
Theoretical Computer Science 461 (2012) 86–105

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Approximation complexity of complex-weighted degree-two counting
constraint satisfaction problems
Tomoyuki Yamakami ∗
Department of Information Science, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan

a r t i c l e i n f o

Keywords:
Constraint satisfaction problem
#CSP
Bounded degree
AP-reducibility
Constructibility
Symmetrization
#SAT
Holant problem
Signature

a b s t r a c t

Constraint satisfaction problems have been studied in numerous fields with practical and
theoretical interests. In recent years, major breakthroughs have been made in a study
of counting constraint satisfaction problems (or #CSPs). In particular, a computational
complexity classification of bounded-degree #CSPs has been discovered for all degrees
except for two, where the ‘‘degree’’ of an input instance is the maximal number of
times that each input variable appears in a given set of constraints. Despite the efforts
of recent studies, however, a complexity classification of degree-2 #CSPs has eluded
from our understandings. This paper challenges this open problem and gives its partial
solution by applying two novel proof techniques – T2-constructibility and parametrized
symmetrization – which are specifically designed to handle ‘‘arbitrary’’ constraints under
randomized approximation-preserving reductions. We partition entire constraints into
four sets and we classify the approximation complexity of all degree-2 #CSPs whose
constraints are drawn from two of the four sets into two categories: problems computable
in polynomial-time or problems that are at least as hard as #SAT. Our proof exploits a close
relationship between complex-weighted degree-2 #CSPs and Holant problems, which are
a natural generalization of complex-weighted #CSPs.

© 2011 Elsevier B.V. All rights reserved.

1. Approximation complexity of bounded-degree #CSPs

Constraint satisfaction problems (or CSPs, in short), which are composed of ‘‘variables’’ (on appropriate domains) and
‘‘constraints’’ among those variables, have been studied with practical and theoretical interests in various fields, including
artificial intelligence, database theory, graph theory, and statistical physics. A decision version of CSP asks whether, given a
list of constraints over variables, all the constraints are satisfied simultaneously. Schaefer [9] first charted a whole map of
the computational complexity of Boolean CSPs (i.e., CSPs with constraints on the Boolean domain) according to a fixed list
of constraints.

Of numerous variants of CSPs, in particular, a counting CSP (or #CSP) asks how many variable assignments satisfy all the
given constraints. As a typical #CSP, the counting satisfiability problem (or #SAT) is to count the total number of satisfiable
assignments for each given logical formula. This counting problem #SAT is known to be computationally hard for Valiant’s
class #P of counting functions [10].

In the past two decades, a great progress has been observed in a study of #CSPs and their variants. The first major leap
came in 1996 when Creignou and Hermann [4] discovered a precise classification of all unweighted #CSPs (i.e., #CSPs with
Boolean-valued constraints). Their classification theorem asserts that every #CSP whose constraints are all taken from a
fixed set F (denoted #CSP(F)) can be classified into one of the following two categories: polynomial-time computable
problems or #P-hard problems. This statement is known as a dichotomy theorem for unweighted #CSPs.

∗ Tel.: +81 80 5451 1961.
E-mail address: TomoyukiYamakami@gmail.com.

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.11.037

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82234475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.11.037
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:TomoyukiYamakami@gmail.com
http://dx.doi.org/10.1016/j.tcs.2011.11.037

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 87

Inmany real-life problems, however, natural constraints often take real or complex values rather thanBoolean values. It is
therefore quite natural to expand the scope of constraints from Boolean values to real values and beyond. An early extension
was made by Dyer, Goldberg, and Jerrum [7] to nonnegative rational numbers. After a series of vigorous work, Cai, Lu, and
Xia [3] finally gave a most general form of classification theorem for complex-weighted #CSPs (i.e., #CSPs with complex-
valued constraints), provided that arbitrary unary constraints can be freely added to input instances. For succinctness,
hereafter, we use ‘‘∗ (star)’’ as in ‘‘#CSP∗’’ to indicate this extra use of free unary constraints.

Another major progress has been recently reported in an area of the approximation complexity of #CSPs. Using a
notion of randomized approximation-preserving reducibility (or AP-reducibility, in short) [5], Dyer et al. [8] discovered a
complete classification of the approximation complexity of unweighted #CSPs. Unlike the aforementioned exact complexity
case, unweighted #CSPs are classified into three categories, which include an intermediate level between polynomial-
time computable problems and #P-hard problems. This trichotomy theorem therefore draws a clear contrast between
the approximation complexity and the exact complexity of the unweighted #CSPs. Later in 2010, this result was further
extended into complex-weighted #CSP∗s [14]. A recent extensive study has also targeted another important refinement of
#CSPs – bounded-degree #CSPs – where the ‘‘degree’’ is the maximal number of times that any variable appears in a given
set of constraints. A complete classification was recently given by Dyer et al. [6] to unweighted bounded-degree #CSP∗s
when their degree exceeds 2. Subsequently, Yamakami [15] extended their result to complex-weighted bounded-degree
#CSP∗s. We conveniently say that counting problems A and B are ‘‘AP-equivalent (in complexity)’’ when they have the same
computational complexity under the aforementioned AP-reductions. With a help of this notion, for any setF of constraints,
#CSP∗(F)’s and #CSP∗

3(F)’s become AP-equivalent [15], where the subscript ‘‘3’’ in #CSP∗

3(F) indicates that the maximum
degree is atmost 3. Nevertheless, degree-2 #CSPs have eluded fromour understandings and it has remained open to discover
a complete classification of the approximation complexity of degree-2 #CSPs.

