5 research outputs found

    Archetype Modeling Methodology

    Full text link
    [EN] Clinical Information Models (CIMs) expressed as archetypes play an essential role in the design and development of current Electronic Health Record (EHR) information structures. Although there exist many experiences about using archetypes in the literature, a comprehensive and formal methodology for archetype modeling does not exist. Having a modeling methodology is essential to develop quality archetypes, in order to guide the development of EHR systems and to allow the semantic interoperability of health data. In this work, an archetype modeling methodology is proposed. This paper describes its phases, the inputs and outputs of each phase, and the involved participants and tools. It also includes the description of the possible strategies to organize the modeling process. The proposed methodology is inspired by existing best practices of CIMs, software and ontology development. The methodology has been applied and evaluated in regional and national EHR projects. The application of the methodology provided useful feedback and improvements, and confirmed its advantages. The conclusion of this work is that having a formal methodology for archetype development facilitates the definition and adoption of interoperable archetypes, improves their quality, and facilitates their reuse among different information systems and EHR projects. Moreover, the proposed methodology can be also a reference for CIMs development using any other formalism.This work was partially funded by grant DI-14-06564 (Doctorados Industriales) of the Ministerio de Economia y Competitividad of Spain. The authors would also thank the participants of all R&D projects that have served to evaluate and improve the presented methodology.Moner Cano, D.; Maldonado Segura, JA.; Robles Viejo, M. (2018). Archetype Modeling Methodology. Journal of Biomedical Informatics. 79:71-81. https://doi.org/10.1016/j.jbi.2018.02.003S71817

    Archetype development and governance methodologies for the electronic health record

    Full text link
    [ES] La interoperabilidad semántica de la información sanitaria es un requisito imprescindible para la sostenibilidad de la atención sanitaria, y es fundamental para afrontar los nuevos retos sanitarios de un mundo globalizado. Esta tesis aporta nuevas metodologías para abordar algunos de los aspectos fundamentales de la interoperabilidad semántica, específicamente aquellos relacionados con la definición y gobernanza de modelos de información clínica expresados en forma de arquetipo. Las aportaciones de la tesis son: - Estudio de las metodologías de modelado existentes de componentes de interoperabilidad semántica que influirán en la definición de una metodología de modelado de arquetipos. - Análisis comparativo de los sistemas e iniciativas existentes para la gobernanza de modelos de información clínica. - Una propuesta de Metodología de Modelado de Arquetipos unificada que formalice las fases de desarrollo del arquetipo, los participantes requeridos y las buenas prácticas a seguir. - Identificación y definición de principios y características de gobernanza de arquetipos. - Diseño y desarrollo de herramientas que brinden soporte al modelado y la gobernanza de arquetipos. Las aportaciones de esta tesis se han puesto en práctica en múltiples proyectos y experiencias de desarrollo. Estas experiencias varían desde un proyecto local dentro de una sola organización que requirió la reutilización de datos clínicos basados en principios de interoperabilidad semántica, hasta el desarrollo de proyectos de historia clínica electrónica de alcance nacional.[CA] La interoperabilitat semàntica de la informació sanitària és un requisit imprescindible per a la sostenibilitat de l'atenció sanitària, i és fonamental per a afrontar els nous reptes sanitaris d'un món globalitzat. Aquesta tesi aporta noves metodologies per a abordar alguns dels aspectes fonamentals de la interoperabilitat semàntica, específicament aquells relacionats amb la definició i govern de models d'informació clínica expressats en forma d'arquetip. Les aportacions de la tesi són: - Estudi de les metodologies de modelatge existents de components d'interoperabilitat semàntica que influiran en la definició d'una metodologia de modelatge d'arquetips. - Anàlisi comparativa dels sistemes i iniciatives existents per al govern de models d'informació clínica. - Una proposta de Metodologia de Modelatge d'Arquetips unificada que formalitza les fases de desenvolupament de l'arquetip, els participants requerits i les bones pràctiques a seguir. - Identificació i definició de principis i característiques de govern d'arquetips. - Disseny i desenvolupament d'eines que brinden suport al modelatge i al govern d'arquetips. Les aportacions d'aquesta tesi s'han posat en pràctica en múltiples projectes i experiències de desenvolupament. Aquestes experiències varien des d'un projecte local dins d'una sola organització que va requerir la reutilització de dades clíniques basades en principis d'interoperabilitat semàntica, fins al desenvolupament de projectes d'història clínica electrònica d'abast nacional.[EN] Semantic interoperability of health information is an essential requirement for the sustainability of healthcare, and it is essential to face the new health challenges of a globalized world. This thesis provides new methodologies to tackle some of the fundamental aspects of semantic interoperability, specifically those aspects related to the definition and governance of clinical information models expressed in the form of archetypes. The contributions of the thesis are: - Study of existing modeling methodologies of semantic interoperability components that will influence in the definition of an archetype modeling methodology. - Comparative analysis of existing clinical information model governance systems and initiatives. - A proposal of a unified Archetype Modeling Methodology that formalizes the phases of archetype development, the required participants, and the good practices to be followed. - Identification and definition of archetype governance principles and characteristics. - Design and development of tools that provide support to archetype modeling and governance. The contributions of this thesis have been put into practice in multiple projects and development experiences. These experiences vary from a local project inside a single organization that required a reuse on clinical data based on semantic interoperability principles, to the development of national electronic health record projects.This thesis was partially funded by the Ministerio de Economía y Competitividad, ayudas para contratos para la formación de doctores en empresas “Doctorados Industriales”, grant DI-14-06564 and by the Agencia Valenciana de la Innovación, ayudas del Programa de Promoción del Talento – Doctorados empresariales (INNODOCTO), grant INNTA3/2020/12.Moner Cano, D. (2021). Archetype development and governance methodologies for the electronic health record [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16491

