7,473 research outputs found

    Approximation Complexity of Complex-Weighted Degree-Two Counting Constraint Satisfaction Problems

    Get PDF
    Constraint satisfaction problems have been studied in numerous fields with practical and theoretical interests. In recent years, major breakthroughs have been made in a study of counting constraint satisfaction problems (or #CSPs). In particular, a computational complexity classification of bounded-degree #CSPs has been discovered for all degrees except for two, where the "degree" of an input instance is the maximal number of times that each input variable appears in a given set of constraints. Despite the efforts of recent studies, however, a complexity classification of degree-2 #CSPs has eluded from our understandings. This paper challenges this open problem and gives its partial solution by applying two novel proof techniques--T_{2}-constructibility and parametrized symmetrization--which are specifically designed to handle "arbitrary" constraints under randomized approximation-preserving reductions. We partition entire constraints into four sets and we classify the approximation complexity of all degree-2 #CSPs whose constraints are drawn from two of the four sets into two categories: problems computable in polynomial-time or problems that are at least as hard as #SAT. Our proof exploits a close relationship between complex-weighted degree-2 #CSPs and Holant problems, which are a natural generalization of complex-weighted #CSPs.Comment: A4, 10pt, 23 pages. This is a complete version of the paper that appeared in the Proceedings of the 17th Annual International Computing and Combinatorics Conference (COCOON 2011), Lecture Notes in Computer Science, vol.6842, pp.122-133, Dallas, Texas, USA, August 14-16, 201

    A Dichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

    Get PDF
    We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in polynomial time. When the instance's degree is more than two, we present a dichotomy theorem that classifies all counting CSPs admitting free unary constraints into exactly two categories. This classification theorem extends, to complex-weighted problems, an earlier result on the approximation complexity of unweighted counting Boolean CSPs of bounded degree. The framework of the proof of our theorem is based on a theory of signature developed from Valiant's holographic algorithms that can efficiently solve seemingly intractable counting CSPs. Despite the use of arbitrary complex weight, our proof of the classification theorem is rather elementary and intuitive due to an extensive use of a novel notion of limited T-constructibility. For the remaining degree-2 problems, in contrast, they are as hard to approximate as Holant problems, which are a generalization of counting CSPs.Comment: A4, 10pt, 20 pages. This revised version improves its preliminary version published under a slightly different title in the Proceedings of the 4th International Conference on Combinatorial Optimization and Applications (COCOA 2010), Lecture Notes in Computer Science, Springer, Vol.6508 (Part I), pp.285--299, Kailua-Kona, Hawaii, USA, December 18--20, 201

    The complexity of weighted and unweighted #CSP

    Get PDF
    We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.Comment: 11 page

    The Complexity of Weighted Boolean #CSP with Mixed Signs

    Get PDF
    We give a complexity dichotomy for the problem of computing the partition function of a weighted Boolean constraint satisfaction problem. Such a problem is parameterized by a set of rational-valued functions, which generalize constraints. Each function assigns a weight to every assignment to a set of Boolean variables. Our dichotomy extends previous work in which the weight functions were restricted to being non-negative. We represent a weight function as a product of the form (-1)^s g, where the polynomial s determines the sign of the weight and the non-negative function g determines its magnitude. We show that the problem of computing the partition function (the sum of the weights of all possible variable assignments) is in polynomial time if either every weight function can be defined by a "pure affine" magnitude with a quadratic sign polynomial or every function can be defined by a magnitude of "product type" with a linear sign polynomial. In all other cases, computing the partition function is FP^#P-complete.Comment: 24 page
    • …
    corecore