106 research outputs found

    Stability and String Stability Analysis of Formation Control Architectures for Platooning.

    Get PDF
    This thesis presents theoretical results for stability and string stability of formation control architectures for platooning. We consider three important interconnection topologies for vehicles travelling in a straight line as a string: leader following, cyclic and bidirectional. For the leader following topology we discuss modifications that allow reduced coordination requirements. In the first case we consider the use of the leader velocity as the state to be broadcast to the followers, rather than the standard use of the leader position. This selection yields a formation control architecture that achieves string stability even under time delays in the state broadcast, while reducing typical coordination requirements of leader following architectures. For the second modification we change the way in which the leader position is sent across the string to every follower. This technique keeps some of the good transient properties of the standard leader following architecture but eliminates most of the coordination requirements for the followers. However, we show that this technique does not provide string stability when time delays are present in the communication. The second topology that we discuss is a cyclic one, where the first member of the platoon is forced to track the last one. We discuss two strategies: one where the inter-vehicle spacings may follow a constanttime headway spacing policy and one where an independent leader broadcasts its position to every member of a cyclic platoon. For both strategies we obtain closed form expressions for the transfer functions from disturbances to inter-vehicle spacings. These expressions allow us to show that if the design parameters are not properly chosen, the vehicle platoon may become unstable when the string size is greater than a critical number. On the contrary, if the design parameters are well chosen, both architectures can be made stable and string stable for any size of the platoon. The final topology that we consider is bidirectional, where every member of the platoon, with the exception of the first and last, use measurements of the two nearest neighbours to control their position within the string. Although the derivations are more complex than in the two previous unidirectional cases, we obtain closed form epressions for the dynamics of the platoon. These expressions are in the form of simple transfer functions from disturbances to vehicles. They allow us to obtain stability results for any size of the platoon and understand the behaviour of the least stable pole location as the string size increases. All of the results obtained are illustrated by numerical examples and ad-hoc simulations

    Stability and String Stability Analysis of Formation Control Architectures for Platooning.

    Get PDF
    This thesis presents theoretical results for stability and string stability of formation control architectures for platooning. We consider three important interconnection topologies for vehicles travelling in a straight line as a string: leader following, cyclic and bidirectional. For the leader following topology we discuss modifications that allow reduced coordination requirements. In the first case we consider the use of the leader velocity as the state to be broadcast to the followers, rather than the standard use of the leader position. This selection yields a formation control architecture that achieves string stability even under time delays in the state broadcast, while reducing typical coordination requirements of leader following architectures. For the second modification we change the way in which the leader position is sent across the string to every follower. This technique keeps some of the good transient properties of the standard leader following architecture but eliminates most of the coordination requirements for the followers. However, we show that this technique does not provide string stability when time delays are present in the communication. The second topology that we discuss is a cyclic one, where the first member of the platoon is forced to track the last one. We discuss two strategies: one where the inter-vehicle spacings may follow a constanttime headway spacing policy and one where an independent leader broadcasts its position to every member of a cyclic platoon. For both strategies we obtain closed form expressions for the transfer functions from disturbances to inter-vehicle spacings. These expressions allow us to show that if the design parameters are not properly chosen, the vehicle platoon may become unstable when the string size is greater than a critical number. On the contrary, if the design parameters are well chosen, both architectures can be made stable and string stable for any size of the platoon. The final topology that we consider is bidirectional, where every member of the platoon, with the exception of the first and last, use measurements of the two nearest neighbours to control their position within the string. Although the derivations are more complex than in the two previous unidirectional cases, we obtain closed form epressions for the dynamics of the platoon. These expressions are in the form of simple transfer functions from disturbances to vehicles. They allow us to obtain stability results for any size of the platoon and understand the behaviour of the least stable pole location as the string size increases. All of the results obtained are illustrated by numerical examples and ad-hoc simulations

    Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit

    Get PDF
    We prove that the unique entropy solution to a scalar nonlinear conservation law with strictly monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation law. More precisely, we prove that the empirical measure (respectively the discretised density) obtained from the follow-the-leader system converges in the 1-Wasserstein topology (respectively in Lloc1L^1_{loc}) to the unique Kruzkov entropy solution of the conservation law. The initial data are taken in L1∩L∞L^1\cap L^\infty, nonnegative, and with compact support, hence we are able to handle densities with vacuum. Our result holds for a reasonably general class of velocity maps (including all the relevant examples in the applications, e.g. in the Lighthill-Whitham-Richards model for traffic flow) with possible degenerate slope near the vacuum state. The proof of the result is based on discrete BV estimates and on a discrete version of the one-sided Oleinik-type condition. In particular, we prove that the regularizing effect L1∩L∞↩BVL^1\cap L^\infty \mapsto BV for nonlinear scalar conservation laws is intrinsic of the discrete model

    A Resilient Control Approach to Secure Cyber Physical Systems (CPS) with an Application on Connected Vehicles