This paper presents a partial solution to this open problem by exploiting a fact that the computational complexity of
#CSP∗s are closely linked to that of Holant problems, where Holant problems were introduced by Cai et al. [3] to generalize
a framework of #CSPs (motivated and influenced by Valiant’s holographic reductions and algorithms [12,13]). In this
framework, complex-valued constraints (on the Boolean domain) are simply called signatures. A Holant problem then asks
to compute the total weights of the products of the values of signatures over all possible edge-assignments to an input
graph. Conveniently, let Holant∗(F) denote a complex-weighted Holant problem whose signatures are limited to a given
set F and unary signatures. A close link we exploit here is that #CSP∗

2(F)’s and Holant∗(F)’s are AP-equivalent [15], and
this equivalence makes it possible for us to work on the Holant framework.

When any permutation of Boolean variables of a signature f does not change the output value of f , the signature f is called
symmetric. Typical examples of symmetric signatures include OR (where OR(x1, x2) evaluates the logical formula ‘‘x1 ∨ x2’’)
and NAND (which evaluates ‘‘not(x1 ∧ x2)’’). All symmetric Holant∗ problems (where unary signatures are given for free)
were neatly classified by Cai et al. [3] into two categories: those solvable in polynomial time and those at least as hard as the
complex-weighted counting satisfiability problem (or #SATC). To obtain this dichotomy theorem, Cai et al. used a technique
of Valiant [13], called a holographic transformation, which transforms signatureswithout changing solutions of the associated
Holant∗ problems.

The difference between symmetric signatures and asymmetric ones in the case of approximation complexity of #CSPs
with Boolean constraints are quite striking. Even for a simple example of binary (i.e., arity-2) constraints, the symmetric
signature OR makes the corresponding counting problem #CSP(OR) #P-hard, whereas the asymmetric signature Implies
(where Implies(x1, x2) evaluates the propositional formula ‘‘x1⊃x2’’) makes #CSP(Implies) sit between the set of polynomial-
time solvable problems and the set of #P-hard problems [8] and #CSP(Implies) has been speculated to be tractable.

In this paper, we give two approximation classification theorems for complex-weighted degree-2 #CSP∗s. Our major
contributions are two fold: (1) we present a systematic technique of handling arbitrary signatures and (2) we demonstrate
two classification theorems for approximation complexity of complex-weighted #CSP∗s associated with particular sets of
signatures. To be more precise, in the first classification theorem (Theorem 3.4), we first define a ternary signature set SIG
and prove that, for any signature f outside of SIG, #CSP∗

2(f) is at least as hard as #SATC. This result leaves the remaining
task of focusing on ternary signatures residing within SIG. For our convenience, we will split SIG into three parts – SIG0,
SIG1, and SIG2 – and, in the second classification theorem, when all signatures are drawn from SIG1, we provide with a
complete classification of all degree-2 #CSP∗s. The other two sets will be handled in separate papers due to their lengthy
proofs. The second classification theorem (Theorem 3.5) is roughly stated as follows: for any set F of signatures in SIG1, if
F is included in a particular signature set, called DUP, then #CSP∗

2(F) is solvable in polynomial time; otherwise, #CSP∗

2(F)
is computationally hard for #PC under AP-reductions, where #PC is a complex-valued version of #P (see, e.g., [14]). In
fact, we can precisely describe the requirements for asymmetric signatures to be #PC-hard. Proving these two theorems
require novel ideas and new technical tools: T2-constructibility and parametrized symmetrization scheme of asymmetric
signatures.

Our proofs of the aforementionedmain theorems proceed in the followingway. From an arbitrary ternary signature f , we
nicely construct a new ‘‘ternary’’ signature, denoted Sym(f), so that Sym(f) becomes symmetric. This process,which is a form
of (simple) symmetrization scheme, is carried out by T2-construction, and this construction ensures that the corresponding
problem #CSP∗

2(f) is AP-equivalent to #CSP∗

2(Sym(f)). When f is outside of SIG, #CSP∗

2(Sym(f)) further becomes AP-
equivalent to certain symmetric Holant∗ problems, and thus we can appeal to the dichotomy theorem of Cai et al. for
symmetric Holant∗ problems. When f is in SIG1, on the contrary, we need another symmetric ‘‘binary’’ signature alongside

88 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

Sym(f). Employing another symmetrization scheme, we T2-construct such a signature, denoted SymL(f), from f . Moreover,
this new signature is ‘‘parametrized’’ so thatwe can discuss an infinite number of similar signatures simultaneously. To apply
Cai et al. ’s dichotomy theorem, the two symmetrized signatures must fail to meet a few special conditions. To prove that
this is indeed the case, we falsely assume that those conditions aremet. Now,we translate the conditions into a set of certain
low-degree multivariate polynomial equations that have a common solution in C. We then try to argue that there is no such
common solution, contradicting our initial assumption. Notably, this argument requires only an elementary analysis of low-
degree polynomial equations and the whole analysis is easy and straightforward to follow. This nice feature is an advantage
and strength of our argument.

To prove the two main theorems, the rest of this paper is organized as follows. First, we describe fundamental notions
and notations in Section 2, including signatures, Holant problems, #CSPs, AP-reduction, and holographic transformation.
We then introduce two new technical tools – T2-constructibility and parametrized symmetrization – for the description of
the proofs of our main theorems (Theorems 3.4–3.5). The notion of T2-constructibility is explained in Section 4.1, and the
notions of (simple) symmetrization scheme and parametrized symmetrization scheme appear respectively in Sections 3.2
and 5.1. Many fundamental properties of those symmetrization schemes are presented in Section 6. Theorem 3.4 relies
on Proposition 4.3 and its proof appears in Section 4.2. In contrast, the proof of Theorem 3.5 uses two key propositions,
Propositions 4.4–4.5, where Proposition 4.4 is proven in Section 4.3, and the proof of Proposition 4.5 is given in Section 5.2
based on Propositions 5.1–5.4. Finally, Proposition 5.1 is proven in Section 7, and Propositions 5.2–5.4 are explained in
Sections 8–10, completing the proof of Proposition 4.5.

