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RIGOROUS DERIVATION OF NONLINEAR SCALAR CONSERVATION LAWS FROM

FOLLOW-THE-LEADER TYPE MODELS VIA MANY PARTICLE LIMIT

M. DI FRANCESCO AND M.D. ROSINI

Abstract. We prove that the unique entropy solution to a scalar nonlinear conservation law with strictly
monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of
a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation
of the nonlinear scalar conservation law. More precisely, we prove that the empirical measure (respectively
the discretised density) obtained from the follow-the-leader system converges in the 1–Wasserstein topology
(respectively in L1

loc
) to the unique Kruzkov entropy solution of the conservation law. The initial data are

taken in L∞, nonnegative, and with compact support, hence we are able to handle densities with vacuum.
Our result holds for a reasonably general class of velocity maps (including all the relevant examples in the
applications, e.g. in the Lighthill-Whitham-Richards model for traffic flow) with possible degenerate slope
near the vacuum state. The proof of the result is based on discrete BV estimates and on a discrete version
of the one-sided Oleinik-type condition. In particular, we prove that the regularizing effect L∞

7→ BV for
nonlinear scalar conservation laws is intrinsic of the discrete model.

Keywords: Micro-macro limit and Scalar conservation laws and Follow-the-leader
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1. Introduction

1.1. Nonlinear scalar conservation laws in one space dimension. A scalar conservation law in one
space dimension for the unknown variable ρ is a first order Partial Differential Equation (PDE) of the form

ρt + f(ρ)x = 0, t > 0, x ∈ R, (1.1)

see e.g. the books [11, 18, 49] as general references. The unknown ρ typically describes the mass density of
a given medium with a one-dimensional structure. In this case, a conservation law of the form (1.1) can be
derived under the hypothesis that the time evolution of the (linear) mass contained in an arbitrary interval

]a, b[⊂ R at time t > 0, namely the integral
´ b

a
ρ(t, x) dx, is only affected by the flux f(ρ) of the medium at

the edges of the interval, x = a and x = b. In this sense, (1.1) can be seen as a continuity equation for ρ, and
the expression

f(ρ) = ρ v(ρ) (1.2)

arises very naturally, where ρ 7→ v(ρ) is a constitutive law for the Eulerian velocity of the medium.
The formulation of the equation (1.1) relies on the continuum assumption, in which the medium is assumed

to be indefinitely divisible without changing its physical nature. Such assumption is needed to introduce the
concept of macroscopic local density ρ, defined as the limit of the ratio ∆ℓ/∆x as the measure of the
elementary interval ∆x goes to zero, being ∆ℓ the (linear) mass contained in ∆x. The continuum assumption
is ensured by considering a very large mass compared to the size of the domain occupied by the medium.

The density of vehicles in traffic flow is a typical example from real world applications in which an equation
of the form (1.1) is used as the ‘macroscopic counterpart’ of a large system of moving vehicles. Traffic flow
is indeed one of the main motivating applications behind the present paper, and we shall therefore describe
the use of the continuum assumption in this context in Section 1.5.
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The nonlinearity in the constitutive law f = f(ρ) of the flux has made the mathematical theory for (1.1)
a challenging topic through the past decades. In Section 2.1 we recall the basic notions of the classical theory
of entropy solutions for scalar conservation laws, the foundations of which go back to the pioneering papers
by Oleinik [39] and Kruzkov [32].

Nonlinear conservation laws have proven to feature many advantages in their interplay with applications
(in particular in fluid dynamics and in traffic flow). First of all, they provide a very simple description of
the shock structures in the phenomena under study (see e.g. compression waves in fluid mechanics, or queues
in vehicular traffic). Most importantly, the mathematical theory developed in the past decades have greatly
helped the development of efficient numerical schemes (and vice versa!), which are much handier and easier
to manage when compared to agent based methods arising from a microscopic ‘moving particles’ approach.
Consequently, the continuum approach based on conservation laws allows to state and possibly solve optimal
control and optimal management problems, and to easily extend the theory to more complex structures (such
as networks).

1.2. Goal of the paper: the many particle approximation of a scalar conservation law. The goal
of this paper is to prove that (under reasonable assumptions on the velocity map v, and assuming nonnegative
initial data) a scalar nonlinear conservation law of the form (1.1) can be solved as a many particle limit of
a discrete (microscopic) model of interacting particle systems solving a suitable set of ODEs. We emphasise
here that the velocity map ρ 7→ v(ρ) will be assumed to be monotonically decreasing w.r.t. ρ ≥ 0, and with
v(0) = vmax < +∞. The case of a monotonically increasing v can be recovered easily by simple modifications
in our construction.

Our approach can be sketched as follows. We fix in L
1∩L

∞ an initial density ρ̄ ≥ 0 with compact support
and having total (linear) mass L > 0. For a given integer N > 0, we split the subgraph of ρ̄ in N adjacent
regions of equal mass ℓ

.
= L/N , with the endpoints of each region positioned at x̄i ∈ R, i = 0, . . . , N . The

points x̄i are interpreted as (ordered) particles with mass ℓ, and they are taken as initial condition to an
ODE system describing the evolution of the particles in the discrete setting, namely to the Follow-The-Leader
(FTL) system

ẋN (t) = vmax, (1.3a)

ẋi(t) = v

(

ℓ

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1. (1.3b)

The points xi(t) are interpreted as moving particles on the real line. Basically, each particle moves with a
velocity which is computed (through the map v) via the discrete density obtained by detecting the distance
with the nearest right neighborhood of xi at time t. The last particle on the right xN has no other particles to
its right, therefore the value of the discrete density on the right of xN is zero, and this justify the ODE (1.3a)
for xN .

We remark here that no collisions occur between the particles (hence overtaking is not allowed), as the
distance between two consecutive points can be proven to satisfy an efficient lower bound by a fixed multiple
of ℓ depending on the initial condition. We shall focus on this issue in Lemma 2.1 below. We shall describe
the FTL model in detail below in Section 2.2.

After having solved (1.3) for all times, we consider the empirical measure

ρN (t) = ℓ

N−1
∑

i=0

δxi(t), (1.4)

and prove in Theorem 2.3 that its limit (in a measure sense to be explained later on) as N goes to infinity is
actually an L

1 density ρ, which satisfies the scalar conservation law (1.1) with f(ρ) = ρ v(ρ) in the Oleinik-
Kružkov entropy sense [32, 40], see Definition 2.1 below.

Our convergence result has a natural interpretation as a many particle limit for the scalar conservation
law (1.1). In this sense, it can be seen as an abstract particle method for (1.1) which can be also applied in
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the context of numerics. On the other hand, the discrete model (1.3) can be also interpreted as a discrete
Lagrangian formulation of (1.1), which makes our result meaningful from a physical point of view, as it
validates the use of the macroscopic model (1.1) in cases in which the microscopic dynamics are easier to
justify compared to the macroscopic ones.

Although the literature on nonlinear conservation laws is extremely rich of effective numerical schemes (we
mention here the pioneering work of Glimm [25] for systems, and the wave-front tracking algorithm proposed
by Dafermos in [17] and improved later on by Di Perna [22] and Bressan [10], see [11] and the references
therein for more details), to our knowledge the rigorous approximation of an entropy solution to a scalar
conservation law by the empirical solution to an ODE system of Lagrangian particles in the spirit of (1.3)
has not been covered yet. The recent paper [15] provides preliminary results, but it does not contain the
needed estimates to justify the limiting procedure. The main novelty with respect to previous results in the
literature is that our result is purely constructive, in the sense that it can be considered as an alternative tool
to actually solve a scalar conservation law. No property of the limiting solution is used, except the uniqueness
of entropy solutions in [32, 40] which is used to prove that the scheme has a unique limit. As a byproduct of
our work, the Kruzkov entropy condition that allows to single out a unique solution to (1.1) can be now also
intuitively justified by the fact that it is satisfied by our discrete particle approximation, and is inherited by
the density ρ obtained in the many particle limit.

Our approach differs from most of the numerical approaches to the solution to a scalar conservation law
in that it interprets the microscopic limit as a mean field limit of a system of interacting particles with
nearest neighbour type interaction, in the spirit of (locally and non-locally) interacting particles systems in
statistical mechanics, probability, kinetic theory, mathematical biology, etc. In this sense, our result can
be expressed in the framework of large (deterministic) particle limits with application to several contexts
in fluid mechanics, see e.g. the classical references [23, 37, 41]. In one space dimension, a key result in
the context of deterministic approximations is the one by Russo [48], which applies to the linear diffusion
equation, in which the diffusion operator is replaced by a nearest neighbour interaction term (see also later
generalizations to nonlinear diffusion in [35]). A recent result which uses the same approach to nonlinear drift
diffusion equations is presented in [36]. We also mention here the paper by Brenier and Grenier [8], which
provides a particle justification of the pressureless Euler system (and a particle approximation for a scalar
conservation law, although with a completely different approach and interpretation). Our approach can be
considered more in the spirit of [48], applied to a scalar conservation law of traffic type.

The existing numerical method for scalar conservation laws which most resembles our particle method is
probably the wave-front tracking algorithm, in which the solution is approximated by a piecewise constant
profile which is discontinuous on a finite number of moving fronts. Such a structure suggests the total variation
as the natural quantity to look at in order to perform efficient uniform estimates, and the space L

1 as the
natural environment to set up the problem and to measure the error in the approximation procedure. In our
case, the approximating sequence is a linear combination of Dirac’s deltas. Therefore, a measure topology is
needed to compare the approximating solution and its limit. We shall show that the most natural choice for
such a topology is (a scaled version of) the 1–Wasserstein distance, see [1, 52].

We emphasize that the particle approach presented here, as well as the methodology used, can be poten-
tially adapted to detect more general macroscopic models by refining the microscopic formulation of the FTL
type model. Moreover, simple boundary conditions can be achieved in the limit by simple modifications of
the discrete model (e.g. with entrances and exits).

1.3. Formal derivation of the scheme: the use of Wasserstein distance. The main advantage in using
the topology induced by the Wasserstein distance (in our one-dimensional context) relies on its identification
with the L

1–topology in the space of pseudo-inverses of cumulative distributions. Roughly speaking, let ρ be
a nonnegative solution to (1.1) with mass L > 0, and let

F (t, x)
.
=

ˆ x

−∞

ρ(t, x) dx ∈ [0, L],
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be its primitive. The pseudo inverse variable

X(t, z)
.
= inf {x ∈ R : F (x) > z} , z ∈ [0, L[ ,

formally satisfies the Lagrangian PDE

Xt(t, z) = v

(

1

Xz(t, z)

)

.

Now, if we replace the z–derivative of X by the forward finite difference

Xz ≈
X(t, z + ℓ)−X(t, z)

ℓ
,

and assume that X is piecewise constant on intervals of length ℓ, the ODE system (1.3) is immediately
recovered, with the structure

X(t, z) =
∑

i

xi(t)χ[iℓ,(i+1)ℓ[(z).

We shall explain the above formal computation more in detail in Section A in the Appendix.
The use of pseudo-inverse variables and Wasserstein distances in the framework of scalar conservation

laws is not totally new. In [12], a contraction estimate in the so-called ∞–Wasserstein distance for genuinely
nonlinear scalar conservation laws was derived. The case of non-decreasing solution was treated earlier in [7].
In the special case of the LWR equation for traffic flow, we also remark here that in [38] a simplified version of
the model (1.1) is derived by introducing as new variable the cumulative number of vehicles passing through
a location x at time t starting from the passage of some reference vehicle, see [2, 19] for recent developments
of this theory.

1.4. Technical aspects of the problem. The discrete Oleinik condition. From the technical point
of view, our convergence result relies first of all on proving that the empirical measure (1.4) has the same
(weak) N → +∞ limit as the piecewise constant approximation

ρ̂N (t, x) =

N−1
∑

i+1

yi(t)χ[xi(t),xi+1(t)[, yi(t)
.
=

ℓ

xi+1(t)− xi(t)
,

in which yi(t) is the discrete Lagrangian version of the density. The most important step, however, lies
in providing strong L

1 compactness of ρ̂N . This task is performed in two different ways. In the case of
BV initial data, we are able to provide a direct estimate of the total variation of the discrete density (see
Proposition 3.5). On the other hand, our main result concerns with the case of general L∞ data: in this
case, a key estimate on the particle model (see Lemma 3.4), which can be considered as a discrete version of
the Oleinik condition for the scalar conservation law, allows to provide strong compactness even if the initial
total variation is unbounded. In some sense, this proves that the one-sided Lipschitz regularizing effect of
the scalar conservation law (1.1) is somehow an intrinsic property of the discrete Lagrangian formulation of
the model. We defer to [26] and the references therein for general results on the regularizing effect for scalar
conservation laws.

