure C-2 shows that the Purdue Enterprise Reference Architecture is characterised by the
layered structure of its life cycle diagram. Starting with the Enterprise Business Entity, it leads
to a description of the management’s mission, vision, and values for the entity under
consideration. From these, the operational policies are derived for all elements of concern.
Two kinds of requirements are derived from the policies, namely those defining information-
type tasks and those defining physical manufacturing tasks. Tasks become collected into
modules or functions, which at their turn are connected into networks of information or of
material and energy flow. Then, technology choices are made; the place of the human in the
information architecture and in the manufacturing architecture is defined. The result of the
technology choices are three implementation architectures, namely the information systems
architecture, the human and organisational architecture, and the manufacturing equipment
architecture. After functional and detailed design, the life cycle goes through the construction
and operation phases, after which it is disposed of (Williams, 1994).

Identification of
the Enterprise

Business Entity

Specification
layer

Definition
layer

Concept
layerpolicies

requirements

building block
modules

networks

mission, vision, values

Detailed
design
layer

Manifestation
layer

Operations
layer

Recycle or
disposal

layer

R
e
cy

cl
e
 o

r
d
is

p
o
sa

l p
h
a
se

O
p
e

ra
tio

n
s

p
h

a
se

C
o
n
st

ru
ct

io
n

a
n

d
 in

st
a

lla
tio

n
p

h
a

se
D

e
si

g
n
 p

h
a
se

D
e
ta

ile
d

d
e

si
g

n
F

u
n
ct

io
n
a
l

d
e

si
g

n

D
e
fin

iti
o
n

p
h

a
se

C
o

n
ce

p
t

p
h

a
se

Enterprise Business Entity

O
p

e
ra

tio
n

s
re

g
io

n
Im

p
le

m
e
n
ta

tio
n
 r

e
g
io

n

F
u
n
ct

io
n
a
l

a
n
a
ly

si
s

re
g
io

n

Figure C-2 Phases and layers of the Purdue Enterprise Reference Architecture

Source: Williams (1994)

A specific feature of PERA is the emphasis it puts on the role of humans. By defining the
functions that will be performed by humans, the information and manufacturing architecture
are converted in the information systems architecture, the human and organisational

GRAI/GIM and PERA

147

architecture, and the manufacturing equipment architecture. Figure C-3 illustrates that this
definition involves three ‘lines’. The automatability line shows the absolute extent of pure
technological capability to automate tasks and functions, and is limited by the fact that many
tasks and functions require human innovation and cannot be automated with presently
available technology. The humanisability line shows the maximum extent to which humans
can be used to implement tasks and functions, and is limited by human abilities in speed of
response, physical strength, and so on. The extent of automation line shows the actual degree
of automation carried out or planned in the system. This third line defines the boundary
between the human and organisational architecture and the information systems architecture
on the one hand, and the boundary between the human and organisational architecture and the
manufacturing equipment architecture on the other side. Its location is influenced by
economic, political, social, and technological factors (Rathwell and Williams, 1996).

Information architecture

Information
systems

architecture

Human and organisational
architecture

Manufacturing
equipment
architecture

Manufacturing architecture

H
u
m

a
n
 c

o
m

p
o
n
e
n
t

o
f
th

e
 m

a
n
u
fa

ct
u
ri
n
g

a
rc

h
ite

ct
u
re

H
u
m

a
n
 c

o
m

p
o
n
e
n
t

o
f
th

e
 in

fo
rm

a
tio

n
a
rc

h
ite

ct
u
re

A
u
to

m
a
ta

b
ili

ty

A
u
to

m
a
ta

b
ili

ty

H
u
m

a
n
is

a
b
ili

ty

H
u
m

a
n
is

a
b
ili

ty

E
xt

e
n

t
o

f
a

u
to

m
a

tio
n

E
xt

e
n

t
o

f
a

u
to

m
a

tio
n

Information
functional
network

Manufacturing
functional
network

Figure C-3 Humanisability, automatability, and extent of automation
to define the three implementation architectures

Source: Rathwell and Williams (1996)

PERA explicitly takes into account the role of the human in a manufacturing system.
In addition, it does not distinguish between model content views such as function,
information, and resource views, but rather between purpose views (information and
manufacturing architecture) and implementation views (human and organisational
architecture, information systems architecture, and manufacturing equipment architecture).
The Purdue Methodology offers an enterprise engineering methodology which covers all
phases of a system life cycle. Of the three enterprise reference architectures described in this
chapter, PERA is clearly accompanied by the most extensive methodology. As for modelling
languages, PERA offers only the task module construct. Information system tasks,
manufacturing tasks, and human-based tasks are modelled by means of this construct.
By combining the various task modules into networks, a type of data-flow or material and
energy flow diagram results. There are no modelling methodologies known.

Appendix C

148

In addition, no modelling tool is known in literature. Models might become large and without
a tool their accuracy over time is jeopardised. Earlier, the developers of PERA had defined a
reference model for computer integrated manufacturing (Williams, 1989). This reference
model is restricted to the automatable functions of an enterprise and all functions that might
require human innovation are considered as external entities. PERA does not provide
components of an integrating infrastructure or any other generic enterprise modules.

149

D. Controller Architectures

D.1 Introduction

In this appendix, the architecture of the controllers in Section 6.3 (see Figure 6.4) is central.
Coming from a high perspective of control levels and basic forms, this appendix zooms into
the building blocks that make up the various basic forms. It focuses on three sets of building
blocks, namely those of the Production Activity Control and Factory Coordination modules as
outlined by Bauer et al. (1991), the Factory Activity Control concepts as described by
Arentsen (1995), and the reference model for holonic manufacturing systems as defined by the
PMA group of the Catholic University of Leuven (Van Brussel et al., 1998).