2. Fundamental notions and notations

We briefly present fundamental notions and notations, which will be used in later sections. Let N denote the set of all
natural numbers (i.e., non-negative integers). For convenience, the notationN+ expressesN−{0}. Moreover,R andC denote
respectively the sets of all real numbers and of all complex numbers. For any complex number α, |α| and arg(α) denote the
absolute value and the argument of α, respectively. For each number n ∈ N+, [n] denotes the integer set {1, 2, . . . , n}. For
a positive integer k, let Sk denote the set of all permutations over [k]. For brevity, we express each permutation σ ∈ Sk as
(a1a2 . . . ak) to mean that σ(i) = ai for every index i ∈ [k]. We always treat vectors as row vectors, unless stated otherwise.
To simplify descriptions of compound conditions and requirements among Boolean variables, we informally use logical
connectives, such as ‘‘∧’’ (AND), ‘‘∨’’ (OR), and ‘‘not ’’ (NOT). An example of such usage is: (g1 = 0∧ g0 + g2 = 0) ∨ not(g0 =

g2 = 0).

2.1. Signatures and relations

The most fundamental concept in this paper is ‘‘signature’’ on the Boolean domain. Instead of the conventional term
‘‘constraint,’’ we intend in this paper to use this term ‘‘signature.’’ A signature of arity k is a complex-valued function of arity
k; that is, f is a map from {0, 1}k to C. Assuming the standard lexicographic order on {0, 1}k, we conveniently express f
as a row-vector consisting of its output values, which can be identified with an element in the space C2k . For instance, if f
has arity 2, then f is expressed as (f (00), f (01), f (10), f (11)). A signature f is called symmetric if f ’s values depend only on
the Hamming weight of inputs. An asymmetric signature, on the contrary, is a signature that is not symmetric. When f is an
arity-k symmetric function, we use another succinct notation f = [f0, f1, . . . , fk], where each fi is the value of f on inputs of
Hamming weight i. For example, the equality function (EQk) of arity k is expressed as [1, 0, . . . , 0, 1] (k − 1 zeros). Unary
signatures (i.e., signatures of arity 1), in particular, play an essential role in this paper.

A relation of arity k is a subset of {0, 1}k. Such a relation can be also viewed as a function mapping Boolean variables
to {0, 1} (i.e., x ∈ R iff R(x) = 1, for every x ∈ {0, 1}k) and it can be treated as a ‘‘Boolean’’ signature. For instance,
logical relations OR, NAND, and Implies are expressed as ‘‘signatures’’ in the following obvious manner: OR = [0, 1, 1],
NAND = [1, 1, 0], and Implies = (1, 1, 0, 1). In addition, we define ONE3 = [1, 1, 0, 0], which means that the total number
of 1s in any satisfying assignment should equal one.

To simplify our further descriptions, it is useful to introduce the following two special sets of signatures. First, let U
denote the set of all unary signatures. Next, letDG denote the set of all signatures f of arity k that are expressed by products
of k unary functions, which are applied respectively to k variables. A signature in DG is called degenerate. Note that, for
ternary symmetric signature f = [a0, a1, . . . , ak], f is non-degenerate if and only if the rank of

a0 a1 · · · ak−1
a1 a2 · · · ak

is exactly two

(see, e.g., [3]).

2.2. #CSPs and Holant problems

In an undirected bipartite graph G = (V1|V2, E) (where V1, V2 are vertex sets and E is an edge set), all nodes in V1 appear
on the left-hand side and all nodes in V2 appear on the right-hand side of the graph. For any vertex v, the incident set E(v)
of v is a set of all edges incident on v, and deg(v) is the degree of v. For any matrix A, the notation AT denotes the transposed
matrix of A.

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 89

Let us define complex-weighted (Boolean) #CSP problems. Throughout this paper, the notation F often denotes an
arbitrary set of signatures of arity at least 1. Conventionally, the term ‘‘constraint’’ is used to describe a function mapping
variables on a certain domain; nonetheless, aswehave stated in the previous subsection,wewish to use the term ‘‘signature’’
instead. Limited to a given set F , a complex-weighted #CSP problem, denoted #CSP(F), takes as an input instance a finite
subsetH of all elements of the form ⟨h, (xi1 , xi2 , . . . , xik)⟩, where a signature h ∈ F is defined on (xi1 , xi2 , . . . , xik) of Boolean
variables {x1, x2, . . . , xn} with i1, . . . , ik ∈ [n], and the problem outputs the complex value:

x1,x2,...,xn∈{0,1}

⟨h,x′⟩∈H

h(xi1 , xi2 , . . . , xik),

where x′
= (xi1 , xi2 , . . . , xik). For brevity, we often express h(xi1 , xi2 , . . . , xik) to mean ⟨h, (xi1 , xi2 , . . . , xik)⟩ whenever it is

clear from the context. The degree of an input instance to #CSP(F) is the greatest number of times that any variable appears
among its signatures. For any positive integer d, #CSPd(F) expresses the restriction of #CSP(F) to instances of degrees at
most d.