For numerical purposes, the use of discrete Oleinik conditions has been addressed before for the Lax-
Friedrichs and Godunov schemes in [9, 27, 40, 50]. There is also a similar result for second order systems
in [6]. The striking novelty in our approach is the fact that our discrete Oleinik condition is only posed
in terms of the velocity field, whereas the classical Oleinik condition is stated in terms of the derivative
of the flux, see [30]. This is due to the fact that the discrete model is a Lagrangian one, and is therefore
characterised by the velocity law. The advantage of having the discrete one-sided Lipschitz condition in terms
of the velocity is that we can also consider velocity laws with degenerate slopes at ρ = 0. An interesting
numerical feature (which is however quite natural when considering particle approximations) is that the
discrete approximation ρ̂N for the density has no vacuum regions in the interior of its support, no matter
whether or not the (continuum) initial condition is made up by more than one hump. Finally, let us mention
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that our discrete density ρ̂N is always discontinuous on at most N+1 fronts, unlike in the wave front tracking
approximation in which the number of jumps may increase in time.

1.5. A motivating example: traffic flow. The macroscopic variables describing vehicular traffic are the
(mean) density ρ (number of vehicles per unit length of the road), the (mean) velocity v (space covered per
unit time by the vehicles) and the flux f (number of vehicles per unit time). By definition we have that

f = ρ v.

The conservation of the number of vehicles along a road with no entrance or exit is expressed by the PDE

ρt + fx = 0,

where t is the time and x the position along the road. To close the above system of two equations and
three unknowns, a further condition has to be imposed. Two main approaches are used in the literature
(see [31, 42, 45] for a survey): first order and second order models. The former are based on a constitutive
law, which expresses one of the three unknowns as function of the remaining two. In the latter, a further
evolution equation is imposed. The prototype of first order models is the Lighthill-Whitham-Richards model
(LWR) [34, 44], which assumes that the velocity can be expressed as an explicit function of the density
alone. Hence, LWR is nothing but (1.1)-(1.2) with the choice of v depending on the specific situation, see
Example 2.4 below. The most celebrated second order model is the Aw-Rascle-Zhang model (ARZ) [4, 53],
which adds an evolution equation that can be regarded as a continuum analogue of Newton’s law.

The continuum assumption is not immediately justifiable in the context of vehicular traffic, as the number
of vehicles is typically far lower than the typical number of molecules e.g. in fluid dynamics. Usually, the
continuum hypothesis is accepted as a technical approximation of the physical reality, regarding macroscopic
quantities as measures of traffic features. In order to justify and make more clear the continuum hypothesis,
the study of the discrete-to-continuum limit for second order models has been proposed in [3, 6]. First
attempts at analyzing the particle approximation for first order macroscopic models have been recently
proposed in [14, 15, 46]. From the modelling point of view, the discrete-to-continuum limit in the context
of traffic flow may be also considered as the theoretical counterpart of reconstructing the traffic state of a
region through high-sampling data from GPS devises. Continuum traffic models can be also detected from
the microscopic scale delivered by kinetic models, see e.g. the approach proposed in [20] leading to a variant
of the model of [4]. We mention also the recent [5], in which interactions at the microscopic scale are modeled
by methods of game theory, thus leading to the derivation of mathematical models within the framework of
the kinetic theory.

The FTL approximation scheme has been also used to approximate second order models for vehicular
traffic such as ARZ [4, 53]. An important result in this sense is the one in [3]. However, differently from [3],
in our result we do not shrink the length of the vehicles to zero and we do not let the size of the highway
or the number of vehicles under consideration tend to infinity. In fact, our approximation algorithm rather
lets the number of particles (platoons of possible fractional vehicles) under consideration tend to infinity, but
keeps both the length of the domain (highway) and the total mass (total number of vehicles) L constant.
Finally, another important difference from [3] is that our approach allows to handle vacuum regions. This
introduces further technical difficulties that are rigourously treated and solved in the present paper.

1.6. Structure of the paper. The present paper is structured as follows. Section 2 contains all the prelim-
inary material and the statement of the main result. More precisely, we summarise the mathematical theory
of the one-dimensional scalar conservation law (1.1) in Section 2.1, we define the (discrete) FTL model (1.3)
in detail in Section 2.2. we recall the basics on the Wasserstein distance in one space dimension in Section 2.3,
and we set up the approximating scheme and state our main result in Section 2.4. The precise statement of
the main result is contained in Theorem 2.3. Section 3 is devoted to its proof, and is split into the subsec-
tions 3.1, 3.2, 3.3, and 3.4. More precisely, Section 3.1 is devoted to the proof of the weak convergence of our
approximating scheme, in Section 3.2 we prove the two basic compactness estimates mentioned above, in Sec-
tion 3.3 we provide the needed time-continuity and prove strong compactness in L

1, and finally in Section 3.4
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we prove that the limit of our approximating scheme is the unique entropy solution in the Oleinik-Kružkov
entropy sense [32, 40].

2. Preliminaries and statement of the main result

2.1. One-dimensional scalar conservation law. Consider the Cauchy problem for a scalar conservation
law in one space dimension

ρt + [ρ v(ρ)]x = 0, t > 0, x ∈ R, (2.1a)

ρ(0, x) = ρ̄(x), x ∈ R, (2.1b)

where ρ = ρ(t, x) ≥ 0 represents the density of the medium at the position x ∈ R at time t ≥ 0, v = v(ρ)
is the local velocity and ρ̄ is the initial datum, see e.g. [11, 18, 49] as general references. Regularity (and
convexity) assumptions are typically required in the literature on the flux function f(ρ)

.
= ρ v(ρ). However,

our assumptions will be on the velocity v rather than on the flux f , see Section 2.4.
Let us briefly recall the main properties of the solutions to (2.1). If the initial datum has compact support,

then the support of any solution has finite speed of propagation. The maximum principle holds true, and
if the initial datum is nonnegative, then the solutions remain nonnegative for all times. Moreover, the total
(linear) mass

´

R
ρ(t, x) dx is time independent:

´

R
ρ(t, x) dx = L

.
=
´

R
ρ̄(x) dx for all t ≥ 0.

It is well known that the solutions to (2.1) may develop discontinuities in a finite time, also for reg-
ular initial data. For this reason, one has to consider weak solutions ρ to (2.1), more precisely ρ in
L
∞

(

[0,+∞[ ;L1 ∩ L
∞ (R)

)

that satisfy (2.1) in the sense of distributions, namely
ˆ

R

ˆ

R+

[

ρ(t, x)ϕt(t, x) + f (ρ(t, x))ϕx(t, x)

]

dt dx+

ˆ

R

ρ̄(x)ϕ(0, x) dx = 0 (2.2)

for all ϕ ∈ C
∞
c

([0,+∞[× R;R). The choice of L
1 ∩ L

∞ (R) as the functional space to deal with the
x–regularity appears as the most reasonable one in order to obtain existence of weak solutions when the
approximating procedure is performed via a vanishing viscosity argument, see e.g. [18, Section 6.3]. However,
the space BV (R) is more reminiscent of the typical structure of solutions featuring shocks and rarefaction
waves, and turns out to be a natural choice when the problem is e.g. solved by the polygonal approximation
algorithm also known as the wave-front tracking algorithm [17], see also [11] and the references therein.

It is well known that the notion of weak solution introduced above is not strong enough to provide
uniqueness of solutions to (2.1). The concept of entropy solution formulated in [32, 33, 40] (see also [18] and
the references therein), provides the most natural and efficient way to single out a unique (physically relevant)
solution to (2.1). Such concept can be be formulated in several ways, also depending on the regularity of
ρ, the most general one being the one proposed by Kružkov [32], which holds for a reasonably wide class of
fluxes (namely ρ 7→ f(ρ) being locally Lipschitz) and in arbitrary space dimension.

Definition 2.1 (Entropy solutions). Assume that the flux ρ 7→ f(ρ) is locally Lipschitz. A function ρ in
L
∞

(

[0,+∞[ ;L1 ∩ L
∞ (R)

)

is an entropy solution to (2.1) if it satisfies the entropy inequality
ˆ

R

ˆ

R+

[

|ρ(t, x)− k|ϕt(t, x) + sgn (ρ(t, x)− k) [f (ρ(t, x)) − f(k)]ϕx(t, x)

]

dt dx

+

ˆ

R

|ρ̄(x) − k|ϕ(0, x) dx ≥ 0 (2.3)

for all ϕ ∈ C
∞
c

([0,+∞[× R;R) with ϕ ≥ 0, and for all constants k ∈ R.

Clearly, any entropy solution is a weak solution to (2.1) in the sense of (2.2). Moreover uniqueness follows
from (2.3).

Theorem 2.1 (Kružkov [32]). Assume that the flux f is locally Lipschitz. Then, for any given initial
condition ρ̄ in L

∞ with compact support, there exists a unique entropy solution to (2.1) in the sense of
Definition 2.1.
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It is easy to check that any function ρ satisfying the entropy inequality (2.3) satisfies also the following
property of (weak) L

1–continuity in time

lim
T→0+

1

T

ˆ T

0

ˆ

|x|≤r

|ρ(t, x)− ρ̄(x)| dxdt = 0

for all r > 0. However, depending on the way we attempt at constructing entropy solutions, an important
issue is related with detecting the trace at t = 0 in a strong enough topology. This is often the case when the
approximating scheme lacks of compactness when t approaches zero. A theorem due to Chen and Rascle [13]
states that the uniqueness of the entropy solution is preserved also for a notion of entropy solution relaxed
at t = 0, provided the flux f satisfies a.e. a genuine nonlinearity condition.

Theorem 2.2 (Chen and Rascle [13]). Assume there exists no nontrivial interval on which f is affine. If ρ̄
is in L

∞ and has compact support, then there exists a unique ρ in L
∞

(

[0,+∞[ ;L1 ∩ L
∞ (R)

)

weak solution
to (2.1) in the sense of (2.2) that satisfies also

ˆ

R

ˆ

R+

[

|ρ(t, x) − k|ϕt(t, x) + sgn(ρ(t, x)− k)[f (ρ(t, x)) − f(k)]ϕx(t, x)

]

dt dx≥ 0 (2.4)

for all ϕ ∈ C
∞
c (]0,+∞[× R;R) with ϕ ≥ 0, and for all constants k ∈ R. Moreover, ρ is the unique entropy

solution in the sense of Definition 2.1.

Let us finally recall that, for C
1–fluxes f which are concave or convex, another classical tool to uniquely

determine all weak solutions by their L
∞–initial values is the so called Oleinik-type condition [30]

ˆ

R

ˆ

R+

f ′(ρ(t, x))ϕx(t, x) dt dx ≥ −

ˆ

R

ˆ

R+

1

t
ϕ(t, x) dt dx (2.5)

for all ϕ ∈ C
∞
c ([0,+∞[× R;R) with ϕ ≥ 0, and for all t > 0. Moreover, if f ′ has Lipschitz continuous

inverse, then (2.5) implies that ρ(t, ·) has locally bounded total variation for all t > 0 even if the initial
datum is not locally in BV.

2.2. Follow-the-leader model. Microscopic models of vehicular traffic are typically based on the so called
Follow-The-Leader (FTL) model. On the other hand, such model makes sense in any context in which a
set of discrete ordered agents moves with a velocity computed instantaneously as a function of the discrete
density.

Consider N + 1 ordered particles localised on R. Denote by t 7→ xi(t) the position of the i–th particle for
i = 0, . . . , N . Then, according to the FTL model, the evolution of the particles (which mimics the evolution
of the position of N + 1 vehicles along the road) is described inductively by the following Cauchy problem
for an ODE system

ẋN (t) = vmax, (2.6a)

ẋi(t) = v

(

ℓ

xi+1(t)− xi(t)

)

, i = 0, . . . , N − 1, (2.6b)

xi(0) = x̄i, i = 0, . . . , N, (2.6c)

where v is a C
1 strictly decreasing velocity map, x̄0 < . . . < x̄N are the initial positions of the particles, and

ℓ > 0 is the (linear) mass of each particle. We shall assume that v is strictly decreasing and bounded from
above. Then, vmax

.
= v(0) is the maximum possible velocity and is reached only by the leading particle xN .

Let us underline that in vehicular traffic the FTL model requires that all vehicles move towards a unique
direction (i.e. the vehicles move along a one way road), e.g. v is nonnegative. Our setting is more general
and such an assumption is not required. Notice in particular that we shall not prescribe any constrain on the
sign of vmax.
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We now set

R
.
= max

i=0,...,N−1

(

ℓ

x̄i+1 − x̄i

)

.