The Production Activity Control and Factory Coordination modules as developed by the
ESPRIT project COSIMA are quite well-known proper hierarchical control concepts.
Many applications based on COSIMA’s ideas have been reported. The ideas are mainly
focused on the make-to-stock and assemble-to-order production environments.

Less well-known are the Factory Activity Control concepts from the University of Twente,
the Netherlands. However, their ideas to achieve predictive and reactive behaviour from a
shop floor control system can be characterised as a completion of the modified hierarchical
control form. Factory Activity Control mainly focuses on the make- and engineer-to-order
production environments.

The reference model for holonic manufacturing systems is relatively new. It is an example of
the state-of-the-art in manufacturing control. The reference model does not focus on a specific
type of production environment, although the ideas have been inspired by discrete
manufacturing.

D.2 Production Activity Control (PAC) and Factory Coordination (FC)

The ESPRIT project COSIMA (Control System for Integrated Manufacturing) defined a
hierarchical architecture for shop floor control consisting of Production Activity Control
modules and the Factory Coordination module (Bauer et al., 1991). Production planning and
control is seen in terms of three hierarchical levels of activity: strategic activities, tactical
activities, and operational activities.

Shop floor control involves the operational activities of Factory Coordination and Production
Activity Control (PAC). Bauer et al. consider the factory to be composed of a series of group
technology-based manufacturing cells, where each cell is responsible for a family of its
products, components, or processes, and each cell is controlled by a PAC system.
A PAC system provides the necessary functions to control the flow of products within a cell.
The Factory Coordination layer ensures that the individual cells interact to meet an overall
production plan; it coordinates a group of cells on a shop floor. This overall production plan
relates to the work orders that need to be scheduled and executed in the cells. The work orders

Appendix D

150

are input from a requirements planning layer that in most cases includes an MRP application
(Higgins et al., 1996).

Originally, PAC was seen as residing at the next level below an MRP system (Browne, 1988).
Later, the designers of PAC envisioned a Factory Coordination system between the
requirements planning and PAC system. The original view resembles the ideas of Bertrand
et al. (1990a), who define a Goods Flow Control level and a Production Unit Control level
that correspond respectively to the tactical and the Production Activity Control levels of
Bauer et al. (1991).

The five building blocks of the Production Activity Control architecture are shown in
Figure D-2. The Scheduler accepts the production requirements from a higher planning
system (i.e. a Factory Coordination system), and develops a schedule over a specified time
period for the manufacturing cell, based on known process routings and expected capacity at
the cell. The Dispatcher issues commands to the movers and producers, based on the schedule,
the current state of the production environment, and manufacturing data describing how tasks
are to be performed. In a sense, the dispatching function is a real-time scheduler which assigns
jobs to resources based on real-time information on the state of the jobs and the resources
(Browne, 1988). Based on the instructions from the Dispatcher, the Producer controls the
execution of the various operations in the cell. It isolates the physical level of production
devices from the control level by translating different instructions from the Dispatcher into
specific device instructions. A Mover organises the handling of materials between
workstations within a cell by following the Dispatcher’s commands. The Monitor provides
real-time and historical feedback to the other PAC control functions. The Monitor’s feedback
allows for real-time dispatching of parts and/or materials, reporting on work in progress and
inventory levels, and reporting on how well the schedule is being adhered to (Higgins and
Browne, 1990).

Requirements Planning

Master Schedule
Development and

Validation

Business Planning

Factory Coordination

PAC PACPACPAC

Cell Cell Cell Cell

Operational
Issues

Tactical
Issues

Strategic
Issues

Figure D-1 Architecture for production management systems

Source: Bauer et al. (1991)

Controller Architectures

151

Execution Layer (Devices)

Instructions

Mover Producer

Dispatcher

Scheduler

Detailed
Schedule Request Monitor

Performance
Measures

Status

Schedule
Guidelines

Data
Collection

Information to
Factory Coordination

Figure D-2 Production Activity Control

Source: Bauer et al. (1991)

The Factory Coordination (FC) layer is divided into two tasks, namely the Production
Environment Design task, and the Control task. The Production Environment Design task
reorganises the product-based layout of the manufacturing system in order to simplify it and
to accommodate new products coming into production. The main purpose of the Control task
is to coordinate the activities of each PAC system through the provision of schedule and
real-time control guidelines, while recognising that each PAC system is responsible for the
activities within its own cell. Figure D-3 shows that the Factory Coordination control task is
in many ways a higher level recursion of a PAC system. It involves developing schedule
guidelines using a factory level Scheduler, implementing these guidelines and providing
real-time guidelines for each of the PAC systems using a factory level Dispatcher, and
monitoring the progress of the schedule using a factory level Monitor (Bauer et al., 1991).

Updates to
Higher Level

Planning Systems

Factory
Level

Schedule

Data from
each PAC Monitor

Factory
Level

Scheduler

Factory
Level

Dispatcher

Factory
Level

Monitor

Planned Orders
from MRP System

Coordination Guidelines
for each PAC System

PAC
System

for Cell 1

PAC
System

for Cell 2

PAC
System

for Cell N
.

Figure D-3 Factory Coordination

Source: Bauer et al. (1991)

Appendix D

152

Some authors suggest modifications to the standard work of Bauer et al. For example,
studies by Chalmers University of Technology in Göteborg, Sweden, notice two weak points:
PAC’s information handling is highly centralised due to the way the Monitor is defined,
and the mapping of the PAC system on the physical manufacturing system is weak due to the
definition of the Mover and the Producer (Maglica, 1995). Therefore, they suggest PAC+
where the Producer and Mover are split into several activities, each responsible for the control
of one workstation. Furthermore, the Producers and Movers are enabled to communicate
directly with each other, permitting them to synchronise directly without involving the
Dispatcher or the Monitor. In PAC+, the Monitor function is disconnected from the
equipment level, forcing data collection by the Monitor through the Produce and Move
functions. Chalmers University also defines PAC++ which aims to extend its predecessors
with a generic data model that must be reusable in various applications (CRISC, 1997).

