39,889 research outputs found

    Enhancing Microgrid Resilience with Green Hydrogen Storage

    Full text link
    We consider the problem of hydrogen storage integration in microgrids to improve the electricity supply resilience. Nonlinear effects from electrochemical models of electrolyzers and fuel cells for hydrogen storage are considered, making scheduling under the nonlinear model intractable and the conventional linear approximation infeasible. A piecewise linear model approximation with feasibility projection is proposed, resulting in a computationally efficient model predictive control for hydrogen storage operation. Several resilience performance measures, such as loss-of-load, duration-of-outage, and system cost, are used in performance evaluation. Simulations for the proposed optimization demonstrated a 13%-48% reduction in duration-of-outage, a 6.4%-21.7% reduction in system cost, and a 95% reduction in loss-of-load for critical loads compared to the scheduling algorithm involving linear model approximation. The performance gap of the proposed optimization to the benchmark involving the accurate nonlinear electrochemical model is less than 1% in most metrics.Comment: 9 pages, 7 figure, PESGM202

    Risk-Aware Management of Distributed Energy Resources

    Full text link
    High wind energy penetration critically challenges the economic dispatch of current and future power systems. Supply and demand must be balanced at every bus of the grid, while respecting transmission line ratings and accounting for the stochastic nature of renewable energy sources. Aligned to that goal, a network-constrained economic dispatch is developed in this paper. To account for the uncertainty of renewable energy forecasts, wind farm schedules are determined so that they can be delivered over the transmission network with a prescribed probability. Given that the distribution of wind power forecasts is rarely known, and/or uncertainties may yield non-convex feasible sets for the power schedules, a scenario approximation technique using Monte Carlo sampling is pursued. Upon utilizing the structure of the DC optimal power flow (OPF), a distribution-free convex problem formulation is derived whose complexity scales well with the wind forecast sample size. The efficacy of this novel approach is evaluated over the IEEE 30-bus power grid benchmark after including real operation data from seven wind farms.Comment: To appear in Proc. of 18th Intl. Conf. on DSP, Santorini Island, Greece, July 1-3, 201

    Approximation of System Components for Pump Scheduling Optimisation

    Get PDF
    © 2015 The Authors. Published by Elsevier Ltd.The operation of pump systems in water distribution systems (WDS) is commonly the most expensive task for utilities with up to 70% of the operating cost of a pump system attributed to electricity consumption. Optimisation of pump scheduling could save 10-20% by improving efficiency or shifting consumption to periods with low tariffs. Due to the complexity of the optimal control problem, heuristic methods which cannot guarantee optimality are often applied. To facilitate the use of mathematical optimisation this paper investigates formulations of WDS components. We show that linear approximations outperform non-linear approximations, while maintaining comparable levels of accuracy

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed

    Scheduling unit processing time arc shutdown jobs to maximize network flow over time: complexity results

    Full text link
    We study the problem of scheduling maintenance on arcs of a capacitated network so as to maximize the total flow from a source node to a sink node over a set of time periods. Maintenance on an arc shuts down the arc for the duration of the period in which its maintenance is scheduled, making its capacity zero for that period. A set of arcs is designated to have maintenance during the planning period, which will require each to be shut down for exactly one time period. In general this problem is known to be NP-hard. Here we identify a number of characteristics that are relevant for the complexity of instance classes. In particular, we discuss instances with restrictions on the set of arcs that have maintenance to be scheduled; series parallel networks; capacities that are balanced, in the sense that the total capacity of arcs entering a (non-terminal) node equals the total capacity of arcs leaving the node; and identical capacities on all arcs

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u
    • 

    corecore