The quantity R > 0 is the maximum discrete density at time t = 0 and

x̄i+1 − x̄i ≥
ℓ

R
, i = 0, . . . , N − 1. (2.7)

System (2.6) can be solved inductively starting from i = N . Indeed, from (2.6a), we immediately deduce
that

xN (t) = x̄N + vmax t.

Then, we can compute t 7→ xi(t) once we know t 7→ xi+1(t). In fact, according with the system (2.6) the
velocity of the i–th particle depends on its distance from the (i+1)–th particle alone via the smooth velocity
map v. In order to ensure that the (unique) solution to (2.6) exists globally in t ≥ 0, we need to prove that
the distances xi+1(t)− xi(t) never degenerate. We can actually prove that the discrete density never exceeds
the upper bound R > 0 holding at t = 0. This is proven in the next lemma, which improves a similar one
in [46], which only holds in the case v(ρmax) = 0 for some maximal density ρmax > 0, and in which the
authors prove that the discrete density stays bounded by the threshold density ρmax. Our result is actually
much stronger, because it basically proves that the discrete model satisfies the same maximum principle of
the corresponding continuum model (see e.g. [18, Theorem 6.2.4]), i.e. the discrete density at an arbitrary
time t > 0 is controlled by the supremum norm of the initial discrete density.

Lemma 2.1 (Discrete maximum principle). For all i = 0, . . . , N − 1, we have

ℓ

R
≤ xi+1(t)− xi(t) ≤ x̄N − x̄0 + (vmax − v(R)) t for all times t ≥ 0. (2.8)

Proof. The upper bound is obvious. Hence, it suffices to prove the lower bound. At time t = 0 the lower
bound is satisfied because of (2.7). We shall prove that

sup
t≥0

[xj+1(t)− xj(t)] ≥
ℓ

R
, j = 0, . . . , N − 1, (2.9)

by a recursive argument on j. The statement is true for j = N − 1. Indeed,

xN (t)− xN−1(t) = x̄N − x̄N−1 +

ˆ t

0

[

vmax − v

(

ℓ

xN (s)− xN−1(s)

)]

ds

≥ x̄N − x̄N−1 ≥
ℓ

R
,

because v(ρ) ≤ vmax for all ρ ≥ 0. Assume now that

sup
t≥0

[xj+2(t)− xj+1(t)] ≥
ℓ

R
. (2.10)

Assume by contradiction that there exists j ∈ {0, . . . , N − 2} and t2 > t1 ≥ 0 such that

xj+1(t1)− xj(t1) =
ℓ

R

and

xj+1(t)− xj(t) <
ℓ

R
for all t ∈ ]t1, t2] . (2.11)

Since v is strictly decreasing, we have for any t ∈ ]t1, t2]

xj(t) = xj(t1) +

ˆ t

t1

v

(

ℓ

xj+1(t)− xj(t)

)

dt ≤ xj(t1) + v(R) (t− t1). (2.12)
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By (2.10) we have for any t ∈ ]t1, t2]

xj+1(t) = xj+1(t1) +

ˆ t

t1

v

(

ℓ

xj+2(t)− xj+1(t)

)

dt ≥ xj+1(t1) + v(R) (t− t1) ,

and therefore by (2.12)

xj+1(t)− xj(t) ≥ xj+1(t1)− xj(t1) =
ℓ

R
,

which contradicts (2.11). Hence, (2.9) is satisfied and the assertion is proven. ⋄

We emphasise that the above discrete maximum principle is a direct consequence of the transport nature
behind the FTL system (2.6). Indeed, the global bound for the discrete density is propagated from the last
particle xN back to all the other particles, as emphasised by the recursive argument in the proof of Lemma
2.1.

2.3. Notation and preliminaries on measure distances. In this section we recall basic properties of
pseudo-inverse operators and on the one-dimensional Wasserstein distance that we shall use extensively in
the rest of the paper. We defer to [52] for further details.

For a fixed L > 0, introduce the pseudo-inverse operators

X : L∞ (R; [0, L]) → L
∞ ([0, L[ ;R) ,

F : L∞ ([0, L[ ;R) → L
∞ (R; [0, L]) ,

defined by

X [F ] (z)
.
= inf {x ∈ R : F (x) > z} for z ∈ [0, L[ ,

F [X ] (x)
.
= meas {z ∈ [0, L] : X(z) ≤ x} for x ∈ R,

and consider the space

ML
.
= {ρ Radon measure on R with compact support : ρ ≥ 0, ρ(R) = L} . (2.13)

For a given ρ ∈ ML, we denote xρmin
.
= min (spt(ρ)) and xρmax

.
= max (spt(ρ)), and by Fρ : R → [0, L] its

cumulative distribution, namely
Fρ(x)

.
= ρ (]−∞, x]) .

We observe that Fρ ∈ L
∞ (R; [0, L]) is non-decreasing, right-continuous with Fρ(x) = 0 for all x < xρmin

and Fρ(x) = L for all x ≥ xρmax. Therefore we can define its pseudo-inverse Xρ
.
= X [Fρ]. Clearly, Xρ ∈

L
∞ ([0, L[ ; [xρmin, x

ρ
max]) is non-decreasing, right-continuous with Xρ(0) = xρmin. By abuse of notation, we

shall adopt the notation ρ to denote an absolutely continuous measure in ML with L
1–density ρ. We recall

the following lemma (see e.g. [52]).

Lemma 2.2 (Change of variable). If ρ ∈ ML, then for all ϕ ∈ C
0(R;R) we have

ˆ

R

ϕ(x) dρ(x) =

ˆ L

0

ϕ (Xρ(z)) dz.

We recall that, for L = 1, the one-dimensional 1–Wasserstein distance between ρ1, ρ2 ∈ M1 (defined in
terms of optimal plans in the Monge-Kantorovich problem, see e.g. [52]) can be defined as

d1(ρ1, ρ2)
.
= ‖Fρ1

− Fρ2
‖
L1(R;R) = ‖Xρ1

−Xρ2
‖
L1([0,1];R).

For a general strictly positive L, we introduce the scaled 1–Wasserstein distance between ρ1, ρ2 ∈ ML as

dL,1(ρ1, ρ2)
.
= ‖Fρ1

− Fρ2
‖
L1(R;R) = ‖Xρ1

−Xρ2
‖
L1([0,L];R). (2.14)

Indeed, straightforward computation yields

dL,1(ρ1, ρ2) = Ld1(ρ1/L, ρ2/L).
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The distance dL,1 inherits all the topological properties of the 1–Wasserstein distance for probability measures.
In particular, a sequence (ρn)n∈N in ML converges to ρ ∈ ML in dL,1 if and only if

lim
n→+∞

ˆ

R

ϕ(x) dρn(x) =

ˆ

R

ϕ(x) dρ(x),

for all ϕ ∈ C
0(R;R) growing at most linearly at infinity.

2.4. Statement of the main result. In this subsection we state our main result, which provides a rigorous
description of the unique entropy solution ρ to the Cauchy problem (2.1) as the limit for N that goes to
infinity of a density associated to the microscopic model (2.6) to be constructed as described below.

We shall work under the standing assumption on the initial datum

(In) The initial datum ρ̄ is in ML ∩ L
∞(R),

where ML is defined in (2.13). In some cases we shall require the stronger condition

(InBV) The initial datum ρ̄ is in ML ∩BV(R).

As for the velocity function v, we shall require throughout the paper:

(V1) v ∈ C
1([0,+∞[), v strictly decreasing on [0,+∞[.

(V2) v(0) = vmax for some vmax ∈ R.

The C
1 assumption in (V1) is a minimal requirement for having a unique local solution to the system (2.6).

The monotonicity assumption in (V1) is a natural one in traffic models. However, we shall see that it is
technically relevant in many parts of our paper, in particular in Section 3.2. The assumption (V2) basically
states that v(0) is finite. We notice that the maximum principle for (2.1) and the discrete maximum principle
in Lemma 2.1 imply, together with the monotonicity of v, that both v(ρ) and v(ℓ/(xi+1(t) − xi(t))) are
globally bounded in time by a constant depending on the L

∞ norm of the initial datum. The assumption
v(0) < +∞ is a natural requirement in order to guarantee the existence of a solution to the FTL system (2.6).
Indeed, if v(0) = +∞, then the particle xN goes to +∞ instantaneously after t = 0, and so do all other
particles. Therefore, the particle system cannot approximate the continuum equation (2.6) in the many
particle limit, and the assumption v(0) < +∞ is a necessary condition for our result. Let us also remark that
the assumption (V1) implies that f(ρ) = ρ v(ρ) is not affine, and hence satisfies the hypotheses of Theorem
2.2.

In some cases, we shall use the stronger assumption

(V3) The map [0,+∞[ ∋ ρ 7→ ρ v′(ρ) ∈ [0,+∞[ is non increasing.

Notice that the assumption (V3) implies in particular that the flux ρ 7→ f(ρ) = ρ v(ρ) is concave. Indeed,
since f ′(ρ) = v(ρ)+ρ v′(ρ), f ′ is the sum of two non-increasing functions if (V3) is satisfied. The assumption
(V3) is clearly a stricter requirement than the concavity of f ; on the other hand, (V3) is verified by many
examples of velocities arising in traffic flow models.
Example. [Examples of velocities in vehicular traffic] In vehicular traffic, a maximal density ρmax > 0 is
prescribed, at which all vehicles are bumper to bumper. Typically, ρ in (2.1) represents a normalised density,
and one can assume ρmax = 1. The prototype for the velocity in vehicular traffic v(ρ) = vmax (1− ρ) by
Greenshields [29] clearly satisfies the assumptions (V1), (V2), (V3). The same holds for the Pipes-Munjal
velocity [43]

v(ρ) = vmax (1− ρα) α > 0,

in which the concavity of the flux ρ v(ρ) degenerates at ρ = 0, and for the Underwood model [51]

v(ρ) = vmax e
−ρ.

A further example of speed-density relations that satisfy (V1), (V2), (V3) are

v(ρ) = vmax

[

log

(

1

α

)]−1

log

(

1

ρ+ α

)

, α > 0,
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that result from a slight modification of the Greenberg model [28]
We now introduce our atomization scheme. Denote by x̄min < x̄max the extremal points of the convex hull of

the support of ρ̄, namely
⋂

[a,b]⊇spt(ρ̄) [a, b] = [x̄min, x̄max]. Fix n ∈ N sufficiently large. Let L
.
= ‖ρ̄‖

L1(R) > 0

and split the subgraph of ρ̄ in Nn
.
= 2n regions of measure ℓn

.
= 2−nL as follows. Set

x̄n0
.
= x̄min, (2.15a)

and recursively

x̄ni
.
= sup

{

x ∈ R :

ˆ x

x̄n

i−1

ρ̄(y) dy < ℓn

}

, i = 1, . . . , Nn. (2.15b)

It is easily seen that x̄nNn
= x̄max, and x̄nNn−i = x̄n+m

Nn+m−2mi for all i = 0, . . . , Nn. Since we are always

assuming that ρ̄ ∈ L
∞(R), let us set

R
.
= ‖ρ̄‖

L∞(R).

We have

ℓn =

ˆ x̄n

i+1

x̄n

i

ρ̄(y) dy ≤
(

x̄ni+1 − x̄ni
)

R, i = 0, . . . , Nn − 1.

Thus the condition (2.7) is satisfied with ℓ = ℓn, and we can take the values x̄n0 , . . . , x̄
n
Nn

as the initial positions
of the (Nn + 1) particles in the n–depending version of the FTL model (2.6)

ẋnNn
(t) = vmax, (2.16a)

ẋni (t) = v

(

ℓn
xni+1(t)− xni (t)

)

, i = 0, . . . , Nn − 1, (2.16b)

xni (0) = x̄ni , i = 0, . . . , Nn. (2.16c)

The existence of a global-in-time solution to (2.16) follows from Lemma 2.1. Moreover, from (2.16a) we
immediately deduce that

xnNn
(t) = x̄max + vmax t.

Finally, since v is decreasing, and its argument ℓ/[xni+1(t)− xni (t)] is always bounded above by R, we have

xn0 (t) ≥ x̄min + v(R) t.

We stress once again that v(R) may be negative.
By introducing in (2.16) the new variable

yni (t)
.
=

ℓn
xni+1(t)− xni (t)

, i = 0, . . . , Nn − 1, (2.17)

we obtain

ẏnN−1 = −
(ynN−1)

2

ℓn

[

vmax − v(ynN−1)
]

, (2.18a)

ẏni = −
(yni )

2

ℓn

[

v(yni+1)− v(yni )
]

, i = 0, . . . , Nn − 2, (2.18b)

yni (0) = ȳni
.
=

ℓn
x̄ni+1 − x̄ni

, i = 0, . . . , Nn − 1. (2.18c)

Observe that ℓn/ [x̄max − x̄min + (vmax − v(R)) t] ≤ yni (t) ≤ R for all t ≥ 0 in view of Lemma 2.1. The
quantity yni can be seen as a discrete version of the density ρ in Lagrangian coordinates, and the ODEs (2.18a)–
(2.18b) are a discrete Lagrangian version of the scalar conservation law (2.1a).