    Get PDF
    The objective of this dissertation is to develop a resilient control approach to secure Cyber Physical Systems (CPS) against cyber-attacks, network failures and potential physical faults. Despite being potentially beneficial in several aspects, the connectivity in CPSs poses a set of specific challenges from safety and reliability standpoint. The first challenge arises from unreliable communication network which affects the control/management of overall system. Second, faulty sensors and actuators can degrade the performance of CPS and send wrong information to the controller or other subsystems of the CPS. Finally, CPSs are vulnerable to cyber-attacks which can potentially lead to dangerous scenarios by affecting the information transmitted among various components of CPSs. Hence, a resilient control approach is proposed to address these challenges. The control approach consists of three main parts:(1) Physical fault diagnostics: This part makes sure the CPS works normally while there is no cyber-attacks/ network failure in the communication network; (2) Cyber-attack/failure resilient strategy: This part consists of a resilient strategy for specific cyber-attacks to compensate for their malicious effects ; (3) Decision making algorithm: The decision making block identifies the specific existing cyber-attacks/ network failure in the system and deploys corresponding control strategy to minimize the effect of abnormality in the system performance. In this dissertation, we consider a platoon of connected vehicle system under Co-operative Adaptive Cruise Control (CACC) strategy as a CPS and develop a resilient control approach to address the aforementioned challenges. The first part of this dissertation investigates fault diagnostics of connected vehicles assuming ideal communication network. Very few works address the real-time diagnostics problem in connected vehicles. This study models the effect of different faults in sensors and actuators, and also develops fault diagnosis scheme for detectable and identifiable faults. The proposed diagnostics scheme is based on sliding model observers to detect, isolate and estimate faults in the sensors and actuators. One of the main advantages of sliding model approach lies in applicability to nonlinear systems. Therefore, the proposed method can be extended for other nonlinear cyber physical systems as well. The second part of the proposed research deals with developing strategies to maintain performance of cyber-physical systems close to the normal, in the presence of common cyber-attacks and network failures. Specifically, the behavior of Dedicated Short-Range Communication (DSRC) network is analyzed under cyber-attacks and failures including packet dropping, Denial of Service (DOS) attack and false data injection attack. To start with, packet dropping in network communication is modeled by Bernoulli random variable. Then an observer based modifying algorithm is proposed to modify the existing CACC strategy against the effect of packet dropping phenomena. In contrast to the existing works on state estimation over imperfect communication network in CPS which mainly use either holding previous received data or Kalman filter with intermittent observation, a combination of these two approaches is used to construct the missing data over packet dropping phenomena. Furthermore, an observer based fault diagnostics based on sliding mode approach is proposed to detect, isolate and estimate sensor faults in connected vehicles platoon. Next, Denial of Service (DoS) attack is considered on the communication network. The effect of DoS attack is modeled as an unknown stochastic delay in data delivery in the communication network. Then an observer based approach is proposed to estimate the real data from the delayed measured data over the network. A novel approach based on LMI theory is presented to design observer and estimate the states of the system via delayed measurements. Next, we explore and alternative approach by modeling DoS with unknown constant time delay and propose an adaptive observer to estimate the delay. Furthermore, we study the effects of system uncertainties on the DoS algorithm. In the third algorithm, we considered a general CPS with a saturated DoS attack modeled with constant unknown delay. In this part, we modeled the DoS via a PDE and developed a PDE based observer to estimate the delay as well as states of the system while the only available measurements are delayed. Furthermore, as the last cyber-attack of the second part of the dissertation, we consider false data injection attack as the fake vehicle identity in the platoon of vehicles. In this part, we develop a novel PDE-based modeling strategy for the platoon of vehicles equipped with CACC. Moreover, we propose a PDE based observer to detect and isolate the location of the false data injection attack injected into the platoon as fake identity. Finally, the third part of the dissertation deals with the ongoing works on an optimum decision making strategy formulated via Model Predictive Control (MPC). The decision making block is developed to choose the optimum strategy among available strategies designed in the second part of the dissertation

    Security of Vehicular Platooning

    Get PDF
    Platooning concept involves a group of vehicles acting as a single unit through coordination of movements. While Platooning as an evolving trend in mobility and transportation diminishes the individual and manual driving concerns, it creates new risks. New technologies and passenger’s safety and security further complicate matters and make platooning attractive target for the malicious minds. To improve the security of the vehicular platooning, threats and their potential impacts on vehicular platooning should be identified to protect the system against security risks. Furthermore, algorithms should be proposed to detect intrusions and mitigate the effects in case of attack. This dissertation introduces a new vulnerability in vehicular platooning from the control systems perspective and presents the detection and mitigation algorithms to protect vehicles and passengers in the event of the attack

    Road-Side Based Cybersecurity in Connected and Automated Vehicle Systems

    Get PDF
    69A3551747105In this study, we develop a comprehensive framework to model the impact of cyberattacks on safety, security, and head-to-tail stability of connected and automated vehicular platoons. First, we propose a general platoon dynamics model with heterogeneous time delays that may originate from the communication channel and/or vehicle onboard sensors. Based on the proposed dynamics model, we develop an augmented state extended Kalman filter (ASEKF) to smooth sensor readings, and use it in conjunction with an anomaly detector to detect sensor anomalies. Specifically, we consider two detectors: a parametric detector, the ??2-detector, and a learning-based detector, the one class support vector machine (OCSVM). We investigate the detection power of all combinations of vehicle dynamics models (EKF and ASEKF) and detectors (??2and OCSVM). Furthermore, we introduce a novel concept in string stability, namely, pseudo string stability, to measure a platoon's string stability under cyberattacks and model uncertainties. We demonstrate the relationship between the pseudo string stability of a platoon and its detection rate, which enables us to identify the critical detection sensitivity/recall that the platoon's members should meet for the platoon to remain pseudo string stable

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukĂŒnftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl fĂŒr Verkehrsprozessautomatisierung (VPA) an der FakultĂ€t Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthĂ€lt einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte MobilitĂ€tssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. DarĂŒber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur
    • 

    corecore