1,040 research outputs found

    Unconstrained Scene Text and Video Text Recognition for Arabic Script

    Full text link
    Building robust recognizers for Arabic has always been challenging. We demonstrate the effectiveness of an end-to-end trainable CNN-RNN hybrid architecture in recognizing Arabic text in videos and natural scenes. We outperform previous state-of-the-art on two publicly available video text datasets - ALIF and ACTIV. For the scene text recognition task, we introduce a new Arabic scene text dataset and establish baseline results. For scripts like Arabic, a major challenge in developing robust recognizers is the lack of large quantity of annotated data. We overcome this by synthesising millions of Arabic text images from a large vocabulary of Arabic words and phrases. Our implementation is built on top of the model introduced here [37] which is proven quite effective for English scene text recognition. The model follows a segmentation-free, sequence to sequence transcription approach. The network transcribes a sequence of convolutional features from the input image to a sequence of target labels. This does away with the need for segmenting input image into constituent characters/glyphs, which is often difficult for Arabic script. Further, the ability of RNNs to model contextual dependencies yields superior recognition results.Comment: 5 page

    Multilingual Text Detection with Nonlinear Neural Network

    Get PDF
    Multilingual text detection in natural scenes is still a challenging task in computer vision. In this paper, we apply an unsupervised learning algorithm to learn language-independent stroke feature and combine unsupervised stroke feature learning and automatically multilayer feature extraction to improve the representational power of text feature. We also develop a novel nonlinear network based on traditional Convolutional Neural Network that is able to detect multilingual text regions in the images. The proposed method is evaluated on standard benchmarks and multilingual dataset and demonstrates improvement over the previous work

    Arabic cursive text recognition from natural scene images

    Full text link
    © 2019 by the authors. This paper presents a comprehensive survey on Arabic cursive scene text recognition. The recent years' publications in this field have witnessed the interest shift of document image analysis researchers from recognition of optical characters to recognition of characters appearing in natural images. Scene text recognition is a challenging problem due to the text having variations in font styles, size, alignment, orientation, reflection, illumination change, blurriness and complex background. Among cursive scripts, Arabic scene text recognition is contemplated as a more challenging problem due to joined writing, same character variations, a large number of ligatures, the number of baselines, etc. Surveys on the Latin and Chinese script-based scene text recognition system can be found, but the Arabic like scene text recognition problem is yet to be addressed in detail. In this manuscript, a description is provided to highlight some of the latest techniques presented for text classification. The presented techniques following a deep learning architecture are equally suitable for the development of Arabic cursive scene text recognition systems. The issues pertaining to text localization and feature extraction are also presented. Moreover, this article emphasizes the importance of having benchmark cursive scene text dataset. Based on the discussion, future directions are outlined, some of which may provide insight about cursive scene text to researchers

    Pattern detection and recognition using over-complete and sparse representations

    Get PDF
    Recent research in harmonic analysis and mammalian vision systems has revealed that over-complete and sparse representations play an important role in visual information processing. The research on applying such representations to pattern recognition and detection problems has become an interesting field of study. The main contribution of this thesis is to propose two feature extraction strategies - the global strategy and the local strategy - to make use of these representations. In the global strategy, over-complete and sparse transformations are applied to the input pattern as a whole and features are extracted in the transformed domain. This strategy has been applied to the problems of rotation invariant texture classification and script identification, using the Ridgelet transform. Experimental results have shown that better performance has been achieved when compared with Gabor multi-channel filtering method and Wavelet based methods. The local strategy is divided into two stages. The first one is to analyze the local over-complete and sparse structure, where the input 2-D patterns are divided into patches and the local over-complete and sparse structure is learned from these patches using sparse approximation techniques. The second stage concerns the application of the local over-complete and sparse structure. For an object detection problem, we propose a sparsity testing technique, where a local over-complete and sparse structure is built to give sparse representations to the text patterns and non-sparse representations to other patterns. Object detection is achieved by identifying patterns that can be sparsely represented by the learned. structure. This technique has been applied. to detect texts in scene images with a recall rate of 75.23% (about 6% improvement compared with other works) and a precision rate of 67.64% (about 12% improvement). For applications like character or shape recognition, the learned over-complete and sparse structure is combined. with a Convolutional Neural Network (CNN). A second text detection method is proposed based on such a combination to further improve (about 11% higher compared with our first method based on sparsity testing) the accuracy of text detection in scene images. Finally, this method has been applied to handwritten Farsi numeral recognition, which has obtained a 99.22% recognition rate on the CENPARMI Database and a 99.5% recognition rate on the HODA Database. Meanwhile, a SVM with gradient features achieves recognition rates of 98.98% and 99.22% on these databases respectivel

    Sub-sampling Approach for Unconstrained Arabic Scene Text Analysis by Implicit Segmentation based Deep Learning Classifier

    Get PDF
    The text extraction from the natural scene image is still a cumbersome task to perform. This paper presents a novel contribution and suggests the solution for cursive scene text analysis notably recognition of Arabic scene text appeared in the unconstrained environment. The hierarchical sub-sampling technique is adapted to investigate the potential through sub-sampling the window size of the given scene text sample. The deep learning architecture is presented by considering the complexity of the Arabic script. The conducted experiments present 96.81% accuracy at the character level. The comparison of the Arabic scene text with handwritten and printed data is outlined as well

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Labeled projective dictionary pair learning: application to handwritten numbers recognition

    Get PDF
    Dictionary learning was introduced for sparse image representation. Today, it is a cornerstone of image classification. We propose a novel dictionary learning method to recognise images of handwritten numbers. Our focus is to maximise the sparse-representation and discrimination power of the class-specific dictionaries. We, for the first time, adopt a new feature space, i.e., histogram of oriented gradients (HOG), to generate dictionary columns (atoms). The HOG features robustly describe fine details of hand-writings. We design an objective function followed by a minimisation technique to simultaneously incorporate these features. The proposed cost function benefits from a novel class-label penalty term constraining the associated minimisation approach to obtain class-specific dictionaries. The results of applying the proposed method on various handwritten image databases in three different languages show enhanced classification performance (~98%) compared to other relevant methods. Moreover, we show that combination of HOG features with dictionary learning enhances the accuracy by 11% compared to when raw data are used. Finally, we demonstrate that our proposed approach achieves comparable results to that of existing deep learning models under the same experimental conditions but with a fraction of parameters
    • …
    corecore