We are now ready to state the main result of this paper.
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Theorem 2.3. Let ρ̄ satisfy the condition (In) and v the condition (V1) and (V2). Assume further that
either

• ρ̄ satisfies (InBV),

or

• v satisfies (V3).

Define the piecewise constant (with respect to x) density

ρ̂n(t, x)
.
=

Nn−1
∑

i=0

yni (t)χ[xni (t), x
n
i+1(t)

[(x), (2.19)

and the empirical measure

ρ̃n(t, x)
.
= ℓn

Nn−1
∑

i=0

δ
xni (t)

(x). (2.20)

Then the sequence (ρ̂n)n∈N converges to the unique entropy solution ρ of the Cauchy problem (2.1) almost
everywhere and in L

1

loc
([0,+∞[× R). Moreover, the sequence (ρ̃n)n∈N converges to ρ in the topology of

L
1

loc
([0,+∞[ ; dL,1).

3. Proof of the main result

Our strategy for the proof of Theorem 2.3 can be resumed as follows:

(i) Following the notation introduced in Section 2.3, we set F̂n = Fρ̂n and X̂n = X [F̂n], respectively

F̃n = Fρ̃n and X̃n = X [F̃n], as the cumulative distribution of ρ̂n, respectively ρ̃n, and its pseudo
inverses. Introduce the discrete Lagrangian density

ρ̌n = ρ̂n ◦ X̂n.

(ii) As a first step we prove that the sequence of piecewise constant pseudo-inverse distributions (X̃n)n∈N

has a strong limit X in L
1

loc
([0,+∞[×[0, L];R), which is equivalent to having (ρ̃n)n∈N converging to a

measure ρ in the L
1

loc
([0,+∞[; dL,1) topology. At the same time, we shall also prove that (X̂n)n∈N

converges strongly in L
1

loc
([0,+∞[×[0, L];R) to the same limit X , i.e. (ρ̂n)n∈N converges to ρ in

L
1

loc
([0,+∞[; dL,1).

(iii) We then prove that the limit pseudo-inverse function X has difference quotients bounded below by 1/R.
This fact allows to prove that the limit measure ρ in (ii) is actually in L

∞ and is a.e. bounded by R.
At the same time, we easily infer weak–∗ convergence of (ρ̌n)n∈N to a limit ρ̌ in L

∞. It remains to
prove that ρ̌ ◦F = ρ, and that such limit is the unique entropy solution to (2.1). This requires stronger
estimates on ρ̂n.

(iv) A direct proof of a uniform BV estimate for ρ̂n can be performed in the case of ML ∩ BV initial
datum. In the case of general ML ∩ L

∞ initial datum, and with v satisfying (V3), we shall prove that
the discrete Lagrangian density ρ̌n satisfies a (uniform) discrete version of the Oleinik condition, which
implies automatically a BV uniform estimate for ρ̌n, and hence for ρ̂n.

(v) The definition of weak solution (2.2) for ρ follows from the n → +∞ limit of the formulation of (2.16)
as a PDE

X̃n
t = v(ρ̌n). (3.1)

(vi) We finally recover the entropy condition (2.3) in the discrete setting, and use the strong L
1 compactness

to pass it to the limit.
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3.1. Weak convergence of the approximating scheme. Throughout this subsection we shall assume
that v satisfies (V1) and (V2). Let ρ̂n and ρ̃n be defined as in (2.19) and (2.20) respectively. We have that
ρ̂n(t), ρ̃n(t) ∈ ML for all t ≥ 0. Thus we can consider the cumulative distributions associated to ρ̂n and ρ̃n

(recall that ρ̃n is an empirical measure)

F̂n(t, x)
.
=

ˆ x

−∞

ρ̂n(t, y) dy, F̃n(t, x)
.
= ρ̃n(]−∞, x]),

and their pseudo-inverses

X̂n .
= X

[

F̂n
]

, X̃n .
= X

[

F̃n
]

,

extended to z = L by taking X̂n(t, L) = xnNn
(t) = X̃n(t, L). By definition, see figures 1 and 2, for all t ≥ 0,
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Figure 1. Maps of the form, respectively from the left, (2.19), (3.2) and (3.3) with n(= 3)
and t(≥ 0) omitted.
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Figure 2. Maps of the form, respectively from the left, (2.20), (3.4) and (3.5) with n(= 3)
and t(≥ 0) omitted.

z ∈ [0, L] and x ∈ R we have

F̂n(t, x) =

Nn−1
∑

i=0

[

i ℓn + yni (t) [x− xni (t)]

]

χ[
xni (t), x

n
i+1(t)

[(x)
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+ Lχ[
xnNn

(t),+∞
[(x), (3.2)

X̂n(t, z) =

Nn−2
∑

i=0

[

xni (t) +
z − i ℓn
yni (t)

]

χ
[i ℓn, (i+ 1) ℓn[

(z)

+

[

xnNn−1(t) +
z − L+ ℓn
ynNn−1(t)

]

χ
[L− ℓn, L]

(z), (3.3)

F̃n(t, x) =

Nn−2
∑

i=0

ℓn (i+ 1)χ[
xni (t), x

n
i+1(t)

[(x) + Lχ[
xnNn−1(t),+∞

[(x), (3.4)

X̃n(t, z) =

Nn−1
∑

i=0

xni (t)χ[i ℓn, (i+ 1) ℓn[
(z) + xnNn

(t)χ
{L}

(z). (3.5)

Observe that for any fixed t ≥ 0

• z 7→ X̂n(t, z) and x 7→ F̂n(t, x) are piecewise linear continuous and non-decreasing;

• F̂n(t) : [xn0 (t), x
n
Nn

(t)] → [0, L] and X̂n(t) : [0, L] → [xn0 (t), x
n
Nn

(t)] are strictly increasing and are
inverse functions of each other in the classical sense;

• z 7→ X̃n(t, z) and x 7→ F̃n(t, x) are piecewise constant with Nn jumps of discontinuity, right contin-
uous and non-decreasing;

• F̂n(t, x) ≤ F̃n(t, x) for any x ∈ R and X̃n(t, z) ≤ X̂n(t, z) for any z ∈ [0, L];

• F̃n+1(t, x) ≤ F̃n(t, x) for any x ∈ R and X̃n(t, z) ≤ X̃n+1(t, z) for any z ∈ [0, L];

• ρ̂n(t, x) = F̂n
x (t, x) for all x 6= xni (t), i = 1, . . . , Nn, while ρ̃n = F̃n

x in the sense of distributions.
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Figure 3. Map of the form (3.6) with n(= 3) and t(≥ 0) omitted.

For later use, see Figure 3, we introduce also the discrete Lagrangian density

ρ̌n(t, z)
.
= ρ̂n

(

t, X̂n(t, z)
)

=

Nn−1
∑

i=0

yni (t)χ[i ℓn, (i+ 1) ℓn[
(z) (3.6)

and observe that

X̃n
t (t, z) = v (ρ̌n(t, z)) , t > 0, z ∈ [0, L]. (3.7)

As a first step, we want to prove that (X̃n)n∈N and (X̂n)n∈N have the same unique limit in L
1

loc
([0,+∞[×[0, L];R).
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Proposition 3.1 (Definition of X). There exists a unique non-decreasing and z–right continuous function
X = X(t, z) ∈ L

∞ ([0,+∞[× [0, L] ;R), such that

(X̂n)n∈N and (X̃n)n∈N converge to X in L
1

loc
([0,+∞[× [0, L] ;R) ,

and for any t, s > 0

TV [X(t)] ≤ x̄max − x̄min + (vmax − v(R)) t, (3.8a)

‖X(t)‖
L∞([0,L];R) ≤ max {|x̄min + v(R) t|, |x̄max + vmax t|} , (3.8b)

ˆ L

0

|X(t, z)−X(s, z)|dz ≤ max{|vmax|, |v(R)|}L |t− s|. (3.8c)

Moreover, (X̃n)n∈N converges to X a.e. on [0,+∞[× [0, L].

Proof. Fix T > 0, and let n > 0.
• Step 1: X̃

n → X. Since z 7→ X̃n(t, z) is non-decreasing with X̃n(t, 0) = xn0 (t) ≥ x̄n0 + v(R) t =

x̄min + v(R) t and X̃n(t, L) = x̄max + vmax t, we have that

TV
[

X̃n(t)
]

≤ x̄max − x̄min + (vmax − v(R)) t,
∥

∥

∥
X̃n(t)

∥

∥

∥

L∞([0,L];R)
≤ max{|x̄min + v(R) t|, |x̄max + vmax t|}.

Moreover, if s < t, then by (2.16b) and (3.5)

ˆ L

0

∣

∣

∣
X̃n(t, z)− X̃n(s, z)

∣

∣

∣
dz =

Nn−1
∑

i=0

ℓn |x
n
i (t)− xni (s)|

≤

Nn−1
∑

i=0

ℓn

ˆ t

s

|v (yni (τ))| dτ ≤ max{|vmax|, |v(R)|}L (t− s) .

Therefore, by applying Helly’s theorem in the form [11, Theorem 2.4], up to a subsequence, (X̃n)n∈N converges
in L

1

loc
([0,+∞[× [0, L] ;R) to a function X which is right continuous w.r.t. z and satisfying (3.8). Finally,

since X̃n+1(t, z) ≤ X̃n(t, z) for all t ≥ 0 and z ∈ [0, L], the whole sequence (X̃n)n∈N converges to X and
a.e. on [0,+∞[× [0, L].

• Step 2: X̂
n → X. By definition, see (2.17), (3.3) and (3.5), we have for all t ∈ [0, T ]

ˆ L

0

∣

∣

∣
X̂n(t, z)− X̃n(t, z)

∣

∣

∣
dz =

Nn−1
∑

i=0

yni (t)
−1

ˆ (i+1) ℓn

i ℓn

[z − i ℓn] dz

=
ℓn
2

Nn−1
∑

i=0

[

xni+1(t)− xni (t)
]

=
ℓn
2

[

xnNn
(t)− xn0 (t)

]

≤
ℓn
2

[

x̄max − x̄min + (vmax − v(R))T
]

,

and the proof is complete as (X̃n)n∈N converges to X in view of Step 1. ⋄

In the next lemma we prove that X inherits the maximum principle property satisfied by X̃n proven in
Lemma 2.1.

Lemma 3.1. For all t ≥ 0 and for a.e. z1, z2 ∈ [0, L] with z1 < z2 we have

z2 − z1
R

≤ X(t, z2)−X(t, z1) ≤ x̄max − x̄min + (vmax − v(R)) t. (3.9)
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Proof. The upper bound is obvious. Take 0 ≤ z1 < z2 ≤ L. For n > 0 sufficiently large, we can take
i, j ∈ {0, 1, . . . , Nn} such that i < j, i ℓn ≤ z1 < (i+1) ℓn and ℓn j ≤ z2 < ℓn (j+1). By (3.5) and Lemma 2.1
we have

X̃n(t, z2)− X̃n(t, z1)

z2 − z1
≥

xnj (t)− xni (t)

(j + 1) ℓn − i ℓn
≥

(j − i) ℓn
R ((j + 1) ℓn − i ℓn)

=
1

R
−

1

R (j − i+ 1)
≥

1

R
−

1

R
(

(z2 ℓ
−1
n − 1)− z1 ℓ

−1
n + 1

) =
1

R
−

ℓn
R(z2 − z1)

.

By letting n go to infinity in the above estimate we conclude the proof. Indeed, as n goes to infinity we
have that ℓn/[R(z2 − z1)] converges to zero and (X̃n)n∈N converges to X a.e. on [0,+∞[× [0, L] in view of
Proposition 3.1. ⋄

Proposition 3.2 (Definition of F ). (F̂n)n∈N and (F̃n)n∈N converge to F
.
= F [X ] in L

1

loc
([0,+∞[×R; [0, L]).

Moreover, (F̃n)n∈N converges to F a.e. on [0,+∞[× R.

Proof. We first observe that by Lemma 3.1 for any fixed t ≥ 0, the map z 7→ X(t, z) is strictly increasing
and for all z ∈ [0, L]

z

R
+ x̄min + v(R) t ≤ X(t, z) ≤ x̄max + vmax t−

L− z

R
.