To conclude, the architecture for production management systems as outlined by Bauer et al.
(1991) is based on the proper hierarchical form. Commands are passed from top to bottom and
status reporting is flowing in the reverse direction. The architectures for PAC and FC are
possible completions of cell and shop level controllers respectively. An architecture for
controllers on workstation level is lacking. The PAC architecture is generally acknowledged
as a sound basis for a cell controller, mainly because of its clear distinction between
Scheduling, Dispatching, and Monitoring. However, the modifications as suggested by
Maglica (1995) provide an improved version of PAC. Splitting the Mover and the Producer
into several such entities that correspond to individual workstations in the cell, and moving
parts of the information-handling from the Monitor to the new workstation controllers results
in a more solid workstation level.

D.3 Reference models for the heterarchical control form

No reference models for the heterarchical control form were known in literature when this
thesis was written. Some applications had been reported, but no reference models had been
defined.

Nevertheless, some research efforts might provide a suitable basis for a reference model.
For example, Duffie and Prabhu (1994; 1996) formulate a number of excellent design
principles for heterarchical systems. Cantamessa (1995; 1997) gives a classification of agent
based control systems, which belong to the heterarchical control form. Reference models
might be defined on the basis of these design principles and classification.

D.4 Factory Activity Control

The Factory Activity Control concepts from the University of Twente, the Netherlands, can be
characterised as a completion of the modified hierarchical control form. At this university,
various projects have been carried out aimed at the development of a generic concept for
Factory Activity Control in part manufacturing and assembly. Factory Activity Control refers
to the operational control of all activities which take place on the shop floor and in the factory
office. The developed concept should meet the requirements of both a predictive and a

Controller Architectures

153

reactive behaviour which is needed for the make- or engineer-to-order manufacturing
environments. An essential feature of the concept is that it addresses both the main and
auxiliary tasks which have to be performed for the execution of the production jobs. The main
tasks concern the actual manufacturing of the products. The auxiliary tasks deal with the
preparation and the management of the auxiliary resources and the control of inspection tasks.
For example, technological planning functions are also dealt with. These concern the
generation of technical information that is required to manufacture the products, for instance
process planning in an engineer-to-order environment. A concrete result of the projects at the
University of Twente, is FACT, a prototype that implements the developed ideas on shop
floor control (FACT, 1997; Van Sorge, 1997).

FACT (Factory Activity Control Technology) is based on four hierarchical production
planning and control levels. The highest level, the company level, consists of functions for
client order entrance and master production planning. The next highest level, the factory level,
deals amongst others with capacity planning on the basis of the available manufacturing
resources. FACT is an implementation of the cell and station levels, which concern the
operational planning and execution of all manufacturing activities.

Figure D-4 shows that the cell control level consists of the functions Scheduling, Dispatching,
Monitoring, and Diagnostics (Arentsen, 1995). The Scheduling function transforms
production suborders into production jobs, allocates the jobs to the stations, and determines
the sequence and both the starting and completion times of the jobs. It is capable of
multi-resource scheduling, i.e. workstations as well as tools, fixtures, operators, and so on,
are scheduled (see for example (Meester, 1996)). After a workplan has been generated,
the resulting workload of the individual workstations has to be checked. In order to allow
workload balancing, the technical information of the jobs specifies alternative resources
within the same manufacturing cell. The Dispatching function releases jobs to the stations,
based on the workplan. Before it releases a job, it has to check the availability of the required
technical information. The Monitoring function receives status information about the jobs and
the stations, and informs the Dispatching function of unexpected changes in the status.

Scheduling

workplan

adjust workplan &
workplan quality

production
suborder

Diagnostics

progress &
performance

Dispatching

production
job

auxiliary
job

Monitoring

workplan

correction

released job

job &
station status

progress &
performance

required &
alternative
resources

technical
information

Technological
Planning

Figure D-4 FACT cell control architecture

Source: Arentsen (1995)

Appendix D

154

It passes information on both the progress and the disturbances to the Diagnostics function.
The Diagnostics function evaluates the quality of the generated workplans. Furthermore,
it informs the Scheduling function about expected consequences of a disturbance for the
workplan. The Diagnostics function also performs the feedback to the factory control level.

The station control architecture consists of the four control functions Sequencing,
Dispatching, Monitoring, and Diagnostics, as is shown in Figure D-5. Station control is
actually a lower level recursion of cell control, and therefore not treated into detail.
Station control provides cell control with an on-line connection to the shop floor and closes
the loop between the planning and the execution phases of a job. Two types of stations are
distinguished: workstations and auxiliary stations, which perform production and supporting
activities respectively.

Stations have the possibility to solve a problem by mutual arrangement without bothering the
cell level about it. For this reason, the Diagnostics function can send a so-called ‘direct
request’ to the Sequencing function of another station. Although it can formally be considered
as a job, it specifically deals with a high priority request for help in an unexpected situation.
For example, in the case of a tool breakage, a direct request is sent to the auxiliary station
Tool Station Control. Only if the other station is unable to solve the problem adequately,
the higher level must be informed. This way, FACT’s control structure claims to meet the
requirements of both a predictive and reactive behaviour needed for the make- or engineer-to-
order manufacturing environments.

Sequencing

set of operations
or resources

execution problem &
resource inventory

and location

job

Diagnostics

Dispatching

action

Monitoring
interruption

released job

(equipment)
status

status

Technological
Planning

job &
station status direct

request
direct

request

technical
information

processing
conditions

Figure D-5 FACT station control architecture

Source: Arentsen (1995)

D.5 Building blocks of a holonic manufacturing system

The Catholic University of Leuven distinguishes three types of basic building blocks that
make up a holonic manufacturing system: resource holons, product holons, and order holons.
Figure D-6 shows the three basic types of holons and the knowledge about the manufacturing
system they exchange (Bongaerts et al., 1996; Van Brussel et al., 1998).