We can view a counting problem #CSPs from a slightly different perspective, known as a Holant framework, and we
pay our attention to so-called Holant problems. An input instance to a Holant problem is a signature grid that contains an
undirected graph G, in which all nodes are labeled by signatures in F . More formally, following the terminology developed
in [2,1], we define a bipartite Holant problem Holant(F1|F2) as a counting problem that takes a (bipartite) signature grid
Ω = (G, F ′

1 |F
′

2 , π), where G = (V1|V2, E) is a finite undirected bipartite graph, two ‘‘finite’’ subsets F ′

1 ⊆ F1 and F ′

2 ⊆ F2,
and a labeling function π : V1 ∪ V2 → F ′

1 ∪ F ′

2 such that π(V1) ⊆ F ′

1 and π(V2) ⊆ F ′

2 , and each vertex v ∈ V1 ∪ V2 is
labeled by a signature π(v) : {0, 1}deg(v)

→ C. For convenience, we often write fv for π(v). Let Asn(E) be the set of all edge
assignments σ : E → {0, 1}. The objective of this problem is to compute the following value HolantΩ :

HolantΩ =

σ∈Asn(E)

v∈V

fv(σ |E(v)),

where σ |E(v) denotes the binary string (σ (w1), σ (w2), . . . , σ (wk)) if E(v) = {w1, w2, . . . , wk}, sorted in a certain pre-
fixed order by f .

We often view #CSP(F) (as well as #CSPd(F)) as a special case of bipartite Holant problem of the following form: an
instance to #CSP(F) is a bipartite graph G, where all vertices on the left-hand side, each of which represents a variable, are
labeled by equality functions (EQk) and all vertices on the right-hand side are labeled by constraints. Whenever variables
appear in constraints, edges are drawn between their corresponding nodes on each side of the graph. In terms of Holant
problems, therefore, #CSP(F) coincides with Holant({EQk}k≥1|F). Throughout this paper, we interchangeably take these
two different views of complex-weighted #CSP problems. With this Holant viewpoint, the degree of an instance is just the
maximum degree of nodes that appear on the left-hand side of a bipartite graph in the instance.

The following abbreviations are useful in this paper; we write #CSP(f , F , G) to mean #CSP({f } ∪ F ∪ G) and
Holant(f , F1|F2, G) to mean Holant({f }∪F1|F2 ∪G), for example. In particular, we abbreviate #CSP(U, F), #CSPd(U, F),
and Holant(U, F1|U, F2) as #CSP∗(F), #CSP∗

d(F), and Holant∗(F1|F2), respectively.
In the end, as a concrete example of counting problem, we introduce a complex-weighted version of the counting

satisfiability problem, denoted #SATC in [14]. Let φ be any propositional formula and let V (φ) denote the set of all variables
that appear in φ. For this formula φ, we consider a series {wx}x∈V (φ) of node-weight functions wx : {0, 1} → C − {0}. Given
the pair (φ, {wx}x∈V (φ)), #SATC asks to compute the sum of all weights w(σ) for every truth assignment σ that satisfies φ,
where w(σ) is the product of all wx(σ (x)) for any x ∈ V (φ).

2.3. FPC and AP-reducibility

To compare the exact complexities of two Holant problems, Cai et al. [3] utilized a complex-valued analogue of
(polynomial-time) Turing reducibility. In contrast, for approximation complexity, Dyer et al. [5] introduced so-called ‘‘AP-
reducibility’’ to measure the approximation complexity of various unweighted #CSPs. Here, we adapt their notion of AP-
reducibility. Since all #CSP∗s can be treated as complex-valued functions mapping from {0, 1}∗ to C, it suffices for us to
develop necessary methodology concerning only complex-valued functions.

The following notational conventions are taken from [14,15]. The notation FPC denotes the collection of all string-based
functions f : {0, 1}∗ → C that can be computed deterministically in time polynomial in the lengths of inputs. A randomized
approximation scheme for (complex-valued) F is a randomized algorithm that takes a standard input x ∈ Σ∗ together with
an error tolerance parameter ε ∈ (0, 1), and outputs values w with probability at least 3/4 for which

2−ϵ
≤

 w

F(x)

 ≤ 2ϵ and
arg

w

F(x)

 ≤ 2ϵ,

where we conventionally assume that, whenever |F(x)| = 0 or arg(F(x)) = 0, we instead require |w| = 0 or | arg(w)| ≤ 2ϵ ,
respectively. Furthermore, when a randomized approximation scheme for F runs in time polynomial in (|x|, 1/ε), we call it
a fully polynomial(-time) randomized approximation scheme (or simply, FPRAS) for F .

90 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

Now, we are ready to introduce the desired reduction between complex-valued functions in our approximation
context. Given two functions F and G, a polynomial-time randomized approximation-preserving reduction (or AP-reduction)
from F to G is a randomized algorithm M that takes a pair (x, ε) ∈ Σ∗

× (0, 1) as input instance, uses an arbitrary
randomized approximation scheme N for G as oracle, and satisfies the following three conditions: (i)M is still a randomized
approximation scheme for F independent of a choice of N for G; (ii) every oracle call made by M is of the form (w, δ) in
Σ∗

× (0, 1)with 1/δ ≤ p(|x|, 1/ε), where p is a fixed polynomial, and its answer is the outcome of N on (w, δ); and (iii) the
running time of M is upper-bounded by a certain polynomial in (|x|, 1/ε), which is not depending on the choice of N for G.
If such an AP-reduction exists, then we say that F is AP-reducible to G and we write F ≤AP G. If F ≤AP G and G ≤AP F , then F
and G are said to be AP-equivalent and we use the notation F ≡AP G.

The following basic properties of AP-reductions are straightforward from the definition of #CSP∗

2(F)’s: given two
signature sets F and G, if F ⊆ G, then #CSP∗

2(F) ≤AP #CSP∗

2(G).
Lemma 2.1 gives additional useful properties. To prove the lemma, we need the following results proven in [15]: for any

signature set F , #CSP∗(F) ≡AP #CSP∗

3(F) ≡AP Holant∗(EQ3|F) and #CSP∗

2(F) ≡AP Holant∗(EQ2|F).

Lemma 2.1. (1) For any signature f ,Holant∗(EQ2|f) ≤AP Holant∗(EQ3|f). (2) For any setF of signatures,Holant∗(EQ2|F) ≤AP
#CSP∗(F).