Thus, F is well defined. The convergence of (F̂n)n∈N and (F̃n)n∈N to F follows from the basic property (2.14)
of the scaled Wasserstein distance and from Proposition 3.1. Indeed, for any T > 0 we have

lim
n→+∞

∥

∥

∥
F̂n − F

∥

∥

∥

L1([0,T ]×R;R)
= lim

n→+∞

∥

∥

∥
X̂n −X

∥

∥

∥

L1([0,T ]×[0,L];R)
= 0,

lim
n→+∞

∥

∥

∥
F̃n − F

∥

∥

∥

L1([0,T ]×R;R)
= lim

n→+∞

∥

∥

∥
X̃n −X

∥

∥

∥

L1([0,T ]×[0,L];R)
= 0.

Finally, (F̃n)n∈N converges to F a.e. on [0,+∞[×R because F̃n+1(t, x) ≤ F̃n(t, x) for all t ≥ 0 and x ∈ R. ⋄

Lemma 3.2. For all t ≥ 0 and for a.e. x1, x2 ∈ R with x1 < x2 we have

0 ≤ F (t, x2)− F (t, x1) ≤ R(x2 − x1). (3.10)

Proof. Fix x1 < x2 and denote z1 = F (t, x1) ≤ z2 = F (t, x2). Since the lower bound is obvious, it is sufficient
to prove that

z2 − z1 ≤ R(x2 − x1).

If z1 = z2, then there is nothing to prove. Assume therefore that z1 6= z2 and fix η ∈ ]0, z2 − z1[. By
definition, X(t, z) = X [F ](t, z) = inf{x ∈ R : F (t, x) > z}. Since F (t, x2) = z2 > z2 − η, we have that
X(t, z2 − η) ≤ x2. Moreover, X(t, z1) ≥ x1 because z 7→ X(t, z) is strictly increasing and right continuous.
Therefore, by Lemma 3.1 we have

x2 − x1 ≥ X(t, z2 − η)−X(t, z1) ≥
z2 − η − z1

R
.

Since η > 0 is arbitrary, we have z2 − z1 ≤ R(x2 − x1). ⋄

Proposition 3.3 (Definition of ρ). For any t ≥ 0, let ρ(t) be the distributional derivative of x 7→ F (t, x),
with F defined in Lemma 3.1. Then:
• ρ(t, ·) ∈ ML for all t ≥ 0,
• 0 ≤ ρ(t, x) ≤ R for a.e. t ≥ 0 and x ∈ R,
• (ρ̃n)n∈N and (ρ̂n)n∈N converge to ρ in the topology of L1

loc
([0,+∞[ ; dL,1),
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Proof. For any fixed t ≥ 0, by Lemma 3.2 we have that x 7→ F (t, x) is a Lipschitz function with Lip (F (t)) ≤
R. Hence its weak derivative ρ(t) is well defined in the space of distributions and is essentially bounded
with ‖ρ(t)‖

L∞(R) ≤ R. Moreover, x 7→ F (t, x) is non-decreasing, and therefore ρ(t) ≥ 0 a.e. in R. By

Proposition 3.1 and (2.14) we easily obtain that for any T > 0

lim
n→+∞

ˆ T

0

dL,1 (ρ̂
n(t), ρ(t)) dt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̂n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0,

lim
n→+∞

ˆ T

0

dL,1 (ρ̃
n(t), ρ(t)) dt = lim

n→+∞

ˆ T

0

ˆ L

0

∣

∣

∣
X̃n(t, z)−X(t, z)

∣

∣

∣
dz dt = 0.

Thus, ρ satisfies also the last condition and ρ(t) ∈ ML. ⋄

Lemma 3.3 (Definition of ρ̌). There exists ρ̌ in L
∞([0,+∞[×[0, L];R) such that, up to a subsequence,

(ρ̌n)n∈N converges weakly-* in L
∞([0,+∞[×[0, L];R) to ρ̌.

Proof. It is sufficient to observe that for any n > 0 we have 0 ≤ ρ̌n ≤ R a.e. on [0,+∞[×[0, L] because, by
Lemma 2.1, ‖yni ‖L∞([0,+∞[;R) ≤ R. ⋄

We conclude this subsection by checking that the scheme is consistent with the prescribed initial condition
in the limit.

Proposition 3.4. The sequences (ρ̃n|t=0)n∈N and (ρ̂n|t=0)n∈N both converge to ρ̄ in the dL,1–Wasserstein
distance.

Proof. By definitions (2.19) and (2.20) we have that

ρ̂n(0, x) =

Nn−1
∑

i=0

ȳni χ[x̄ni , x̄
n
i+1

[(x), ρ̃n(0, x) = ℓn

Nn−1
∑

i=0

δx̄ni
(x).

Therefore Fρ̂n|t=0
= F̂n|t=0, Fρ̃n|t=0

= F̃n|t=0 and by (2.14), (2.18c) we have

dL,1 (ρ̃
n|t=0, ρ̂

n|t=0) =
∥

∥

∥
F̃n|t=0 − F̂n|t=0

∥

∥

∥

L1(R;R)

=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn − ȳni [x− x̄ni ]

]

dx = ℓn

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

x̄ni+1 − x

x̄ni+1 − x̄ni
dx

≤ ℓn [x̄max − x̄min] .

Hence, it is sufficient to prove that (ρ̃n|t=0)n∈N converges to ρ̄ in the dL,1–Wasserstein distance. By (2.15)
we have that

dL,1(ρ̃
n|t=0, ρ̄) =

∥

∥

∥
F̃n|t=0 − Fρ̄

∥

∥

∥

L1(R;R)
=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn (i+ 1)−

ˆ x

−∞

ρ̄(y) dy

]

=

Nn−2
∑

i=0

ˆ x̄n

i+1

x̄n

i

[

ℓn −

ˆ x

x̄n

i

ρ̄(y) dy

]

dx ≤ ℓn [x̄max − x̄min]

and this concludes the proof. ⋄
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3.2. BV estimates and discrete Oleinik condition. Let us sum up what we have proven so far. The
family of empirical measures (ρ̃n)n∈N converges in the scaled 1–Wasserstein sense to a limit ρ belonging to
L
∞ ([0,+∞[ ;ML) and such that 0 ≤ ρ ≤ R almost everywhere. Moreover, the empirical measure ρ̃n has a

pseudo-inverse distribution function X̃n satisfying the PDE

X̃n
t (t, z) = v (ρ̌n(t, z)) , (t, z) ∈ [0,+∞[×[0, L],

with the family (ρ̌n)n∈N being weakly–∗ compact in L
∞ ([0,+∞[×[0, L]; [0, 1]). The Wasserstein topology is

a proper tool to pass to the limit the time derivative term in the above PDE, as this term is linear. But
on the other hand, the weak–∗ topology is too weak to pass to the limit v(ρ̌n) for a general nonlinear v.
Moreover, there is the additional difficulty of having to check that the two limits are related in some sense.

A typical way to overcome the difficulty stated above is to provide a BV estimate for the approximating
sequence (ρ̌n)n∈N. We tackle this task in two ways. First of all, we perform a direct estimate of the total
variation of ρ̌n, and prove that such a quantity decreases in time, and is therefore uniformly bounded provided
the initial datum ρ̄ is BV. However, this result is only partly satisfactory, as it is well known that the solution
ρ to (2.1a) is BV even for an initial datum in L

1∩L
∞. We shall therefore prove that a uniform BV estimate

of ρ̌n is available for an initial datum in L
1 ∩ L

∞ provided the additional property (V3) of v is prescribed.
The latter task is performed by a one-sided estimate of the difference quotients of ρ̌n, in the spirit of a
discrete version of the classical Oleinik-type condition (2.5), which can be considered as the main technical
achievement of this paper.

We start with the following proposition.

Proposition 3.5 (BV contractivity for BV initial data). Assume v satisfies (V1) and (V2). If ρ̄ satisfies
(InBV), then for any n ∈ N

TV [ρ̂n(t)] = TV [ρ̌n(t)] ≤ TV [ρ̄] for all t ≥ 0.

Proof. For notational simplicity, we shall omit the dependence on t and n whenever not necessary. By
construction, see (2.17) and (2.19), we have that

TV [ρ̂(0)] = ȳ0 + ȳN−1 +

N−2
∑

i=0

|ȳi − ȳi+1|

=

 x̄1

x̄min

ρ̄(y) dy +

 x̄max

x̄N−1

ρ̄(y) dy +

N−2
∑

i=0

∣

∣

∣

∣

∣

 x̄i+1

x̄i

ρ̄(y) dy −

 x̄i+1

x̄i+2

ρ̄(y) dy

∣

∣

∣

∣

∣

≤ TV [ρ̄] .

Moreover

d

dt
TV [ρ̂(t)] =

d

dt

[

y0 + yN−1 +

N−2
∑

i=0

|yi − yi+1|

]

= ẏ0 + ẏN−1

+

N−2
∑

i=0

sgn [yi − yi+1] [ẏi − ẏi+1] =

[

1 + sgn [y0 − y1]

]

ẏ0

+

[

1− sgn [yN−2 − yN−1]

]

ẏN−1 +
N−2
∑

i=1

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

ẏi.

We claim that the latter right hand side above is ≤ 0. Indeed, assumptions (V1) and (V2) together with (2.18)
imply that the following quantities are not positive

[

1 + sgn [y0 − y1]

]

ẏ0 =−

[

1 + sgn [y0 − y1]

]

y20
ℓ
[v(y1)− v(y0)] ,
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[

1− sgn [yN−2 − yN−1]

]

ẏN−1 =−

[

1− sgn [yN−2 − yN−1]

]

×

×
y2N−1

ℓ
[vmax − v(yN−1)] ,

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

ẏi =−

[

sgn [yi − yi+1]− sgn [yi−1 − yi]

]

×

×
y2i
ℓ
[v(yi+1)− v(yi)] .

Therefore, TV [ρ̂(t)] ≤ TV [ρ̄] for all t ≥ 0. Finally, since ρ̌n = ρ̂ ◦ X̂ , ρ̌n is piecewise constant and it has on
i ℓ the same traces as ρ̂ on xi, the statement for ρ̌n follows easily. ⋄

We now perform our discrete Oleinik-type condition, which holds for general initial data in L
1 ∩ L

∞.

Lemma 3.4 (Discrete Oleinik-type condition). Assume v satisfies (V1), (V2), and (V3), and let ρ̄ satisfy
(In). Then, for any i = 0, . . . , Nn − 2 we have

t yni (t)
[

v
(

yni+1(t)
)

− v (yni (t))
]

≤ ℓn for all t ≥ 0. (3.11)

Proof. For notational simplicity, we shall omit the dependence on t and n whenever not necessary. Let

zi
.
= t yi [v (yi+1)− v (yi)] , i = 0, . . . , N − 2,

zN−1
.
= t yN−1 [vmax − v(yN−1)] .

• Step 0: zN−1 ≤ ℓ. By (2.18a) and (V1)

żN−1=yN−1[vmax − v(yN−1)] + t ẏN−1[vmax − v(yN−1)]− t yN−1 v
′(yN−1) ẏN−1

=yN−1 [vmax − v(yN−1)]−
t y2N−1

ℓ
[vmax − v(yN−1)]

2

+
t v′(yN−1) y

3
N−1

ℓ
[vmax− v(yN−1)] ≤ yN−1 [vmax− v(yN−1)]

[

1−
zN−1

ℓ

]

.

Since zN−1(0) = 0, from the above estimate we get zN−1(t) ≤ ℓ for all t ≥ 0. Indeed, assume by contradiction
that there exist t1 < t2 such that zN−1(t1) = ℓ and zN−1(t) > ℓ for all t ∈ ]t1, t2[. The above estimate implies
for t ∈ ]t1, t2[

zN−1(t) = zN−1(t1) +

ˆ t

t1

yN−1(s) [vmax− v(yN−1(s))]

[

1−
zN−1(s)

ℓ

]

ds

≤ zN−1(t1) = ℓ,

which gives a contradiction.
• Step 1: zi+1 ≤ ℓ ⇒ zi ≤ ℓ. Let i ∈ {0, . . . , N − 3} and assume zi+1 ≤ ℓ. From (2.18b) and (V1) we get

żi = yi [v (yi+1)− v (yi)] + t ẏi [v (yi+1)− v (yi)] + t yi [v
′(yi+1) ẏi+1 − v′(yi) ẏi]

= yi [v (yi+1)− v (yi)]−
t y2i
ℓ

[v(yi+1)− v(yi)]
2

+ t yi

[

−
v′(yi+1) y

2
i+1

ℓ
[v(yi+2)− v(yi+1)] +

v′(yi) y
2
i

ℓ
[v(yi+1)− v(yi)]

]

= yi[v(yi+1)− v(yi)]−
yi
ℓ
[v(yi+1)− v(yi)] zi−

v′(yi+1) yi yi+1

ℓ
zi+1+

v′(yi) y
2
i

ℓ
zi.
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Since sgn+ [zi] = sgn+ [v (yi+1)− v (yi)] = sgn+ [yi − yi+1] for all t > 0, from the assumption on zi+1 we
easily obtain

d

dt
[zi]+ = yi [v (yi+1)− v (yi)]+ −

yi
ℓ
[v(yi+1)− v(yi)]+ [zi]+

−
v′(yi+1) yi yi+1

ℓ
sgn+[zi] zi+1 +

v′(yi) y
2
i

ℓ
[zi]+

≤ yi[v(yi+1)−v(yi)]+

[

1−
[zi]+
ℓ

]

−v′(yi+1) yi yi+1 sgn+[zi]+
v′(yi) y

2
i

ℓ
[zi]+.