Controller Architectures

155

resource
holon

product
holon

order
holon

production
knowledge

process
execution
knowledge

process
knowledge

Figure D-6 Basic building blocks of a holonic manufacturing system

Source: Van Brussel et al. (1998)

Resource holons contain the knowledge to organise, use, and control production resources to
drive production. A production holon holds the process and product knowledge to assure the
correct making of the product with sufficient quality. An order holon represents a task in the
manufacturing system, and is responsible for performing the assigned work correctly and on
time.

Specialisation and aggregation relations exist between the basic holons. For example, robots,
NC-machines, and conveyors might be defined as specialisations of the equipment holon,
which at its turn is a specialisation of the basic resource holon. Aggregation relationships
might be defined as well; for example, a shop holon might consist of workstation holons,
which at their turn consist of equipment holons.

In addition to the basic holons, staff holons might be present in the holonic manufacturing
system. Staff holons, such as a scheduler for a shop, assist the basic holons in performing their
work. They allow for the presence of central elements in the architecture. If the staff holons
provide good advise, the basic holons will follow this advice as well as possible. The extent to
which the basic holons follow the advice of staff holons is determined by the basic rules that
determine the cooperation of the holons and thereby limit the autonomy of the individual
holons. For more information, the reader is referred to (Van Brussel et al., 1998).

157

E. Simulation of the Model Factory’s Agent Based Control System

This appendix describes the simulation model of the agent based control system of the model
factory. Furthermore, simulation experiments of this control system and a control system
without negotiation are presented.

E.1 Introduction to the specification language χ
Arends (1996) describes the syntax and semantics of a systems engineering specification
formalism, called χ. This formalism has been developed at Eindhoven University of
Technology, department of Mechanical Engineering. It can be used for the specification and
simulation of industrial systems. It supports modularity and allows separate descriptions of
the structure and of the components’ behaviour. A specific feature of χ is the clear
representation and unambiguous specification of interfaces between components.
Furthermore, it is well suited for the description of autonomous components cooperating with
each other by exchanging information (Arends, 1996; Van de Mortel-Fronczak et al., 1995;
Van de Mortel-Fronczak and Rooda, 1996; Van de Mortel-Fronczak and Rooda, 1997).

A system is treated as a collection of concurrently operating sequential components. A system
component is modelled by a process as a sequential program where changes in the state of a
process are accomplished by performing actions. Interaction between components is modelled
by ‘send’ and ‘receive’ actions along fixed communication channels. A process is specified by
a program in a CSP-like specification language preceded by Pascal-like declarations of local
variables and statistical distributions. Processes do not share variables – they interact
exclusively by using the communication and synchronisation primitives (synchronous
message-passing). Extensive examples of the specification language χ may be found in
(Van de Mortel-Fronczak et al., 1995; Van de Mortel-Fronczak and Rooda, 1996; Chi, 1996;
Rooda, 1996; Van de Mortel-Fronczak and Rooda, 1997).

E.2 Simulation model

Figure E-1 shows the simulation model of the model factory. It consists of a generator (GEN),
a network (SEL), a component store (COS), and six workstations, namely the raw material
store (RMS), the screen printer (SCP), two component placement stations (CP1 and CP2), a
reflow and cleaning station (RCL), and the final product store (FPS). The workstations are
divided in two parts: a physical part operating on batches, and a control process controlling
the physical part. A control process sends station numbers to the physical part, so the latter is
able to forward a batch to its next destination. The control process receives batch numbers
from the physical part, if the latter detects a batch arriving at the workstation. Messages are
exchanged between the various (control) processes via the network. The thick lines represent
the physical flow of batches through the model factory. Components flow from the
component store to the component placement stations.

Appendix E

158

CP1
PHY
GEN

GEN

PHY
RMS

RMS

PHY
SCP

SCP

PHY
CP1

CP1
PHY
CP2

CP2

PHY
RCL

RCL

PHY
FPS

FPS

PHY
COS

COSCP1

SEL

Figure E-1 Simulation model of the model factory

Figure E-2 shows that the control part of a workstation consists of a network interface (NIN),
a machine controller (MAC), and a process termed the workstation controller (WSC),
which incorporates the negotiation capabilities of an agent. The workstation controller
determines the actions taken by the workstation, depending on the type of message received
from other workstations via the switch element and the network interface. For instance,
if a task announcement is received, and if the workstation is able to perform the requested
operation, the workstation controller returns a bid.

D
es

tin

B
at

ch

P
la

n

B
at

ch
D

es
tin

B
at

ch

NIN

WSC

MAC

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Figure E-2 Control part of a workstation

Simulation of the Model Factory’s Agent Based Control System

159

The machine controller controls the physical part of the workstation, which is evidently
dependent on the type of station. The physical part performs the actual operations.
The machine controller receives notifications of batch arrivals from the physical part of the
workstation, and forwards these messages to the workstation controller. The latter sends a
work plan to the machine controller. The machine controller notifies the workstation
controller when the operation is finished. Then, the workstation controller sends the number
of the next workstation to the machine controller, which forwards this information to the
physical part.

Figure E-3 represents the generic structure of the workstation controllers. The following
components are distinguished: a request handler (REQ), a subcontractor (SUB), a controller
(CON), a database (DBS), and a sender (SEN).