Proof. (1) This can be easily shown by replacing, with

x3∈{0,1} EQ3(x1, x2, x3) · [1, 1](x3), each signature EQ2(x1, x2) that
appears in any signature grid to Holant∗(EQ2|F).

(2) Using (1), we obtain Holant∗(EQ2|F) ≤AP Holant∗(EQ3|F). The remaining AP-equivalence Holant∗(EQ3|F) ≡AP
#CSP∗(F) follows from [15]. �

2.4. Holographic transformation

The notion of holographic transformation was introduced by Valiant [11,13] to extend the scope of the application of
holographic algorithms. Cal and Lu [1] later contributed to its abstract formulation. Holographic transformation is one of
the few technical tools that still work together with AP-reducibility. Since each signature f is expressed as a row vector,
whenever we want to use a column-vector form of f , we formally write f T to avoid any confusion that may incur.

We fix a 2 × 2 nonsingular matrix M and let f and g be signatures of arity k and m, respectively. For any signature
grid Ω = (G, {g}|{f }, π), we define another signature grid Ω ′ by simply replacing the nodes’ label g and f respectively
with f (MT)⊗k and g(M−1)⊗m, where ⊗ means the tensor product. A key observation made by Valiant is that HolantΩ
equals HolantΩ ′ . More generally, let F and G be any two sets of signatures. We conveniently write G(M−1)⊗ for the set
{g(M−1)⊗k

| g ∈ G, g has arity k} and F (MT)⊗ for the set {f (MT)⊗k
| f ∈ F , f has arity k}. (Note that, for any vectors

f , g of dimension k, the equation h = f (MT)⊗k is equivalent to the equation hT
= M⊗kf T .) By the above observation,

holographic transformation obviously preserves the exact complexity of Holant problems under Turing reductions, and
thus obtain Valiant’s so-calledHolant theorem: Holant(G|F) is Turing equivalent to Holant(G(M−1)⊗|F (MT)⊗) for any 2×2
nonsingular complexmatrixM (see, e.g., [1–3] for a discussion). It is important to note that the Holant theorem is still valid
under AP-reductions, because we can trivially construct an AP-reduction machine computing, e.g., HolantΩ ′ from HolantΩ
defined above. Since unary signatures are transformed into unary signatures, we therefore obtain the following statement.

Lemma 2.2. Holant∗(G|F) ≡AP Holant∗(G(M−1)⊗|F (MT)⊗) for any 2 × 2 nonsingular complex matrix M.

This lemma will be extensively used to prove one of the four key propositions, namely, Proposition 4.3.

3. Main theorems

Now, we challenge an unsolved question of determining the approximation complexity of degree-2 #CSP∗s. With a great
help of two new powerful techniques for ‘‘arbitrary’’ signatures, we can give a partial answer to this question by presenting
two main theorems – Theorems 3.4 and 3.5 – for the degree-2 #CSP∗s with ternary signatures. The first technical tool is a
modification of T-constructibility, which was shown effective for unbounded-degree #CSP∗s [14]. The second tool is a clear,
systematic method of transforming arbitrary signatures into slightly more complicated but ‘‘symmetric’’ signatures. These
techniques will be explained in details in the subsequent sections. The two theorems may suggest a future direction of the
intensive research on #CSPs (on an arbitrary domain).

3.1. Symmetric signatures of arity 3

To state our main theorems, we begin with a short discussion on symmetric signatures of arity 3. Recently, a crucial
progress was made by Cai et al. [3] in the field of Holant problems, in particular, ‘‘symmetric’’ Holant∗ problems. A counting
problem Holant∗(f) with a symmetric signature f is shown to be classified into only two types: either it is polynomial-time
solvable or it is at least as hard as #SATC. In this classification, Cai et al. recognized twouseful categories of ternary symmetric
signatures. A ternary signature of the first category has the form [a, b, −a, −b] with two constants a, b ∈ C. In contrast,
a ternary signature [a, b, c, d] of the second category satisfies the following technical condition: there exist two constants

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 91

α, β ∈ C (not both zero) for which αa+ βb− αc = 0 and αb+ βc − αd = 0. For later convenience, we call this pair (α, β)
the binding coefficients of the signature. To simplify our description, the notations Sig(1) and Sig(2) respectively denote the
sets of all signatures of the first category and of the second category.

Regarding Sig(1) and Sig(2), Cai et al. proved three key lemmas, which lead to their final dichotomy theorem for
symmetric Holant∗ problems: unless target Holant∗ problems are in FPC, they are Turing reducible to one of the following
three problems, Holant∗(EQ3|OR), Holant∗(EQ3|NAND), and Holant∗(ONE3|EQ2). For later convenience, we define B =

{(EQ3|OR), (EQ3|NAND), (ONE3|EQ2)}. Notice that the proofs of their lemmas require only a holographic transformation
technique and a ‘‘realizability’’ technique. Since these tools still work in our approximation context, we obtain the following
three statements, which become a preparation to the description of our main theorems.

Lemma 3.1. Let f be any ternary non-degenerate symmetric signature and let g = [c0, c1, c2] be any non-degenerate signature.
Each of the following statements holds.

(1) If f ∉ Sig(1)
∪ Sig(2), then there exists a pair (g1|g2) ∈ B such that Holant∗(g1|g2) ≤AP Holant∗(EQ2|f).

(2) If f ∈ Sig(1), g ∉ {[λ, 0, λ] | λ ∈ C}, and c0 + c2 ≠ 0, then there exists a pair (g1|g2) ∈ B such that Holant∗(g1|g2) ≤AP
Holant∗(EQ2|f , g).