Condition (V3) prescribes that the function y 7→ y v′(y) is non-increasing, which gives

d

dt
[zi]+ ≤ yi [v (yi+1)− v (yi)]+

[

1−
[zi]+
ℓ

]

− v′(yi) y
2
i sgn+[zi] +

v′(yi) y
2
i

ℓ
[zi]+

= yi

[

[v (yi+1)− v (yi)]+ − v′(yi) yi

] [

1−
[zi]+
ℓ

]

.

Now, as v′ ≤ 0, and since zi(0) = 0, by a similar comparison argument as the one at the end of Step 1 we
get that zi(t)+ ≤ ℓ for all t ≥ 0.
• Step 2: zN−2 ≤ ℓ. From analogous computations as in previous step, we get

d

dt
[zN−2]+ = yN−2 [v(yN−1)− v(yN−2)]+−

yN−2

ℓ
[v(yN−1)− v(yN−2)]+ [zN−2]+

−
v′(yN−1) yN−2 yN−1

ℓ
sgn+[zN−2] zN−1+

v′(yN−2) y
2
N−2

ℓ
[zN−2]+,

and we can use the monotonicity of y 7→ y v′(y) and Step 0 to get

d

dt
[zN−2]+ ≤ yN−2 [v (yN−1)− v (yN−2)]+

[

1−
[zN−2]+

ℓ

]

− v′(yN−2) y
2
N−2 sgn+[zN−2] +

v′(yN−2) y
2
N−2

ℓ
[zN−2]+

= yN−2

[

[v (yN−1)− v (yN−2)]+ − v′(yN−2) yN−2

] [

1−
[zN−2]+

ℓ

]

.

Again, v′ ≤ 0 and zN−2(0) = 0 imply that zN−2(t)+ ≤ ℓ for all t ≥ 0.
• Conclusion. The estimate (3.11) is proven recursively: Step 2 provides the first step with i = N − 2,
whereas Step 1 proves that the estimate holds for all i ∈ {0, . . . , N − 3}. ⋄

Corollary 3.1. Assume v satisfies (V1), (V2), and (V3), and let ρ̄ satisfy (In). Then, for any i ∈ {0, . . . , N−
2} we have

v (ρ̂n (t, xni (t)))− v
(

ρ̂n
(

t, xni+1(t)
))

≤
xni+1(t)− xni (t)

t
for all t > 0. (3.12)

Proof. The statement follows from Lemma 3.4 and the definitions of ρ̂N and yi. ⋄

In the following proposition we prove uniform bounds on the total variation of v (ρ̌n) and v (ρ̂n). Let us
emphasize that the regularising effect L∞ 7→ BV implies that the BV estimate eventually blows up as tց 0.

Proposition 3.6 (Uniform BV estimates for v (ρ̌n) and v (ρ̂n)). Assume v satisfies the properties (V1), (V2),
and (V3), and let ρ̄ satisfy (In). Let δ > 0. Then

(i) (v (ρ̂n))n∈N is uniformly bounded in L
∞ ([δ,+∞[ ; BV(R; [v(R), vmax]));

(ii) (v (ρ̌n))n∈N is uniformly bounded in L
∞ ([δ,+∞[ ; BV([0, L]; [v(R), vmax])).
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More precisely, for any n ∈ N

TV [v(ρ̂n(t))] = TV [v(ρ̌n(t))] ≤ Cδ for all t ≥ δ,

where Cδ
.
=

[

3 (vmax − v(R)) + 2 x̄max−x̄min

δ

]

.

Proof. For notational simplicity, we shall omit the dependence on n. We set

σ̂(t, x)
.
= v(ρ̂(t, x)) +

1

t

N−1
∑

i=0

xi(t)χ
[xi(t), xi+1(t)[

(x) for all x ∈ R.

We claim that, for any fixed t ≥ 0, the map x 7→ σ̂(t, x) is a piecewise constant, non-decreasing function on
[x0(t), xN (t)[. To see this, we first notice that the map x 7→ σ̂(t, x) is constant on the interval [xi(t), xi+1(t)[,
i = 0, . . . , N − 1. On the other hand, σ̂(t) is non-decreasing on the potential discontinuity points xi(t),
i = 1, . . . , N − 1, in view of (3.12). Now, from (2.16) and the discrete maximum principle in Lemma 2.1 we
know that for any x ∈ [x0(t), xN (t)[

x̄min

t
+ 2v(R) ≤ σ̂(t, x) ≤ vmax +

1

t
[x̄max + vmax t] = 2vmax +

x̄max

t
.

Hence σ̂ is uniformly bounded in L
∞ ([δ,+∞[ ;BV(R;R)) with

sup
t≥δ

TV [σ̂(t)] ≤

[

2(vmax − v(R)) +
x̄max − x̄min

δ

]

.

Therefore, also v(ρ̂) is uniformly bounded in L
∞ ([δ,+∞[ ;BV(R;R)) because by triangular inequality

TV [v(ρ̂(t))] ≤ TV [σ̂(t)] + TV

[

1

t

N−1
∑

i=0

xi(t)χ
[xi(t), xi+1(t)[

]

= TV [σ̂(t)] +
1

t
[x̄max − x̄min + (vmax − v(R)) t] ≤ Cδ,

for t ≥ δ. Finally, since ρ̌n = ρ̂ ◦ X̂, ρ̌n is piecewise constant and on i ℓ has the same traces as ρ̂ on xi, the
statement for ρ̌n follows easily. ⋄

3.3. Time continuity and compactness.

Proposition 3.7 (Uniform L
1–continuity in time of ρ̌n). Under the assumptions of Proposition 3.6, for any

δ > 0 we have
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)|dz ≤ R2 [Cδ + (vmax − v(R))] |t− s| for all t, s ≥ δ,

with Cδ defined in Proposition 3.6.

Proof. By (2.18), we compute for t > s > δ,

ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)| dz =

Nn−1
∑

i=0

ℓn |y
n
i (t)− yni (s)| =

Nn−1
∑

i=0

ℓn

∣

∣

∣

∣

ˆ t

s

ẏni (τ) dτ

∣

∣

∣

∣

=

Nn−2
∑

i=0

∣

∣

∣

∣

ˆ t

s

yni (τ)
2
[

v
(

yni+1(τ)
)

− v(yni (τ))
]

dτ

∣

∣

∣

∣

+

ˆ t

s

ynNn−1(τ)
2
[

vmax− v
(

ynNn−1(τ)
)]

dτ.

Therefore, by Lemma 2.1
ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)| dz
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≤

ˆ t

s

[

Nn−2
∑

i=0

yni (τ)
2
∣

∣v
(

yni+1(τ)
)

− v(yni (τ))
∣

∣+ ynNn−1(τ)
2
[

vmax − v
(

ynNn−1(τ)
)]

]

dτ

≤R2

ˆ t

s

[

Nn−2
∑

i=0

∣

∣v
(

yni+1(τ)
)

− v(yni (τ))
∣

∣+ (vmax − v(R))

]

dτ

≤R2

ˆ t

s

[

TV [v(ρ̌n(τ))] + (vmax − v(R))

]

dτ.

Then it is sufficient to apply the estimate in Proposition 3.6 to complete the proof. ⋄

Proposition 3.8 (Uniform Wasserstein time continuity of ρ̂n). Assume v satisfies the properties (V1) and
(V2), and let ρ̄ satisfy the assumption (In). For any n ∈ N we have

dL,1 (ρ̂
n(t), ρ̂n(s))≤ 2Lmax{|vmax|, |v(R)|, [vmax − v(R)]} |t− s| for all s, t ≥ 0.

Proof. By (2.14), (2.17) and (2.16), we compute for any t > s ≥ 0

dL,1 (ρ̂
n(t), ρ̂n(s)) =

∥

∥

∥
X̂n(t)− X̂n(s)

∥

∥

∥

L1([0,L];R)

=

Nn−1
∑

i=0

ˆ (i+1) ℓn

i ℓn

∣

∣

∣
X̂n(t, z)− X̂n(s, z)

∣

∣

∣
dz

=

Nn−1
∑

i=0

ˆ (i+1) ℓn

i ℓn

∣

∣

∣

∣

xni (t) +
z − i ℓn
yni (t)

− xni (s)−
z − i ℓn
yni (s)

∣

∣

∣

∣

dz

≤

Nn−1
∑

i=0

ℓn|x
n
i (t)− xni (s)|+

Nn−1
∑

i=0

∣

∣yni (t)
−1 − yni (s)

−1
∣

∣

ˆ (i+1) ℓn

i ℓn

(z − i ℓn) dz

≤

Nn−1
∑

i=0

ℓn

ˆ t

s

|v (yni (τ))|dτ +

Nn−1
∑

i=0

ℓ2n
2

ˆ t

s

∣

∣

∣

∣

d

dτ

[

yni (τ)
−1

]

∣

∣

∣

∣

dτ

≤ L max{|vmax| , |v(R)|} (t− s)

+
ℓn
2

ˆ t

s

[

Nn−2
∑

i=0

∣

∣v
(

yni+1(τ)
)

− v(yni (τ))
∣

∣+ [vmax− v
(

ynNn−1(τ)
)

]

]

dτ

= L max{|vmax| , |v(R)|} (t− s) + L

ˆ t

s

[vmax − v(R)] dτ

≤ 2L max{|vmax| , |v(R)| , [vmax − v(R)]} (t− s)

and this concludes the proof. ⋄

We now recall a generalization of Aubin-Lions lemma, which uses the Wasserstein distance as a replacement
of a negative Sobolev norm, proven in [47, Theorem 2], which we present here in a version adapted to our
case. In order to have the paper self-contained, we first recall the precise statement of [47, Theorem 2] (see
also the adapted version in [21]).

Theorem 3.1 (Theorem 2 from [47]). On a separable Banach space X, let be given

(F) a normal coercive integrand F : X → [0,+∞], i.e., F is lower semi-continuous and its sublevels are
relatively compact in X;

(g) a pseudo-distance g : X × X → [0,+∞], i.e., g is lower semi-continuous, and if ν, µ ∈ X are such
that g(ν, µ) = 0, F[ν] < +∞ and F[µ] < +∞, then ν = µ.
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Let further U be a set of measurable functions ν : ]0, T [ → X, with a fixed T > 0. Under the hypotheses that

sup
ν∈U

ˆ T

0

F [ν(t)] dt < +∞ and lim
h↓0

[

sup
ν∈U

ˆ T−h

0

g (ν(t+ h), ν(t)) dt

]

= 0, (3.13)

Then U is strongly relatively compact in L
1(]0, T [ ;X).

Theorem 3.2 (Generalized Aubin-Lions lemma). Let T, L > 0 and I ⊂ R be a bounded open convex interval.
Assume w : R → R is a Lipschitz continuous and strictly monotone function. Let (ρn)n∈N be a sequence in
L
∞ (]0, T [× R) ∩ML such that

(1) ρn : ]0, T [ → L
1 (R) is measurable for all n ∈ N;

(2) spt (ρn(t)) ⊆ I for all t ∈ ]0, T [ and n ∈ N;

(3) supn∈N

´ T

0

[

‖w (ρn(t))‖
L1(I) +TV [w (ρn(t))]

]

dt < +∞;

(4) there exists a constant C depending only on T such that dL,1 (ρ
n(s), ρn(t)) ≤ C |t− s| for all s, t ∈

]0, T [ and n ∈ N.

Then, (ρn)n∈N is strongly relatively compact in L
1(]0, T [× R).

Proof. We want to use Theorem 3.1 with

X
.
= L

1 (I) , U
.
= (ρn)n∈N,

F[ν]
.
= ‖w(ν)‖

L1(I) +TV [w(ν)] , g(ν, µ)
.
=

{

dL,1(ν, µ) if ν, µ ∈ ML,

+∞ otherwise.

