3 research outputs found

    Randomized Parameterized Algorithms for the Kidney Exchange Problem

    Get PDF
    In order to increase the potential kidney transplants between patients and their incompatible donors, kidney exchange programs have been created in many countries. In the programs, designing algorithms for the kidney exchange problem plays a critical role. The graph theory model of the kidney exchange problem is to find a maximum weight packing of vertex-disjoint cycles and chains for a given weighted digraph. In general, the length of cycles is not more than a given constant L (typically 2 L 5), and the objective function corresponds to maximizing the number of possible kidney transplants. In this paper, we study the parameterized complexity and randomized algorithms for the kidney exchange problem without chains from theory. We construct two different parameterized models of the kidney exchange problem for two cases L = 3 and L 3, and propose two randomized parameterized algorithms based on the random partitioning technique and the randomized algebraic technique, respectively

    Adapting a Kidney Exchange Algorithm to Align with Human Values

    Get PDF
    The efficient and fair allocation of limited resources is a classical problem in economics and computer science. In kidney exchanges, a central market maker allocates living kidney donors to patients in need of an organ. Patients and donors in kidney exchanges are prioritized using ad-hoc weights decided on by committee and then fed into an allocation algorithm that determines who gets what--and who does not. In this paper, we provide an end-to-end methodology for estimating weights of individual participant profiles in a kidney exchange. We first elicit from human subjects a list of patient attributes they consider acceptable for the purpose of prioritizing patients (e.g., medical characteristics, lifestyle choices, and so on). Then, we ask subjects comparison queries between patient profiles and estimate weights in a principled way from their responses. We show how to use these weights in kidney exchange market clearing algorithms. We then evaluate the impact of the weights in simulations and find that the precise numerical values of the weights we computed matter little, other than the ordering of profiles that they imply. However, compared to not prioritizing patients at all, there is a significant effect, with certain classes of patients being (de)prioritized based on the human-elicited value judgments
    corecore