(3) If f ∈ Sig(2) with its binding coefficients (α, β), g ∉ {[2αλ, βλ, 2αλ] | λ ∈ C}, and αc0 + βc1 − αc2 ≠ 0, then there exists
a pair (g1|g2) ∈ B such that Holant∗(g1|g2) ≤AP Holant∗(EQ2|f , g).

Proof. Here, wewill prove only (2). In this proof, we need a notion of T2-constructibility as well as Lemma 4.2, whichwill be
described in Section 4. Following an argument of Cai et al. [3], for given signatures f and g , we first choose a pair (g1|g2) ∈ B, a
signature h, and a 2×2 nonsingularmatrixM such that EQ2 = g2(M−1)⊗2 and h = g1(MT)⊗3; in otherwords, Holant∗(g2|g1)
is transformed into Holant∗(EQ2|h) by Valiant’s holographic transformation. Notice that Holant∗(g1|g2) and Holant∗(g2|g1)
are essentially identical. By Lemma 2.2, we conclude that Holant∗(g1|g2) ≤AP Holant∗(EQ2|h). By analyzing the argument in
[3], we can show that, with a certain finite subset F ⊆ U, h is T2-constructed from signatures in F ∪ {f , g}. Therefore, by
applying Lemma 4.2, we immediately obtain the desired AP-reduction: Holant∗(g1|g2) ≤AP Holant∗(EQ2|f , g). �

As discussed earlier, Holant∗ problems Holant∗(g1|g2) with (g1|g2) ∈ B are at least as hard as #SATC under Turing
reductions [3]. When dealing with complex numbers, in general, it is not immediately clear that Turing reductions can be
automatically replaced by AP-reductions, because a number of ‘‘adaptive’’ queriesmade by Turing reductionsmight possibly
violate certain requirements imposed on the definition of AP-reduction. Despite such a concern, we will be able to prove in
Proposition 4.3 that those problems are indeed AP-reduced from #SATC, and thus Lemma 3.1 is still applicable to obtain the
#PC-hardness of certain #CSP∗

2(F)’s.

3.2. Arbitrary signatures of arity 3

Finally, we turn our attention to arbitrary signatures of arity 3 and their associated degree-2 #CSP∗s. We have already
seen the dichotomy theorem of Cai et al. [3] for symmetric Holant∗ problems hinge on two particular signature sets
Sig(1) and Sig(2). In order to obtain a similar classification theorem for all ternary signatures, we wish to take the first
systematic approach by introducing two useful tools. Since these tools are not limited to a particular type of signatures,
as a result, we will obtain a general classification of the approximation complexity of degree-2 #CSP∗s. The first new
technical tool is ‘‘symmetrization’’ of arbitrary signatures. Another new technical tool is ‘‘constructibility’’ that bridges
between symmetrization and degree-2 #CSP∗s. Throughout this section, let f denote any ternary signature with complex
components; in particular, we assume that f = (a, b, c, d, x, y, z, w). Here, we introduce a simple form of symmetrization
of f , denoted Sym(f), as follows:

Sym(f)(x1, y1, z1) =

x2,y2,z2∈{0,1}

f (x1, x2, z2)f (y1, y2, x2)f (z1, z2, y2). (1)

This symmetrization Sym(f) plays a key role in the description of our main theorems. As its name suggests, the
symmetrization transforms any signature into a symmetric signature.

Lemma 3.2. For any ternary signature f , Sym(f) is a symmetric signature.

Proof. Let x1, y1, z1 be any three variables. First, we want to show that the value Sym(f)(x1, y1, z1) coincides with
Sym(f)(y1, z1, x1). Let us focus on Sym(f)(x1, y1, z1), which is calculated according to Eq. (1). To terms inside the summation
of Eq. (1), we apply the following map: x2 → z2, z2 → y2, and y2 → x2. Although this map does not change the actual value
of Sym(f)(x1, y1, z1), exchanging the order of three f (·)’s inside the summation immediately produces the valid definition
of Sym(f)(y1, z1, x1). Thus, Sym(f)(x1, y1, z1) equals Sym(f)(y1, z1, x1). Similarly, we can handle the other remaining cases.
Since the signature Sym(f) is independent of the input-variable order, it should be symmetric. �

Although most of the fundamental properties will be provided in Section 6.2, here we present a significant nature of the
symmetrization: Sym(·) behaves quite differently on Sig(1) and Sig(2).

92 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

Lemma 3.3. Let f = (a, b, c, d, x, y, z, w) be any ternary symmetric signature. (1) If f ∈ Sig(1), then Sym(f) is in DG.
(2) Assume that f ∈ Sig(2) with binding coefficients (α, β). If either αβ = 0 or αβ ≠ 0 ∧ (β/α + b/a)2 = −1, then Sym(f) is
in Sig(2).

Proof. Let us consider any ternary symmetric signature f = (a, b, c, d, x, y, z, w). When f ∈ Sig(1), f can be expressed as
[a, b, −a, −b]. Hence, it follows that (1’) a + d = x + w = 0 and (2’) a2 + bc = bc + d2 = a2 + b2. Using these equations,
the value h1 described in Eq. (27) can be simplified to (a2 + b2)x + (a2 + b2)w, which obviously equals 0. Similarly, with a
help of (1’)–(2’), Eqs. (26) & (28)–(29) imply h0 = h2 = h3 = 0. Therefore, we obtain Sym(f) = [0, 0, 0, 0], and thus Sym(f)
is degenerate.

Next, assume that f ∈ Sig(2) with binding coefficients (α, β), which satisfy two equations, (3’) α(a − z) + βb = 0 and
(4’) α(b − w) + βz = 0. Notice that α and β cannot be both zero. For simplicity, write δ =

β

α
+

b
a . Henceforth, we consider

two separate cases.
[Case: αβ = 0] First, assume that α = 0 and β ≠ 0. From (3’)–(4’), it follows that f should have the form [a, 0, 0, d].

