5 research outputs found

    A method for privacy-preserving collaborative filtering recommendations

    Get PDF
    With the continuous growth of the Internet and the progress of electronic commerce the issues of product recommendation and privacy protection are becoming increasingly important. Recommender Systems aim to solve the information overload problem by providing accurate recommendations of items to users. Collaborative filtering is considered the most widely used recommendation method for providing recommendations of items or users to other users in online environments. Additionally, collaborative filtering methods can be used with a trust network, thus delivering to the user recommendations from both a database of ratings and from users who the person who made the request knows and trusts. On the other hand, the users are having privacy concerns and are not willing to submit the required information (e.g., ratings for products), thus making the recommender system unusable. In this paper, we propose (a) an approach to product recommendation that is based on collaborative filtering and uses a combination of a ratings network with a trust network of the user to provide recommendations and (b) “neighbourhood privacy” that employs a modified privacy-aware role-based access control model that can be applied to databases that utilize recommender systems. Our proposed approach (1) protects user privacy with a small decrease in the accuracy of the recommendations and (2) uses information from the trust network to increase the accuracy of the recommendations, while, (3) providing privacy-preserving recommendations, as accurate as the recommendations provided without the privacy-preserving approach or the method that increased the accuracy applied

    Mobile recommender systems:Identifying the major concepts

    Get PDF
    © The Author(s) 2018. This article identifies the factors that have an impact on mobile recommender systems. Recommender systems have become a technology that has been widely used by various online applications in situations where there is an information overload problem. Numerous applications such as e-Commerce, video platforms and social networks provide personalised recommendations to their users and this has improved the user experience and vendor revenues. The development of recommender systems has been focused mostly on the proposal of new algorithms that provide more accurate recommendations. However, the use of mobile devices and the rapid growth of the Internet and networking infrastructure have brought the necessity of using mobile recommender systems. The links between web and mobile recommender systems are described along with how the recommendations in mobile environments can be improved. This work is focused on identifying the links between web and mobile recommender systems and to provide solid future directions that aim to lead in a more integrated mobile recommendation domain

    A Trust-based Recommender System over Arbitrarily Partitioned Data with Privacy

    Get PDF
    Recommender systems are effective mechanisms for recommendations about what to watch, read, or taste based on user ratings about experienced products or services. To achieve higher quality recommendations, e-commerce parties may prefer to collaborate over partitioned data. Due to privacy issues, they might hesitate to work in pairs and some solutions motivate them to collaborate. This study examines how to estimate trust-based predictions on arbitrarily partitioned data in which two parties have ratings for similar sets of customers and items. A privacy- preserving scheme is proposed, and it is justified that it efficiently offers trust-based predictions on partitioned data while preserving privacy

    Privacy-preserving Context-aware Recommender Systems: Analysis and New Solutions

    Get PDF
    Nowadays, recommender systems have become an indispensable part of our daily life and provide personalized services for almost everything. However, nothing is for free -- such systems have also upset the society with severe privacy concerns because they accumulate a lot of personal information in order to provide recommendations. In this work, we construct privacy-preserving recommendation protocols by incorporating cryptographic techniques and the inherent data characteristics in recommender systems. We first revisit the protocols by Jeckmans et al. at ESORICS 2013 and show a number of security and usability issues. Then, we propose two privacy-preserving protocols, which compute predicted ratings for a user based on inputs from both the user\u27s friends and a set of randomly chosen strangers. A user has the flexibility to retrieve either a predicted rating for an unrated item or the Top-N unrated items. The proposed protocols prevent information leakage from both protocol executions and the protocol outputs: a somewhat homomorphic encryption scheme is used to make all computations run in encrypted form, and inputs from the randomly-chosen strangers guarantee that the inputs of a user\u27s friends will not be compromised even if this user\u27s outputs are leaked. Finally, we use the well-known MovieLens 100k dataset to evaluate the performances for different parameter sizes

    Privacy preserving recommender systems

    Get PDF
    The recommender systems help users find suitable and interesting products and contents from the huge amount of information that are available in the internet. There are various types of recommender systems available which have been providing recommendation services to users. For example Collaborative Filtering (CF) based recommendations, Content based (CB) recommendations, context aware recommendations and so on. Despite the fact that these recommender systems are very useful to solve the information overload problem by filtering interesting information, they suffer from huge privacy issues. In order to generate user personalized recommendations, the recommendation service providers need to acquire the information related to attributes, preferences, experiences as well as demands, which are related to users' confidential information. Usually the more information available to the service providers, the more accurate recommendations can be generated. However, the service providers are not always trustworthy to share personal information for recommendation purposes since they may cause serious privacy threats to users' privacy by leaking them to other parties or providing false recommendations. Therefore the user information must be protected prior to share them to any third party service provider to ensure the privacy of users. To overcome the privacy issues of recommender systems several techniques have been proposed which can be categorized into decentralization, randomization and secure computations based approaches. In decentralization based approach, the central service providers are removed and the main controls of recommendation services are given to participant users. The main issue with this kind of approach is that to generate recommendations, the users need to be dependant to other users' availability in online services. If any user becomes offline, her information can not be used in the system. The randomization based techniques add noises to users data to obfuscate them from learning the true information. However the main issue is that adding noise affects recommendation accuracy. On the contrary, the secure computations preserve user information while providing accurate recommendations. In this thesis we preserve user privacy by means of encrypting user information, specifically their ratings and other related information using homomorphic encryption based techniques to provide recommendations based on the encrypted data. The main advantage of homomorphic encryption based technique is that it is semantically secure and computationally it is hard to distinguish the true information from the given ciphertext. Using the homomorphic based encryption tools and techniques we build different privacy preserving protocols for different types of recommendation approaches by analyzing their privacy requirements and challenges. More specifically, we focus on different key recommendation techniques and differentiate them into centralized and partitioned dataset based recommendation techniques. From available recommendation techniques, we found that some of the existing and popular recommendation techniques like user based recommendation, item based recommendation and context aware recommendation can be grouped into centralized recommendation approach. In partitioned dataset based recommendation, the user information can be partitioned into different organizations and these organizations can collaborate with each other by gathering sufficient information in order to provide accurate recommendations without revealing their own confidential information. After categorizing the recommendation techniques we analyze the problems and requirements in terms of privacy preservation. Then for each type of recommendation approach, we develop the privacy preserving protocols to generate recommendations taking their specific privacy requirements and challenges into consideration. We also investigate the problems and limitations of existing privacy preserving recommendations and found that the current solutions suffer from huge computation and communication overhead as well as privacy of users. In the thesis we identify the related problems and solve the issues using our proposed privacy preserving protocols. As an overall idea, our proposed recommendation protocols work as follows. The users encrypt their ratings using homomorphic encryption and send them to service providers. We assume the service providers are semi honest but curious, they follow the protocol but at the same time try to find new information from the available data. The service provider has the ability to perform homomorphic operations and it performs certain computations over encrypted data without learning any true information and returns the results to the query users who ask for recommendations. The system models of our privacy preserving protocols for different recommendation techniques differ from each other because of their different privacy requirements. The proposed privacy preserving protocols are tested on various real world datasets. Based on the application areas of different recommendation approaches our gathered datasets are also different such as movie rating, social network, checkin information for different locations and quality of service of web services. For each proposed privacy preserving protocols we also present the privacy analysis and describe how the system can perform the computations without leaking the private information of users. The experimental and privacy analysis of our proposed privacy preserving protocols for different types of recommendation techniques show that they are private as well as practical
    corecore