M
es

sa
ge

M
es

sa
ge

Message

Message

MessageR
eq

ue
st

R
ep

ly

D
es

tin

B
at

ch

P
la

n

B
at

ch

Batch

Batch

Plan

Message

Mess
age

Mess
age

MessageMessage

Task O
ffer

R
eply

R
equest

Ta
sk

 O
ffe

r
R

ep
ly

R
eq

ue
st

SUB

REQ

CON SENDBS Plan

Figure E-3 Workstation controller model

The request handler issues bids as replies to incoming task announcements. Both bids and task
announcements are examples of data exchanges called ‘Message’ in Figure E-3. To issue a
bid, the request handler needs information from the database and possible subcontractors. The
subcontractor puts subcontracts out to tender to other agents, in order to divide the current
process steps among the agent itself and other agents. The controller coordinates the various
components of an agent. Together with the network interface, it also provides the interface
with the outside world; all messages from/to other agents, such as negotiations between a
predecessor and the request handler, pass through the controller. Furthermore, it commands
the machine controller to start the operation on a batch. The database stores run-time
information of the agent. It sends information to the request handler, subcontractor, and
controller upon request. The sender is responsible for the continuation of the batch. It sends
task announcements, receives and evaluates incoming bids, and sends a task offer to the agent

Appendix E

160

with the best bid. For a complete functional specification, the reader is referred to (Zwegers et
al., 1997a).

For instance, Figure E-4 shows the messages between the controller, the request handler,
and the database if a task announcement message arrives. If the controller receives a task
announcement from another agent via the network interface, it forwards the announcement to
the request handler. This process forwards a request to the database. If the workstation is able
to perform the requested operation, the database checks the workstation’s schedule,
and replies with a provisional start and end date for the job. The request handler determines
whether the job can be subcontracted. If subcontracting could be possible, a request is sent to
the subcontractor that issues subcontracting task announcements, and receives and evaluates
incoming bids. The subcontractor sends the best subcontracting bid to the request handler.
Note that subcontracting is not shown in Figure E-4. The request handler sends a bid via the
controller to another agent from which the original task announcement was received. If the bid
is accepted, a task offer is received. Again, the reader is referred to (Zwegers et al., 1997a) for
a complete specification.

task announcement

controller
request
handler database

tim
e

request

reply

bid

task announcement

bid

task offer

task offer

task offer

Figure E-4 Message sequence chart for a task announcement arrival

E.3 Simulation results

In this appendix, only the most important experiments are described. Before that,
it is necessary to explain a few terms. The following definitions are based on (Hopp and
Spearman, 1996):

• The work in process (WIP) is the inventory between the start and end points of a product
routing. Here, the work in process is not expressed in number of jobs, but in total required
operation time (that is, the sum of the work contents of all released jobs that are not
finished yet). The WIP norm is the maximum WIP allowed in the system at a certain
moment.

• The throughput (TH) is the average quantity of good parts produced per unit of time.
The upper limit on the throughput of any workstation is its capacity. Here, the throughput
is expressed in total required operation time per unit of time.

Simulation of the Model Factory’s Agent Based Control System

161

• The cycle time (CT) of a given routing is the average time from release of a job at the
beginning of the routing until it reaches an inventory point at the end of the routing
(that is, the time the part spends as WIP).

In the experiments, the WIP norm is the independent variable. Jobs are released into the
system depending on the current level of work in process. Figure E-5 shows the throughput
and cycle time versus the work in process for the model factory.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

1200

T
h

ro
u

g
h

p
u

t

C
yc

le
 T

im
e

WIP

idealised TH

TH

CT

idealised CT

Figure E-5 Throughput and cycle time versus WIP

Companies strive for high throughputs and low cycle times. Figure E-5 displays the idealised
throughput and cycle time as well. For ideal systems with zero variability, increasing the work
in process results in more throughput while maintaining a constant cycle time. However, after
a certain point the throughput remains constant and the cycle time increases if work in process
is increased. This point is termed the critical work in process, and is indicated by the triangle
in Figure E-5. The (idealised) throughput is limited by the capacity of the system. Similarly,
the (idealised) cycle time is limited by the sum of operation and transportation times needed
for a job.

Figure E-5 reveals a fundamental relationship between work in process, cycle time,
and throughput. At every WIP level, the ratio of work in process to cycle time yields
throughput. This relation holds for both the real and idealised characteristics, and is known as
Little’s Law (Smit, 1992; Hopp and Spearman, 1996):

TH
WIP

CT
=

Appendix E

162

In another experiment, the effect of negotiation is determined. Compared to the first
experiment, there is no negotiation between workstation agents, and the generator decides
which workstation executes which operation. The results of the experiment are shown in
Figure E-6. The figure also presents the results with subcontracting (identical to Figure E-5).

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500

0

200

400

600

800

1000

1200

with negotiation

without negotiation

T
h

ro
u

g
h

p
u

t

C
yc

le
 T

im
e

WIP

cycle time

throughput

Figure E-6 The effect of negotiation on throughput and cycle time

As expected, a clear difference is shown in the results with and without negotiation. Both the
throughput and the cycle time curves of the experiment with negotiation are ‘better’ than
those of the experiment without negotiation. However, the agent based control system
demands a lot of message traffic via the network. For descriptions of more experiments,
the reader is referred to (Zwegers et al., 1997a).

This appendix describes a χ model of the agent based control system of the model factory.
The simulation experiments conducted with the model show that this relatively new type of
control system performs better than a heterarchical control system without negotiation.
For a certain WIP level, the throughput and cycle time of the experiment with negotiation are
closer to the idealised throughput and cycle time than those of the experiment without
negotiation.

163

Summary
Shop floor control systems are becoming more complex, and more difficult to manage.
They can hardly be maintained or modified anymore. A change in a component might lead to
a chain reaction, i.e. changes in more components. This thesis aims to provide a contribution
to solving or avoiding these problems. System architects establish the limitations or
possibilities for changing systems in the future. This thesis is an attempt to formulate
guidelines with which architects are able to design more flexible systems.

As a basis for the remainder of this thesis, various terms are defined, especially the term
‘architecture’. In many publications, authors assume that their readers understand what is
meant by that term. As a consequence, the term remains undefined, and different readers and
authors interpret the term differently. The interpretation of the term ‘architecture’ in various
engineering disciplines and in various time periods is studied.