By a direct calculation of Eqs. (26)–(29), we obtain Sym(f) = [a3, 0, 0, d3]. Next, assume that α ≠ 0 ∧ β = 0. Since f
must have the form [a, b, a, b] by (3’)–(4’), Eqs. (26)–(29) imply that Sym(f) = [A, B, A, B], where A = 2a(a2 + 3b2) and
B = 2b(3a2 + b2). In both cases, we conclude that Sym(f) ∈ Sig(2).

[Case: αβ ≠ 0 ∧ δ2
= −1] Since f is symmetric, we can assume that f = [a, b, z, w]. Since αβ ≠ 0, the determinant

det
 a − z b
b − w z

equals zero; thus, (5’) z(a−z) = b(b−w) follows. Now,we set γ =

z
b . It is not difficult to show that (3’) implies

γ =
β

α
+

b
a , which clearly equals δ. Now, using (5’), we instantly obtain z = δb and w = −δa. In short, f = [a, b, δb, −δa]

holds. A vigorous calculation of Eqs. (26)–(29) shows the following: h0 = a3 + 3ab2 + 2δb3, h1 = −b(b − δa)2,
h2 = δb(b − δa)2, and h3 = δ(a3 + 3ab2 + 2δb3). Therefore, we conclude that Sym(f) = [h0, h1, δ

′h1, −δ′h0], where
δ′

= −δ. By its similarity to f , Sym(f) belongs to Sig(2). �

Concerning the aforementioned signature sets Sig(1) and Sig(2), we define a unique signature set, called SIG. To describe
this set, we introduce a new notation fσ as follows. Given any ternary signature f and any permutation σ ∈ S3, the notation
fσ expresses the signature g defined by g(x1, x2, x3) = f (xσ(1), xσ(2), xσ(3)) for any values x1, x2, x3 ∈ {0, 1}. The SIG is then
defined as

SIG = {f | ∀σ ∈ S3[Sym(fσ) ∉ DG −→ Sym(fσ) ∈ Sig(1)
∪ Sig(2)

]}.

Our first theorem, Theorem 3.4, gives a complete classification of the approximation complexity of degree-2 #CSP∗s when
their signatures fall into outside of SIG.

Theorem 3.4. For any ternary signature f , if f ∉ SIG, then #SATC ≤AP #CSP∗

2(f).

Since the proof of Theorem 3.4 requires a new notion of T2-constructibility, it is postponed until Section 4.2. The theorem
makes it sufficient to concentrate only on signatures residing within SIG. To analyze those signatures, we roughly partition
SIG into three parts. Firstly, we let SIG0 denote the set of all ternary signatures f for which Sym(fσ) is always degenerate for
every permutation σ ∈ S3. By Lemma 3.3 follows the inclusion Sig(1)

⊆ SIG0. Secondly, for each index i ∈ {1, 2}, let SIGi
denote the set of all ternary signatures f such that, for a certain permutationσ ∈ S3, both Sym(fσ) ∈ Sig(i) and Sym(fσ) ∉ DG
hold. It is obvious that SIG ⊆ SIG0 ∪ SIG1 ∪ SIG2. Therefore, if we successfully classify all degree-2 #CSP∗s whose signatures
belong to each of SIGi’s, thenwe immediately obtain the desired complete classification of all degree-2 #CSP∗s. Since awhole
analysis of SIG seems quite lengthy, this paper is focused only on the signature set SIG1, which can be rewritten as

SIG1 = {f | ∃σ ∈ S3∃a, b ∈ C s.t. Sym(fσ) = [a, b, −a, −b] & a2 + b2 ≠ 0},

where the condition a2 + b2 ≠ 0 indicates that Sym(fσ) is non-degenerate because rank
a b −a
b −a −b

= rank

a b
b −a

= 2.

In what follows, we will describe a dichotomy theorem for the associated degree-2 #CSP∗s. For ease of notational
complication in later sections, we introduce the following useful terminology: a ternary signature f is said to be SIG1-legal
if Sym(f) has the from [a, b, −a, −b] for certain numbers a, b satisfying a2 + b2 ≠ 0. Using this terminology, it follows that
f is in SIG1 iff fσ is in SIG1-legal for a certain σ ∈ S3.

The second theorem – Theorem 3.5 – deals with all signatures residing within SIG1. To state the theorem, however,
we need to introduce another signature set DUP. For our purpose, we begin with a quick explanation of the following
abbreviation. For any two ternary signatures f0, f1, the notation (f0, f1) expresses the signature f defined as follows:
f (0, x2, x3) = f0(x2, x3) and f (1, x2, x3) = f1(x2, x3) for all pairs (x2, x3) ∈ {0, 1}2. A vector expression of f makes this
definition simpler; when f0 = (a, b, c, d) and f1 = (x, y, z, w), we obtain (f0, f1) = (a, b, c, d, x, y, z, w). At last, the basic
signature set DUP is defined as the set of all ternary signatures f such that, after appropriate permutations σ of variables,
fσ becomes of the form u(xσ(1)) · (f0, f0), where u ∈ U, and f0 is a certain binary signature. We note that SIG1 ∩ DUP is
not empty; for instance, the signature f = (1, 0, −1, 0, i, −2, −i, 2) is not symmetric but it belongs to both DUP and SIG1,
because fσ = [1, −i](x1) · (1, 0, i, −1, 1, 0, i, −1) and Sym(fσ) = 7 · [1, −1, −1, 1] for σ = (x2x1x3), where i =

√
−1. Two

examples of important signatures in DUP include: f = (0, 0, 0, 0, x, y, z, w) and f = (a, b, c, d, 0, 0, 0, 0).
Finally, the second classification theorem is stated as follows.