We first have to prove that F, g and U satisfy the corresponding hypotheses in Theorem 3.1.
(F) Assume that (νn)n∈N converges to ν strongly in L

1 (I). Since w is Lipschitz continuous, (w(νn))n∈N

converges to w(ν) strongly in L
1 (I). Hence, for the lower semi-continuity of the total variation w.r.t. the

L
1–norm, see [24, Theorem 1 on page 172], we have that TV [w(ν)] ≤ lim infn→+∞ TV [w(νn)]. Thus

F [ν] ≤ lim infn→+∞ F [νn] and F is l.s.c. in X. Finally, consider a sequence (νn)n∈N belonging to a sublevel
of F, namely supn∈N F [νn] < +∞. For the compactness of BV in L

1 on bounded open convex intervals and
for basic properties of the L

1–convergence, see [24, Theorem 4 on page 176 and Theorem 5 on page 21], up to
a subsequence (w(νn))n∈N

converges to w̄ in L
1 and a.e. on I. Since w is continuous and strictly monotone,

(νn)n∈N is uniformly bounded in L
∞ (consequence of the uniform bound on the total variation) and converges

to ν̄
.
= w−1(w̄) a.e. on I and therefore, by the Lebesgue dominated convergence theorem, the convergence is

also in L
1.

(g) Proceeding as before and applying lower semi-continuity of the 1–Wasserstein distance w.r.t. the L1–norm
give that g is l.s.c. in X×X. Finally, if F[ν] < +∞, F[µ] < +∞ and g(µ, ν) = 0, then w(µ), w(ν) are in BV,
ν, µ ∈ ML, and dL,1 (µ, ν) = 0. Hence we have µ = ν.
(U) Conditions in (3.13) follow directly from the hypotheses (3) and (4).
Hence we can apply Theorem 3.1 and obtain the strong compactness in L

1(]0, T [× I). Finally, recalling the
hypothesis 2 concludes the proof. ⋄

3.4. Convergence to entropy solutions. In the next proposition we collect the previous compactness
results to get strong convergence.

Proposition 3.9. Let ρ̌ be defined as in Lemma 3.3 and ρ as in Proposition 3.3. Under the assumptions in
Theorem 2.3 we have that

(i) the sequence (ρ̌n)n∈N converges up to a subsequence to ρ̌ almost everywhere and strongly in L
1

loc
on

]0,+∞[× [0, L];
(ii) the sequence (ρ̂n)n∈N converges up to a subsequence to ρ almost everywhere and strongly in L

1

loc
on

]0,+∞[× R;
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(iii) if ρ̄ satisfies also (InBV), then the sequence (ρ̌n)n∈N converges up to a subsequence to ρ̌ strongly in L
1

loc

on [0,+∞[× [0, L].

Proof. We already know from Proposition 3.3 that both (ρ̂n)n∈N and (ρ̃n)n∈N, defined respectively by (2.19)
and (2.20), converge in the topology of L

1

loc
([0,+∞[ ; dL,1) to the density ρ ∈ L

∞ ([0,+∞[ ;ML) with

0 ≤ ρ ≤ R. From Proposition 3.1 we know that both (X̂n)n∈N and (X̃n)n∈N, defined respectively by (3.3)
and (3.5), converge strongly in L

1

loc
([0,+∞[× [0, L]) to X ∈ L

∞ ([0,+∞[× [0, L]), the pseudo-inverse of F ,
the cumulative distribution of ρ. Finally, from Lemma 3.3 we know that (ρ̌n)n∈N, defined by (3.6), converges
up to a subsequence to ρ̌ weakly-* in L

∞([0,+∞[×[0, L]).
• Step 1. Strong convergence of (ρ̌n)n∈N for general initial datum in ML ∩ L

∞.
Let ρ̄ satisfy (In). For any fixed δ > 0, we know from Proposition 3.6 that (v(ρ̌n))n∈N

is uniformly bounded
in L

∞([δ,+∞[ ; BV([0, L]; [v(R), vmax])). Furthermore, from Proposition 3.7 we easily obtain that

ˆ L

0

|v(ρ̌n(t, z))− v(ρ̌n(s, z))| dz ≤ Lip (v)R2 [Cδ + (vmax − v(R))] |t− s| ,

for all t, s ≥ δ. Therefore, we can apply Helly’s theorem in the form [11, Theorem 2.4] to get that (v(ρ̌n))n∈N

is strongly compact in L
1

loc
([δ,+∞[× [0, L]). Hence, by the monotonicity of v, up to a subsequence (ρ̌n)n∈N

converges strongly in L
1

loc
and a.e. on [δ,+∞[× [0, L] to ρ̌. Finally, since δ > 0 is arbitrary, the proof of (i)

is complete.
• Step 2. Strong convergence of (ρ̂n)n∈N for general initial datum in ML ∩ L

∞.
Let ρ̄ satisfy (In) and fix T, δ > 0 with δ < T . We want to prove that (ρn)n∈N with ρn(t, x)

.
= ρ̂n(t + δ, x)

satisfies the hypotheses of Theorem 3.2 with

I = ]x̄min + v(R) (T + δ)− 1, x̄max + vmax (T + δ) + 1[

and w = v. The hypotheses 1 and 2 are satisfied because by (2.19) we have that ‖ρ̂n(t)‖
L1(R) = L and

spt (ρ̂n(t)) ⊂ I for all t ∈ [0, T + δ]. By Proposition 3.6, the hypothesis 3 holds true because

ˆ T+δ

δ

[

‖v (ρ̂n(t))‖
L1(I;R) +TV [v (ρ̂n(t))]

]

dt ≤ [max{|vmax|, |v(R)|} |I|+ Cδ]T.

Finally, the hypothesis 4 follows directly from Proposition 3.8. Hence, we can apply Theorem 3.2 to obtain
that (ρ̂n)n∈N is strongly compact in L

1(]δ, T [× R;R). By the uniqueness of the limit in the L
1(]δ, T [ ; dL,1)

topology, up to a subsequence (ρ̂n)n∈N converges strongly in L
1 and a.e. on ]δ, T [ × R to ρ. Finally, since

T > δ > 0 are arbitrary, the proof of (ii) is complete.
• Step 3. Strong convergence for initial datum in BV.
Let ρ̄ satisfy (InBV). The result in Proposition 3.5 ensures that both (ρ̂n)n∈N and (ρ̌n)n∈N are uniformly
bounded in L

∞([0,+∞[; BV(R)). Hence, we can repeat the proof of Proposition 3.7 (we omit the details)
to obtain that

ˆ L

0

|ρ̌n(t, z)− ρ̌n(s, z)|dz ≤
[

Lip
(

v|[0,R]

)

TV(ρ̄) + (vmax − v(R))
]

|t− s| ,

for all t, s ≥ 0. Therefore, Helly’s theorem implies the desired compactness. Moreover, we can use Theorem 3.2
with w being the identity function on [0, R], and obtain the desired compactness of ρ̂n. ⋄

We now prove that the two limits ρ̌ and ρ are related.

Proposition 3.10. Let F be the cumulative distribution of ρ as defined in Proposition 3.2. Then

ρ̌ (t, F (t, x)) = ρ(t, x) for a.e. (t, x) in spt(ρ).
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Proof. By definition (3.6) and Lemma 2.2, for any ϕ ∈ C
∞
c ([0, T ]× R) we have

ˆ T

0

ˆ L

0

ρ̌n(t, z)ϕ
(

t, X̂n(t, z)
)

dz dt =

ˆ T

0

ˆ L

0

ρ̂n
(

t, X̂n(t, z)
)

ϕ
(

t, X̂n(t, z)
)

dz dt

=

ˆ T

0

ˆ

R

ρ̂n(t, x)2 ϕ(t, x) dxdt.

By extracting the a.e. convergent subsequence provided in Proposition 3.9 (and by extracting, if necessary, a
further subsequence), we can send n→ +∞ in the above identity and use the Lebesgue dominated convergence
theorem (as the support of ρ̌n and ρ̂n are uniformly bounded w.r.t. n) to get

ˆ T

0

ˆ L

0

ρ̌(t, z)ϕ (t,X(t, z)) dz dt =

ˆ T

0

ˆ

R

ρ(t, x)2 ϕ(t, x) dxdt.

By changing variable z = F (t, x) in the first integral above, we get
ˆ T

0

ˆ

R

ρ̌ (t, F (t, x)) ρ(t, x)ϕ(t, x) dxdt =

ˆ T

0

ˆ

R

ρ(t, x)2 ϕ(t, x) dxdt, (3.14)

and this concludes the proof. ⋄

In the next proposition we prove that ρ is a weak solution in the sense of (2.2).

Proposition 3.11. The limit function ρ defined in Proposition 3.3 is a weak solution in the sense of (2.2).

Proof. Let ϕ ∈ C
∞
c

([0,+∞[× R;R). By (2.16), (3.5) and (3.6), for all n we have
ˆ

R+

ˆ L

0

[

v (ρ̌n(t, z))ϕx

(

t, X̃n(t, z)
)

]

dz dt

=

Nn−1
∑

i=0

ˆ

R+

ˆ (i+1) ℓn

i ℓn

[

v (yni (t))ϕx (t, x
n
i (t))

]

dz dt

=

Nn−1
∑

i=0

ˆ

R+

ˆ (i+1) ℓn

i ℓn

[

ẋni (t)ϕx (t, x
n
i (t))

]

dz dt

=

Nn−1
∑

i=0

ˆ

R+

ˆ (i+1) ℓn

i ℓn

[

d

dt
ϕ (t, xni (t))− ϕt (t, x

n
i (t))

]

dt

= −

ˆ L

0

ϕ
(

0, X̃n(0, z)
)

dz −

ˆ

R+

ˆ L

0

ϕt

(

t, X̃n(t, z)
)

dz dt.

Since (X̃n)n∈N and (ρ̌n)n∈N converge strongly in L
1([0, T ]× [0, L];R), and in view of Proposition 3.4, we get

by sending n→ +∞
ˆ

R+

ˆ L

0

[

ϕt(t,X(t, z)) + v(ρ̌(t, z))ϕx(t,X(t, z))

]

dz dt+

ˆ L

0

ϕ (0, Xρ̄(z)) dz = 0.

We now apply the change of variable x = X(t, z), see Lemma 2.2, and obtain
ˆ

R+

ˆ

R

[

ρ(t, x)ϕt(t, x)+ρ(t, x) v(ρ̌(t,F (t, x)))ϕx(t, x)

]

dxdt+

ˆ

R

ρ̄(x)ϕ(0, x) dx = 0.

Finally, by Proposition 3.10 we have ρ̌ (t, F (t, x)) = ρ(t, x) a.e. on spt(ρ), and therefore ρ satisfies (2.2). ⋄

We are now ready to complete the proof of our main result.
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Proof of Theorem 2.3. In view of Theorem 2.2, the entropy inequality (2.4) is sufficient in order to show that
ρ is the unique entropy solution in the sense of Definition 2.1.

Let ϕ ∈ C∞
c (]0,+∞[× R) with ϕ ≥ 0 and k ≥ 0 be a constant. We shall prove that the limit ρ satisfies

the entropy inequality (2.4). We consider the quantity

ˆ

R+

ˆ

R

[

|ρ̂n(t, x)− k|ϕt(t, x) + sgn(ρ̂n(t, x)− k) [f(ρ̂n(t, x)) −f(k)]ϕx(t, x)

]

dxdt

= B0 +BN +

Nn−1
∑

i=0

Ii,

with

B0
.
=

ˆ

R+

ˆ xn

0 (t)

−∞

[

k ϕt(t, x) + f(k)ϕx(t, x)

]

dxdt,

BN
.
=

ˆ

R+

ˆ +∞

xn

Nn
(t)

[

k ϕt(t, x) + f(k)ϕx(t, x)

]

dxdt,

Ii
.
=

ˆ

R+

ˆ xn

i+1(t)

xn

i
(t)

|yni (t)− k|ϕt(t, x) dxdt

+

ˆ

R+

ˆ xn

i+1(t)

xn

i
(t)

sgn(yni (t, x)− k) [f(yni (t, x)) − f(k)]ϕx(t, x) dxdt.

For simplicity in the notation, from now on we shall drop the n index and the (t, x) dependency, except in
cases in which t = 0. Moreover we define yN ≡ 0. We next observe by (2.16) that

d

dt

[
ˆ xi+1

xi

ϕdx

]

= v(yi+1)ϕ(t, xi+1)− v(yi)ϕ(t, xi) +

ˆ xi+1

xi

ϕt dx, (3.15)

d

dt

[
ˆ x0

−∞

ϕdx

]

= v(y0)ϕ(t, x0) +

ˆ x0

−∞

ϕt dx, (3.16)

d

dt

[
ˆ +∞

xN

ϕdx

]

= −vmaxϕ(t, xN ) +

ˆ +∞

xN

ϕt dx. (3.17)

In view of (3.16) and (3.17), the terms B0 and BN can be rewritten as follows

B0 =

ˆ

R+

k [v(k)− v(y0)]ϕ(x0) dt, BN =

ˆ

R+

k [vmax − v(k)]ϕ(xN ) dt.