A system architecture is defined as the manner in which the components of a specific system
are organised and integrated. Related terms such as ‘reference model’ and ‘reference
architecture’ are explained by means of the same notions, i.e. organisation and integration of
system components. The main roles of an architecture are to manage system complexity and
to provide for future system flexibility. The main role of architecting is to preserve system
integrity, i.e. compliance with the architecture, while the system is developed or adapted.
Architecting is an ongoing process, since many systems evolve after initial delivery.

As stated above, one of the main roles of an architecture is to manage the complexity of a
system. Architecting concepts are defined that enable architects to manage overall system
complexity. Three architecting concepts are proposed as part of an open set. Three other
concepts might be suitable as well in certain occasions, namely status, versions, and variants.
Nevertheless, the three most important concepts are domains, decomposition hierarchy,
and views.

Three domains are distinguished; each of them represents a typical design problem:
the functional, technology, and physical domains. They must be separated, in order that
designers may focus on one domain, without dealing with design problems in other domains.
Hierarchical (or nested) systems are formed by means of decomposition. Systems can be
decomposed in smaller parts, which are more manageable than the original system.
Views emphasise particular aspects of a system and hide the complexity of other aspects.

In addition to the architecting concepts, three architecting principles are formulated.
An architecture determines the possibilities to change a system in the future, so architects
have to design future-proof architectures. Three architecting principles are given that stimulate
the design of such architectures, namely modularity, structural stability, and layers.

Modularity is a characteristic of systems consisting of moderately complex subsystems with
maximum cohesion and minimal coupling. The interfaces of modular components restrict the

Summary

164

impact of changes to few modules; changes are propagated to at most a few other
components. Structural stability is the characteristic of a system to function stand-alone
without collapsing, and with the ability to be part of a larger system or to be extended with
new components. Some stability can be assured by building systems out of stable elements.
These elements should be both building blocks as complete ‘wholes’. Layers represent
allowable interfaces among modules. Modules within a layer can communicate with each
other. Modules in different layers can communicate with each other only if their respective
layers are adjacent. Layers build upon underlying layers.

The architecting concepts and principles are illustrated by the Gordian project. This project
focused on the decoupling of warehousing functionality in the Baan packages. Baan is a
supplier of a set of standard software packages for Enterprise Resource Planning.
The objective of the Gordian project was to study the possibilities to put the dispersed
warehousing functionality into a separate package.

In addition to architecting concepts and principles, this thesis evaluates the suitability of
several theories for the design of flexible systems. The evaluation is carried out by means of
the discerned architecting concepts and principles. The application domain is the area of shop
floor control.

Reference architectures for enterprise integration aim to provide the necessary frameworks
with which companies might adapt their operation. CIMOSA (Computer Integrated
Manufacturing — Open System Architecture) is such a reference architecture. It strives for the
facilitation of continuous enterprise evolution. CIMOSA consists of a modelling framework,
an integrating infrastructure, and a system life cycle.

CIMOSA was used during a reorganisation project at Traub AG, a German tool manufacturer.
Traub restructured its manufacturing organisation. It used the CIMOSA modelling framework
to define a functional control architecture, and it used the CIMOSA integrating infrastructure
to support the design of the technology architecture of the control system’s infrastructure.

CIMOSA prescribes how to make a specification of a system, rather than how to design a
system. In addition, the translation from models to a real system has to be made by a designer.
Therefore, CIMOSA should be merely seen as a framework for the generation of
documentation.

On the other hand, reference models for shop floor control contain application domain
specific knowledge, and prescribe how to make certain architectural choices. They aim to
support architects in the design of effective shop floor control systems. The reference models
for shop floor control can be categorised into a number of basic forms. During the 1970’s and
the two decades afterwards, the focus in (research on) control architectures was gradually
shifting from centralised to more distributed forms.

165

Enabling technology has evolved as well. In the past, it used to be a limiting factor in the
design of functional control architectures. Nowadays, it gives designers more freedom in the
definition of technology and functional architectures.

An agent based control system for a model factory was designed by means of the architecting
concepts and principles. Its control architecture belongs to the heterarchical form.
Global information was made explicit in this architecture; the various agents had no
knowledge of other agents and had to ask other agents about their capabilities.
Negotiation among agents was used to determine the routings of parts. The extensibility of the
agent based control system was improved compared to a previously implemented
heterarchical control system without negotiation capabilities. The agent based control system
scored better regarding future flexibility. However, a lot of message traffic was needed to
compensate for the absence of global information.

167

Samenvatting (Summary in Dutch)
Informatiesystemen voor shop floor control worden steeds complexer en moeilijker te
beheersen. Ze kunnen nauwelijks nog onderhouden of gewijzigd worden. Een verandering in
een onderdeel kan een kettingreactie van veranderingen in andere delen veroorzaken.
Dit proefschrift beoogt een bijdrage te leveren aan het oplossen of vermijden van dergelijke
problemen. Systeem-architecten bepalen de beperkingen en mogelijkheden tot het wijzigen
van systemen in de toekomst. Deze dissertatie is een poging om richtlijnen te formuleren
waarmee architecten in staat zijn om flexibelere systemen te ontwerpen.

Enkele termen zijn gedefinieerd die dienen als basis voor de rest van het proefschrift,
met name de term ‘architectuur’. In veel publicaties wordt door de auteurs verondersteld dat
hun lezers begrijpen wat met de term bedoeld wordt. Als gevolg daarvan blijft de term
ongedefinieerd en leggen verschillende lezers en auteurs de term anders uit. In dit proefschrift
wordt de interpretatie van de term ‘architectuur’ in verscheidene ingenieursdisciplines en in
verschillende tijdsperiodes onderzocht.