    Extending Two-level Information Modeling to the Internet of Things

    Get PDF
    Interoperability is a major challenge for the Internet of Things (IoT). The real potential of the IoT lies in facilitating largescale sharing of high-quality context-rich information through systems-of-IoT-systems, rather than IoT systems that operate as isolated technology silos. Real large-scale interoperability requires layers of standards, and each layer addresses different interoperability challenges. The SensorThings API data model seeks to tackle data interoperability at the data and informational layers of IoT platforms. SensorThings API is aligned to the ISO/OGC O&M data standard, and like O&M it is semistructured. Semi-structured models allow for variance within implementations for different use-cases, which is both necessary and detrimental to systems interoperability. In this paper we propose that the SensorThings API data model should be defined as a set of archetypes, used to capture extensible domain concepts using a two-level modeling IoT systems design approach. Extending two-level modeling to the IoT using the SensorThings API as a base for domain concepts definition allows for a powerful framework to manage variance within systems implementation and maintaining semantic interoperability within systems-of-IoT-systems across diverse use-cases

    The Use of Metamodel-based Approach for Designing Healthcare Applications

    Get PDF
    Recently, the use of Model-Driven Engineering (MDE) via metamodeling approach is gaining more attention for software applications development. The community from the healthcare domain also attempts to employ the metamodel approach for producing quality healthcare applications. Healthcare applications have become an imperative in every attempt to improve healthcare management. Numerous studies reported that the healthcare domain is seen as a complex and unique domain, which involves dynamic characteristics. In addition, it is widely recognized that the increase of information exchange in the healthcare domain is caused by the diversity of healthcare data. This has led to the increase use of information technologies in the healthcare industry so as to enhance the healthcare delivery process via healthcare applications. However, the complexity of healthcare information leads to ineffective models and design of healthcare applications. Modeling the healthcare processes and developing healthcare applications are challenging tasks.  Hence, the advances of MDE have influenced the use of the metamodeling technique in the development of healthcare applications. Various metamodels are developed as a solution to provide a clear healthcare process model and a correct healthcare application. The aim of this paper is to analyse the use of the metamodel-based approach in designing healthcare applications. We believe that the metamodel-based approach would improve the development of healthcare applications.&nbsp