As for the term Ii, we have for i = 0, . . . , N − 1

Ii =

ˆ

R+

|yi − k|

{

d

dt

[

ˆ xi+1

xi

ϕdx

]

− v(yi+1)ϕ(xi+1) + v(yi)ϕ(xi)

}

dt

+

ˆ

R+

sgn(yi − k) [f(yi)− f(k)] [ϕ(xi+1)− ϕ(xi)] dt.

By (2.18), we compute the term
ˆ

R+

|yi − k|
d

dt

[
ˆ xi+1

xi

ϕdx

]

dt = −

ˆ

R+

[
ˆ xi+1

xi

ϕdx

]

d

dt
|yi − k|dt

= −

ˆ

R+

sgn(yi − k)

[

−
y2i
ℓ
[v(yi+1)− v(yi)]

] [
ˆ xi+1

xi

ϕdx

]

dt
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=

ˆ

R+

sgn(yi − k) yi [v(yi+1)− v(yi)]

[
 xi+1

xi

ϕdx

]

dt.

Hence, we have

N−1
∑

i=0

Ii−1 =

N
∑

i=1

ˆ

R+

Ji dt+

N
∑

i=1

ˆ

R+

Ki ϕ(xi) dt+

ˆ

R+

Lϕ(t, x0) dt−

ˆ

R+

M ϕ(t, xN ) dt,

with

Ji
.
= sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)]

[

 xi

xi−1

ϕdx− ϕ(xi)

]

,

Ki
.
= sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)] + |yi − k| v(yi)

− sgn(yi − k)[f(yi)− f(k)]−|yi−1 − k| v(yi) + sgn(yi−1 − k) [f(yi−1)− f(k)] ,

L
.
= |y0 − k| v(y0)− sgn(y0 − k) [f(y0)− f(k)] ,

M
.
= k vmax − f(k).

We observe that

BN −

ˆ

R+

Mϕ(t, xN ) dt = 0.

We now compute L. If k < y0, we have

L = k [v(k)− v(y0)] ≥ 0,

as v is non increasing. Therefore, for k < y0

B0 +

ˆ

R+

Lϕ(t, x0) dx = 2

ˆ

R+

k [v(k)− v(y0)]ϕ(x0) dt ≥ 0.

Similarly, for k ≥ y0 we have

L = k [v(y0)− v(k)] ≥ 0,

which gives

B0 +

ˆ

R+

Lϕ(t, x0) dx = 0.

We now compute the term Ki for i = 1, . . . , N . After some easy manipulations, we get

Ki = k [v(k)− v(yi)] {sgn(yi − k)− sgn(yi−1 − k)} .

We consider all the possible cases for k. If either k < min{yi, yi−1}, or k > max{yi, yi−1}, then we easily get
Ki = 0. If yi ≤ k ≤ yi−1, then Ki = 2k[v(yi)−v(k)] ≥ 0 as v is non increasing. Finally, if yi−1 ≤ k ≤ yi, then
Ki = 2k[v(k)− v(yi)] ≥ 0. In all cases, we get Ki ≥ 0 for all i = 1, . . . , N . Putting all the terms together, we
get

ˆ

R+

ˆ

R

[

|ρ̂− k|ϕt + sgn(ρ̂− k) [f(ρ̂)− f(k)]ϕx

]

dxdt ≥
N
∑

i=1

ˆ

R+

Ji dt. (3.18)

We now estimate the terms Ji. For some δ > 0, assuming that the support of ϕ is contained in the strip
t ∈ [δ, T ], we have by Proposition 3.6

∣

∣

∣

∣

∣

N
∑

i=1

ˆ

R+

Ji dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

i=1

ˆ

R+

sgn(yi−1 − k) yi−1 [v(yi)− v(yi−1)]

[

 xi

xi−1

ϕdx− ϕ(xi)

]

dt

∣

∣

∣

∣

∣
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≤

ˆ

R+

N
∑

i=1

[

y2i−1

ℓ
|v(yi)− v(yi−1)|

ˆ xi

xi−1

|ϕ(x) − ϕ(xi)| dx

]

dt

≤ Lip(ϕ)

ˆ T

δ

sup
i=1,...,N

[

y2i−1 (xi − xi−1)
2

ℓ

]

N
∑

i=1

|v(yi)− v(yi−1)| dt

≤ ℓLip(ϕ)T sup
t≥δ

TV [v(ρ̂n(t))] ≤ ℓLip(ϕ)T Cδ.

As a consequence

lim
n→+∞

N
∑

i=1

ˆ

R+

Ji dt = 0

and letting n go to infinity in (3.18) we obtain the entropy inequality (2.4). ⋄

3.5. Concluding remarks. We conclude this paper with the some technical remarks which help motivating
our choices in the strategy of the proof at several stages in the paper.

• In the case of v such that v′ ≤ −c < 0, then the Oleinik-type estimate (3.12) gives a one sided
estimate for ρ̂nx in the sense of distributions. Such an estimate can be then passed to the limit very
easily, and one obtains an analogous estimate for the limit. In this way, one can check that the limit
ρ is an entropy solution in much easier way than the above proof. In the general case of v′ possibly
degenerating, such a strategy fails. Indeed, surprisingly enough the Oleinik estimate one gets in the
limit from (3.12) is not equivalent (in general) to the estimate (2.5). For this reason, we preferred
getting the entropy condition in the Kružkov sense rather than the one sided Lipschitz condition.
This strategy allows in particular to get the entropy condition in the limit also in the case of v not
satisfying (V3) and ρ̄ satisfying (InBV).

• In the case of linear velocity v, e.g. v(ρ) = vmax(1− ρ), the convergence to a weak solution (2.2) can
be obtained without the need of the BV estimates, as the velocity term in (3.7) is linear. This is
somehow intrinsic in using a Lagrangian description.

• In order to get continuity in time for the sequence ρ̂n, the most natural try would be getting L
1–

continuity. Encouraged by the L
1 time equi-continuity of ρ̌n, we have attempted at proving such

a property in many ways without success. This is the reason why use the generalized Aubin-Lions
lemma, which allows to take advantage of the Wasserstein equi-continuity of ρ̂n, and still get the
same L

1–compactness in the end. The only drawback of this strategy is that we can’t get any L
1

time continuity for the limit.
• As pointed out in the introduction, the proposed Lagrangian approach has the advantage of providing

a piecewise constant approximation with a non increasing number of jumps. The price to pay for
such a simplification is that we lose the classical shock structure at a microscopic level. Indeed, as
pointed out in [15, 46], the explicit solution to the FTL system even for simple Riemann–type initial
conditions is not immediate. On the other hand, this aspect gives an added value to our result, as we
show that shocks and rarefaction waves are still achieved in the macroscopic limit, despite not being
easily detectable at the microscopic level.

• We finally recall that a symmetric construction can be set in the case of monotone increasing velocities.
In that case, the suitable particle system should be recursively defined ‘from the left towards the right’,
and therefore each particles adjusts its velocity according to the distance of the particle at its left
hand side.

Appendix A. Heuristic derivation of the FTL model from the LWR model

In this appendix we formally provide our derivation from the scalar conservation law (2.1) of a discrete
approximating model of the form (2.6).
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Let ρ be an entropy solution of (2.1) in the sense of Definition 2.1. We assume for simplicity that ρ is
compactly supported. The total mass of ρ in in ]−∞, x] at time t ≥ 0 is

F (t, x)
.
=

ˆ x

−∞

ρ(t, y) dy. (A.1)

Clearly, F takes values in [0, L], where L
.
= ‖ρ̄‖

L1(R;[0,1]), and for any fixed t ≥ 0 the map x 7→ F (t, x) is

continuous and non-decreasing, F (t,−∞) = 0 and F (t,+∞) = L. The result in the next proposition shows
that (2.1a) is equivalent to requiring that the weak partial derivatives of F with respect to time and space
commute in the sense of distributions.

Proposition A.1 ([16]). The partial derivatives of F satisfy in the sense of distributions

Fx = ρ, Ft = −f (ρ) . (A.2)

Proof. The first equality in (A.2) is obvious. For any test function ψ ∈ C
∞
c (]0,+∞[ × R;R) we have that

by (2.2)
ˆ

R

ˆ

R+

F (t, x) ∂tψx(t, x) dt dx =

ˆ

R

ˆ

R+

F (t, x) ∂xψt(t, x) dt dx

= −

ˆ

R

ˆ

R+

ρ(t, x)ψt(t, x) dt dx =

ˆ

R

ˆ

R+

f (ρ(t, x))ψx(t, x) dt dx.

This shows that for any t ≥ 0, the map x 7→ [Ft(t, x) + f (ρ(t, x))] is constant (as a distribution). Therefore
there exists c ∈ L

1

loc
([0,+∞[ ;R) such that
ˆ

R

ˆ

R+

[

F (t, x)ϕt(t, x)− f (ρ(t, x))ϕ(t, x) + c(t)ϕ(t, x)

]

dt dx = 0.

Choose now, for any integer k ∈ N,

ϕ(t, x) = η(t)ψ(x − k),

where η ∈ C
∞
c (]0,+∞[ ;R) and ψ ∈ C

∞
c (R; [0,+∞[) such that ‖ψ‖

L1(R;R) = 1. We get

0 =

ˆ

R

ˆ

R+

[

F (t, x) η̇(t)− f (ρ(t, x)) η(t) + c(t) η(t)

]

ψ(x− k) dt dx

=

ˆ

R

ˆ

R+

[

F (t, x+ k) η̇(t)− f (ρ (t, x+ k)) η(t) + c(t) η(t)

]

ψ(x) dt dx.

By Lebesgue dominated convergence theorem, we can send k to +∞ and get

0 =

ˆ

R

ˆ

R+

[

L η̇(t) + c(t) η(t)

]

ψ(x) dt dx =

ˆ

R+

c(t) η(t) dt,

and the above expression on the right hand side can be easily made nonzero by suitably choosing η, unless
c(t) = 0 for a.e. t ≥ 0, which proves the assertion. ⋄

For any t ≥ 0 the map x 7→ F (t, x) is strictly increasing on the intervals where the density x 7→ ρ(t, x) is
not zero and otherwise it is constant. Therefore we can introduce X

.
= X [F ], the pseudo-inverse of F . Now,

assume for simplicity that ρ (t, x) > 0 for all (t, x) ∈ spt(ρ) = {(t, x) ∈ R+ × R : a(t) ≤ x ≤ b(t)}. Then, for
any t ≥ 0 by Proposition A.1 we have that x 7→ F (t, x) is strictly increasing on spt (ρ(t)). This implies that
X [F ] is the inverse of F on the support of ρ, namely F (t,X(t, z)) = z on (t, z) ∈ R+ × [0, L], and, assuming
that all the derivatives below are well defined, we have that

Fx (t,X(t, z)) = ρ (t,X(t, z)) > 0 for a.e. (t, z) ∈ R+ × [0, L] .
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Therefore,

1 =
d

dz
F (t,X(t, z)) = Fx (t,X(t, z))Xz(t, z),

0 =
d

dt
F (t,X(t, z)) = Ft (t,X(t, z)) + Fx (t,X(t, z))Xt(t, z),

which yields, once again by Proposition A.1, that X(t, z) is indeed a solution of the PDE

Xt(t, z) = v

(

1

Xz(t, z)

)

. (A.3)

The initial condition X(0, z) is determined by
ˆ X(0,z)

−∞

ρ̄(y) dy = z.

The computation above is only rigorous on the sets in which ρ (t, x) > 0.
The last step needed in order to (formally) recognize the discrete model (2.6) in (A.3) is by replacing the

z–derivative of X in (A.3) by the (forward) finite differences

Xz ≈
X(t, z + ℓ)−X(t, z)

ℓ
, (A.4)

which gives

Xt(t, z) ≈ v

(

ℓ

X(t, z + ℓ)−X(t, z)

)

.

Then the desired model (2.6) is obtained by assuming that X(t) is piecewise constant on intervals of measure
ℓ, with X(t, j ℓ) = xj(t), j = 1, . . . , N − 1. For any fixed z ∈ {i ℓ : i = 0, 1, . . . , N}, the map t 7→ X(t, z) can
be ideally interpreted as the path described by the ‘infinitesimal particle’ labelled with z ∈ [0, L]. Therefore,
(A.3) can be interpreted as the expression in the Lagrangian coordinates (t, z) of the Cauchy problem (2.1).
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