18,403 research outputs found

    Attosecond sampling of arbitrary optical waveforms

    Get PDF
    Advances in the generation of ultrashort laser pulses, and the emergence of new research areas such as attosecond science, nanoplasmonics, coherent control, and multidimensional spectroscopy, have led to the need for a new class of ultrafast metrology that can measure the electric field of complex optical waveforms spanning the ultraviolet to the infrared. Important examples of such waveforms are those produced by spectral control of ultrabroad bandwidth pulses, or by Fourier synthesis. These are typically tailored for specific purposes, such as to increase the photon energy and flux of high-harmonic radiation, or to control dynamical processes by steering electron dynamics on subcycle time scales. These applications demand a knowledge of the full temporal evolution of the field. Conventional pulse measurement techniques that provide estimates of the relative temporal or spectral phase are unsuited to measure such waveforms. Here we experimentally demonstrate a new, all-optical method for directly measuring the electric field of arbitrary ultrafast optical waveforms. Our method is based on high-harmonic generation (HHG) driven by a field that is the collinear superposition of the waveform to be measured with a stronger probe laser pulse. As the delay between the pulses is varied, we show that the field of the unknown waveform is mapped to energy shifts in the high-harmonic spectrum, allowing a direct, accurate, and rapid retrieval of the electric field with subcycle temporal resolution at the location of the HHG

    Self-referencing a continuous-wave laser with electro-optic modulation

    Get PDF
    We phase-coherently measure the frequency of continuous-wave (CW) laser light by use of optical-phase modulation and f-2f nonlinear interferometry. Periodic electro-optic modulation (EOM) transforms the CW laser into a continuous train of picosecond optical pulses. Subsequent nonlinear-fiber broadening of this EOM frequency comb produces a supercontinuum with 160 THz of bandwidth. A critical intermediate step is optical filtering of the EOM comb to reduce electronic-noise-induced decoherence of the supercontinuum. Applying f-2f self-referencing with the supercontinuum yields the carrier-envelope offset frequency of the EOM comb, which is precisely the difference of the CW laser frequency and an exact integer multiple of the EOM pulse repetition rate. Here we demonstrate absolute optical frequency metrology and synthesis applications of the self-referenced CW laser with <5E-14 fractional accuracy and stability.Comment: 8 pages, 4 figure

    Frequency combs and platicons in optical microresonators with normal GVD

    Full text link
    We predict the existence of a novel type of the flat-top dissipative solitonic pulses, "platicons", in microresonators with normal group velocity dispersion (GVD). We propose methods to generate these platicons from cw pump. Their duration may be altered significantly by tuning the pump frequency. The transformation of a discrete energy spectrum of dark solitons of the Lugiato-Lefever equation into a quasicontinuous spectrum of platicons is demonstrated. Generation of similar structures is also possible with bi-harmonic, phase/amplitude modulated pump or via laser injection locking.Comment: 9 pages, 6 figure

    Temporal solitons in optical microresonators

    Full text link
    Dissipative solitons can emerge in a wide variety of dissipative nonlinear systems throughout the fields of optics, medicine or biology. Dissipative solitons can also exist in Kerr-nonlinear optical resonators and rely on the double balance between parametric gain and resonator loss on the one hand and nonlinearity and diffraction or dispersion on the other hand. Mathematically these solitons are solution to the Lugiato-Lefever equation and exist on top of a continuous wave (cw) background. Here we report the observation of temporal dissipative solitons in a high-Q optical microresonator. The solitons are spontaneously generated when the pump laser is tuned through the effective zero detuning point of a high-Q resonance, leading to an effective red-detuned pumping. Red-detuned pumping marks a fundamentally new operating regime in nonlinear microresonators. While usually unstablethis regime acquires unique stability in the presence of solitons without any active feedback on the system. The number of solitons in the resonator can be controlled via the pump laser detuning and transitions to and between soliton states are associated with discontinuous steps in the resonator transmission. Beyond enabling to study soliton physics such as soliton crystals our observations open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of broadband laser gain media. The single soliton states correspond in the frequency domain to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low phase-noise microwave generation.Comment: Includes Supplementary Informatio

    Characterisation of an aperture-stacked patch antenna for ultra-wideband wearable radio systems

    Get PDF
    This paper presents, for the first time, the time-domain characteristics of an aperture-stacked patch antenna (ASPA) for ultra-wideband (UWB) wearable devices. The methodology of antennas characterization for UWB radio systems is also outlined. The antenna operates within the 3-6 GHz frequency band. Time- and frequency-domain characteristics of this antenna are presented in transmission mode (Tx), receiving mode (Rx) and for 2-antenna (Tx-Rx) system. The pulse driving the antenna has duration of 0.65 ns. In the Tx mode, pulses radiated in different directions of the H-plane have very similar shapes. Fidelity factors are as high as 91.6-99.9%. For 2-antenna system, pulses received in normal and end-fire-like directions have the fidelity of 69.5%. As it was found, antenna does not behave "reciprocal" comparing Tx and Rx modes. For normal propagation direction, radiated pulse is the 2nd derivative of the input waveform, but in the Rx mode, received pulse is the 1st derivative of the incident plane wave. This antenna can be used for transmission of short-pulses, even 0.65-1 ns in duration. It is also small (patch planar dimensions 32/19 mm) and compact. Microstrip configuration allows further integration of active devices on the same board. Taking into account above results we can say that ASPA is a good candidate for UWB non-invasive wireless body area network (WBAN) applications

    Quantum Control of the Hyperfine Spin of a Cs Atom Ensemble

    Full text link
    We demonstrate quantum control of a large spin-angular momentum associated with the F=3 hyperfine ground state of 133Cs. A combination of time dependent magnetic fields and a static tensor light shift is used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states, and may lead to improvement of some precision measurements.Comment: 4 pages, 4 figures (color

    Generation of five phase-locked harmonics by implementing a divide-by-three optical frequency divider

    Get PDF
    We report the generation of five phase-locked harmonics, f_1: 2403 nm, f_2: 1201 nm, f_3: 801 nm, f_4: 600 nm, and f_5: 480 nm with an exact frequency ratio of 1 : 2 : 3 : 4 : 5 by implementing a divide-by-three optical-frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.Comment: 6 pages, 6 figure

    Precise control of broadband frequency chirps using optoelectronic feedback

    Get PDF
    We demonstrate the generation of wideband frequency sweeps using a semiconductor laser in an optoelectronic feedback loop. The rate and shape of the optical frequency sweep is locked to and determined by the frequency of a reference electronic signal, leading to an agile, high coherence swept-frequency source for laser ranging and 3-D imaging applications. Using a reference signal of constant frequency, a transformlimited linear sweep of 100 GHz in 1 ms is achieved, and real-time ranging with a spatial resolution of 1.5 mm is demonstrated. Further, arbitrary frequency sweeps can be achieved by tuning the frequency of the input electronic signal. Broadband quadratic and exponential optical frequency sweeps are demonstrated using this technique
    • …
    corecore