    A Two-Level Information Modelling Translation Methodology and Framework to Achieve Semantic Interoperability in Constrained GeoObservational Sensor Systems

    Get PDF
    As geographical observational data capture, storage and sharing technologies such as in situ remote monitoring systems and spatial data infrastructures evolve, the vision of a Digital Earth, first articulated by Al Gore in 1998 is getting ever closer. However, there are still many challenges and open research questions. For example, data quality, provenance and heterogeneity remain an issue due to the complexity of geo-spatial data and information representation. Observational data are often inadequately semantically enriched by geo-observational information systems or spatial data infrastructures and so they often do not fully capture the true meaning of the associated datasets. Furthermore, data models underpinning these information systems are typically too rigid in their data representation to allow for the ever-changing and evolving nature of geo-spatial domain concepts. This impoverished approach to observational data representation reduces the ability of multi-disciplinary practitioners to share information in an interoperable and computable way. The health domain experiences similar challenges with representing complex and evolving domain information concepts. Within any complex domain (such as Earth system science or health) two categories or levels of domain concepts exist. Those concepts that remain stable over a long period of time, and those concepts that are prone to change, as the domain knowledge evolves, and new discoveries are made. Health informaticians have developed a sophisticated two-level modelling systems design approach for electronic health documentation over many years, and with the use of archetypes, have shown how data, information, and knowledge interoperability among heterogenous systems can be achieved. This research investigates whether two-level modelling can be translated from the health domain to the geo-spatial domain and applied to observing scenarios to achieve semantic interoperability within and between spatial data infrastructures, beyond what is possible with current state-of-the-art approaches. A detailed review of state-of-the-art SDIs, geo-spatial standards and the two-level modelling methodology was performed. A cross-domain translation methodology was developed, and a proof-of-concept geo-spatial two-level modelling framework was defined and implemented. The Open Geospatial Consortium’s (OGC) Observations & Measurements (O&M) standard was re-profiled to aid investigation of the two-level information modelling approach. An evaluation of the method was undertaken using II specific use-case scenarios. Information modelling was performed using the two-level modelling method to show how existing historical ocean observing datasets can be expressed semantically and harmonized using two-level modelling. Also, the flexibility of the approach was investigated by applying the method to an air quality monitoring scenario using a technologically constrained monitoring sensor system. This work has demonstrated that two-level modelling can be translated to the geospatial domain and then further developed to be used within a constrained technological sensor system; using traditional wireless sensor networks, semantic web technologies and Internet of Things based technologies. Domain specific evaluation results show that twolevel modelling presents a viable approach to achieve semantic interoperability between constrained geo-observational sensor systems and spatial data infrastructures for ocean observing and city based air quality observing scenarios. This has been demonstrated through the re-purposing of selected, existing geospatial data models and standards. However, it was found that re-using existing standards requires careful ontological analysis per domain concept and so caution is recommended in assuming the wider applicability of the approach. While the benefits of adopting a two-level information modelling approach to geospatial information modelling are potentially great, it was found that translation to a new domain is complex. The complexity of the approach was found to be a barrier to adoption, especially in commercial based projects where standards implementation is low on implementation road maps and the perceived benefits of standards adherence are low. Arising from this work, a novel set of base software components, methods and fundamental geo-archetypes have been developed. However, during this work it was not possible to form the required rich community of supporters to fully validate geoarchetypes. Therefore, the findings of this work are not exhaustive, and the archetype models produced are only indicative. The findings of this work can be used as the basis to encourage further investigation and uptake of two-level modelling within the Earth system science and geo-spatial domain. Ultimately, the outcomes of this work are to recommend further development and evaluation of the approach, building on the positive results thus far, and the base software artefacts developed to support the approach
    corecore