Een systeem-architectuur wordt gedefinieerd als de wijze waarop de componenten van een
specifiek systeem worden georganiseerd en geïntegreerd. Verwante termen zoals
‘referentiemodel’ en ‘referentie-architectuur’ worden uitgelegd met behulp van dezelfde
begrippen, dat wil zeggen de organisatie en integratie van systeem-componenten.
De belangrijkste rollen van een architectuur zijn het beheersen van de complexiteit van het
systeem en het zorgen voor toekomst-flexibiliteit voor het systeem. De belangrijkste rol van
‘het architecten’ (Engels: ‘architecting’) is het beschermen van de integriteit van het systeem,
dat wil zeggen de overeenstemming met de architectuur, terwijl het systeem wordt ontwikkeld
of aangepast. Het architecten is een voortdurend proces, aangezien veel systemen verder
ontwikkeld worden na initiële oplevering.

Zoals hierboven reeds genoemd, is het beheersen van de systeem-complexiteit één van de
voornaamste rollen van een architectuur. Dit proefschrift definieert architectuur-concepten
(Engels: ‘architecting concepts’) waarmee architecten in staat worden gesteld de totale
complexiteit van een systeem te beheersen. Drie architectuur-concepten worden voorgesteld
die onderdeel vormen van een open verzameling. Drie andere concepten zouden in bepaalde
gevallen eveneens geschikt kunnen zijn, namelijk status, versies en varianten. Niettemin zijn
de drie voornaamste concepten domeinen, decompositie-hiërarchie en ‘views’.

Drie domeinen worden onderscheiden: het functioneel, technologie en fysiek domein.
Elk domein stelt een bepaald ontwerp-probleem voor. Ze moeten worden gescheiden,
opdat ontwerpers zich op één domein kunnen richten zonder rekening te houden met ontwerp-
problemen in andere domeinen. Hiërarchische (of geneste) systemen worden gevormd door
middel van decompositie. Systemen kunnen worden gedecomponeerd in kleinere delen,
die beter hanteerbaar zijn dan het oorspronkelijke systeem. Views benadrukken bepaalde
aspecten van het systeem en verbergen de complexiteit van andere aspecten.

Samenvatting (Summary in Dutch)

168

Naast de architectuur-concepten worden er drie architectuur-principes (Engels: ‘architecting
principles’) geformuleerd. Een architectuur bepaalt de mogelijkheden om een systeem in de
toekomst te wijzigen. Architecten dienen derhalve ‘toekomst-bestendige’ architecturen te
ontwerpen. Er worden drie architectuur-principes gegeven die het ontwerp van dergelijke
architecturen stimuleren, namelijk modulariteit, structurele stabiliteit, en lagen.

Modulariteit is een kenmerk van systemen die bestaan uit gematigd complexe subsystemen
met een maximale inwendige samenhang en minimale koppeling met andere subsystemen.
De interfaces tussen modulaire componenten beperken het effect van veranderingen tot enkele
modules; veranderingen planten zich voort in hooguit enkele andere componenten. Structurele
stabiliteit is het kenmerk van een systeem om op een correcte manier alleenstaand te
functioneren, en met de mogelijkheid een onderdeel van een groter systeem te vormen of te
worden uitgebreid met nieuwe componenten. Enige stabiliteit kan worden bereikt door
systemen te bouwen die bestaan uit stabiele elementen. Deze elementen zouden zowel
bouwblokken als complete ‘gehelen’ moeten zijn. Lagen stellen toegestane interfaces tussen
modules voor. Modules binnen een laag kunnen met elkaar communiceren. Modules in
verschillende lagen kunnen alleen met elkaar communiceren als hun respectievelijke lagen
aan elkaar grenzen.

De architectuur-concepten en -principes worden geïllustreerd aan de hand van het Gordiaan
project. Dit project richtte zich op het ontkoppelen van functionaliteit voor magazijnbeheer in
de Baan pakketten. Baan is een leverancier van een verzameling standaard Enterprise
Resource Planning pakketten. Het doel van het Gordiaan project was de mogelijkheden te
onderzoeken om de verspreide functionaliteit voor magazijnbeheer in een apart pakket onder
te brengen.

Naast de architectuur-concepten en -principes worden in dit proefschrift de geschiktheid van
verscheiden theorieën voor het ontwerpen van flexibele systemen geëvalueerd. De evaluatie
wordt uitgevoerd aan de hand van bovenstaande architectuur-concepten en -principes.
Het toepassingsgebied is shop floor control.

Referentie-architecturen voor bedrijfsintegratie (Engels: ‘enterprise integration’) beogen de
noodzakelijke raamwerken te bieden waarmee ondernemingen hun bedrijfsvoering zouden
kunnen aanpassen. Een dergelijke referentie-architectuur is CIMOSA (Computer Integrated
Manufacturing — Open System Architecture). Het streeft ernaar een continue evolutie van
een onderneming te vergemakkelijken. CIMOSA bestaat uit een modelleringsraamwerk,
een integrerende infrastructuur, en een systeem-levenscyclus.

CIMOSA werd toegepast tijdens een reorganisatie-project bij Traub AG, een Duitse fabrikant
van gereedschap. Traub herstructureerde zijn fabricage-afdeling. Het maakte daarbij gebruik
van het CIMOSA modelleringsraamwerk om een functionele besturingsarchitectuur te
definiëren. Traub gebruikte de CIMOSA integrerende infrastructuur om het ontwerp te
ondersteunen van de technologie-architectuur van de bij het besturingssysteem behorende
infrastructuur.

169

CIMOSA schrijft voor hoe een specificatie van een systeem gemaakt moet worden in plaats
van hoe een systeem ontworpen zou moeten worden. Bovendien moet de slag van modellen
naar een echt systeem door de ontwerper gemaakt worden. Daarom zou CIMOSA vooral
moeten worden beschouwd als een raamwerk voor de generatie van documentatie.

Daarentegen bevatten referentiemodellen voor shop floor control wel kennis die specifiek is
voor het toepassingsgebied en schrijven ze voor hoe bepaalde architectuur-keuzes gemaakt
moeten worden. Ze beogen architecten te ondersteunen bij het ontwerpen van effectieve
informatiesystemen voor shop floor control. De referentiemodellen voor shop floor control
kunnen worden ingedeeld in een aantal basisvormen. In de periode 1970-1995 verschoof het
zwaartepunt van (het onderzoek naar) besturingsarchitecturen van de gecentraliseerde naar
meer gedistribueerde vormen.

De technologie die het allemaal mogelijk maakt ontwikkelde zich eveneens. In het verleden
was het een beperkende factor bij het ontwerpen van functionele besturingsarchitecturen.
Tegenwoordig geeft het ontwerpers meer vrijheid in het definiëren van technologie- en
functionele architecturen.

Met behulp van de architectuur-concepten en -principes werd een op ‘agents’ gebaseerd
besturingssysteem voor een modelfabriek ontworpen. De besturingsarchitectuur van dit
systeem behoort tot de heterarchische vorm. Algemene informatie werd expliciet gemaakt in
deze architectuur; de verschillende agents wisten niets over andere agents en moesten andere
agents naar hun capaciteiten vragen. Er werden onderhandelingen tussen agents gebruikt om
de ‘routings’ van onderdelen te bepalen. De uitbreidbaarheid van het op agents gebaseerde
besturingssysteem was verbeterd ten opzichte van een heterarchisch besturingssysteem zonder
onderhandelingsmogelijkheden dat reeds eerder geïmplementeerd was. Het op agents
gebaseerde besturingssysteem scoorde beter met betrekking tot toekomst-flexibiliteit. Er was
echter veel berichtenverkeer nodig om het gemis aan algemene informatie te ondervangen.

171

Curriculum Vitae
Arian Zwegers was born on July 2, 1969, in Asten, The Netherlands. In 1987, he received his
VWO diploma from the ‘St. Willibrord Gymnasium’ in Deurne, after which he studied
industrial engineering at the Eindhoven University of Technology. He received his
MSc degree cum laude in 1993 after a research project on software cost estimation.
The project was carried out at the European Space Research and Technology Centre (ESTEC)
in Noordwijk. After graduating, he started his PhD work at the Eindhoven University of
Technology as a member of the Manufacturing Technology group in the faculty of
Technology Management. During two years, he was detached at TNO-TPD, where he
participated in the ESPRIT project VOICE. Another part of the PhD work was carried out at
Baan Company, a Dutch ERP vendor. This thesis concludes the research. In January 1998,
he started working for the Philips Centre for Manufacturing Technology (CFT).

STELLINGEN

behorende bij het proefschrift

On Systems Architecting

A study in shop floor control to determine architecting concepts and principles

van

Arian Zwegers

Eindhoven, 30 juni 1998

I

Het ‘architecten’ (Engels: ‘architecting’) van systemen is het proces dat de systeem
architectuur definieert en dat de integriteit van het systeem over de tijd waarborgt.

Bron: dit proefschrift, hoofdstuk 2.

II

De systeem architectuur discipline (Engels: ‘systems architecting’) heeft architectuur-
concepten en -principes nodig. De concepten stellen architecten in staat de complexiteit
van een systeem te beheersen. De architectuur-principes stimuleren het ontwerp van
systemen die in de toekomst redelijk eenvoudig gewijzigd kunnen worden.

Bron: dit proefschrift, hoofdstuk 3 en 4.

III

CIMOSA moeten worden beschouwd als een raamwerk voor het opstellen van
documentatie. Het schrijft niet voor hoe een systeem ontworpen moet worden, maar hoe
een specificatie van een systeem gemaakt moet worden.

Bron: dit proefschrift, hoofdstuk 5.

IV

De geschiktheid van een bepaalde besturingsvorm is afhankelijk van de layout van het
productiesysteem.

Bron: dit proefschrift, hoofdstuk 7.

V

Gezien de kosten voor het ontwerpen en onderhouden van besturingssoftware dient de
architectuur van een productiesysteem in samenhang met de architectuur van het
besturingssysteem ontworpen te worden.

VI

Een proefschrift met stellingen is als een loosely-coupled systeem, niet zozeer vanwege
het feit dat de stellingen op een los blaadje staan, maar vooral omdat proefschrift en
stellingen een losse relatie met elkaar hebben.

VII

Om het gemis aan productiviteit enigszins te verhelpen, is het in het bedrijfsleven
gebruikelijk de snelste computers te geven aan die mensen die er het slechtst mee om
kunnen gaan.

VIII

Het begrip ‘sport’ is aan een grondige herdefinitie toe. Bezigheden zoals golf,
zweefvliegen, stijldansen, paardendressuur, en vele andere moeten niet als ‘sport’
worden beschouwd.

IX

Koestler’s stelling dat ‘the egotism of the social holon feeds on the altruism of its
members’ is wellicht het best vertoond bij een groep Hollanders op vakantie.

Bron: Koestler, A. (1967). The ghost in the machine. Hutchinson, London, p. 266.

X

De spreekwoordelijke Nederlandse tolerantie is een gevolg van een gebrek aan
interesse.

XI

Het is onbegrijpelijk dat er mensen zijn die in ontwikkelingslanden vakantie vieren en
die toch menen dat ze niet rijk zijn.

XII

Cultuur is een kwaliteit waar men niet bewust naar kan streven.
Bron:T.S. Eliot geciteerd in Bax, M.F.Th. (1996). De rijkdom van architectuur : Terug

naar de Bouwkunde. Afscheidsrede Technische Universiteit Eindhoven, p. 3.

	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Summary
	Samenvatting
	Curriculum Vitae
	Stellingen