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 93

Theorem 3.5. Let f be any ternary signature in SIG1. If f is in DUP, then #CSP∗

2(f) is in FPC. Otherwise, #SATC is AP-reducible to
#CSP∗

2(f).

Theorem 3.5 follows from three key propositions, Propositions 4.3–4.5, which will be explained in Section 4, and the
proof of Theorem 3.5 will be presented in Section 4.3.

4. T2-constructibility technique

To prove our main theorems stated in Section 3, we intend to employ two new technical tools. In this section, we will
introduce the first technical tool, called T2-constructibility. Applying this technical tool to degree-2 #CSP∗s with a help of
three supplemental propositions, Propositions 4.3–4.5, we will be able to give the proof of the main theorems.

4.1. T2-constructibility

When we wish to calculate approximate solutions of degree-2 #CSP∗s, in place of the exact solutions, standard tools
like ‘‘polynomial interpolation’’ are no longer applicable. A useful tool in determining the approximation complexity of
unbounded-degree #CSP∗’s used in [14] is the notion of T-constructibility. Because degree-2 #CSP∗s are quite different from
unbounded-degree #CSP∗s, its appropriate modification is needed to meet our requirement.

To pursue notational succinctness, we use the following notations. For any index i ∈ [k] and any bit c ∈ {0, 1}, the nota-
tion f xi=c denotes the function g satisfying that g(x1, . . . , xi−1, xi+1, . . . , xk) = f (x1, . . . , xi−1, c, xi+1, . . . , xk). Similarly, let
f xi=∗ express the function g defined as g(x1, . . . , xi−1, xi+1, . . . , xk) =

xi∈{0,1} f (x1, . . . , xi−1, xi, xi+1, . . . , xk). When two

indices i, j ∈ [k] satisfy i < j, we write f xi=xj=∗ for the function g defined as g(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xk) =
xi∈{0,1} f (x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xi, xj+1, . . . , xk), where the second xi appears at the jth position. Moreover, let

(g1 · g2)(x1, . . . , xk, y1, . . . , yk′) = g1(x1, . . . , xk)g2(y1, . . . , yk′) whenever g1 and g2 take ‘‘disjoint’’ sets of variables
{x1, . . . , xk} and {y1, . . . , yk′}, respectively. In a similar way, λ · g is defined as (λ · g)(x1, . . . , xk) = λ · g(x1, . . . , xk).

We say that a signature f of arity k is T2-constructible (or T2-constructed) from a set G of signatures if f can be obtained,
initially from signatures in G, by recursively applying a finite number (possibly zero) of operations described below.

1. Permutation: for two indices i, j ∈ [k] with i < j, by exchanging two columns xi and xj, we transform g into g ′ that is
defined by g ′(x1, . . . , xi, . . . , xj, . . . , xk) = g(x1, . . . , xj, . . . , xi, . . . , xk).

2. Pinning: for an index i ∈ [k] and a bit c ∈ {0, 1}, we build gxi=c from g .
3. Projection: for an index i ∈ [k], we build gxi=∗ from g .
4. Linked Projection: for two indices i, j ∈ [k] with i < j, we build gxi=xj=∗ from g .
5. Expansion: for an index i ∈ [k], we introduce a new ‘‘free’’ variable, say, y and transform g into g ′, which is defined by

g ′(x1, . . . , xi, y, xi+1, . . . , xk) = g(x1, . . . , xi, xi+1, . . . , xk).
6. Exclusive Multiplication: from two signatures g1 of arity k and g2 of arity k′, if g1 and g2 take disjoint variable sets, then

we build g1 · g2 from {g1, g2}.
7. Normalization: for a constant λ ∈ C − {0}, we build λ · g from g .

Main features of T2-constructibility are two special operations: linked projection and exclusive multiplication. These
operations reflect the structure of a signature grid, and therefore they are quite different from their associated operations
used for the T-constructibility.When f is T2-constructible fromG, we use the notation f ≤

∗
con G; in particular, whenG = {g},

we simply write f ≤
∗
con g instead of f ≤

∗
con {g}.

The most useful claim at this moment is the T2-constructibility of Sym(f) from f , and we state this claim as a lemma for
later referencing.

Lemma 4.1. For any ternary signature f , it holds that Sym(f) ≤
∗
con f .

Proof. To T2-construct Sym(f) from f , we first generate a product of f (x1, x2, z2), f (y1, y2, x′

2), and f (z1, z ′

2, y
′

2) using
Exclusive Multiplication with all distinct variables. We then apply Linked Projection by identifying x′

2, y
′

2, z
′

2 with
x2, y2, z2, respectively. �

The following lemma bridges between the T2-constructibility and the AP-reducibility.

Lemma 4.2. Let f be any signature and let F , G be any two signature sets. If f ≤
∗
con G, then #CSP∗

2(f , F) ≤AP #CSP∗

2(G, F).

Proof. Our proof is similar in nature to the T-constructibility proof of [14, Lemma 5.2]. All operations except for Expansion,
Linked Projection, and Exclusive Multiplication can be handled in such a way similar to the case of the T-constructibility.
Therefore, in what follows, wewill show the lemma for those three exceptional operations. Now, letF denote any signature
set and let Ω = (G, F ′, π) express any signature grid given as input instance to #CSP∗

2(f , F).
[Expansion] For simplicity, let f (y, x1, . . . , xk) = g(x1, . . . , xk), where y is a new free variable. Let us consider a subgraph

G′ of G such that it consists of node v labeled f and node w adjacent to v by an edge labeled y. Now, we want to define a
new subgraph G̃′ to replace G′. First, we remove the edge y so that we split G′ into two disconnected subgraphs. Second, we
replace the node v by a new node v′ whose label is g . Third, we insert a new node uwith label [1, 1] between the two nodes

94 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

v′ and w by two new edges. Let Ω ′ be obtained from Ω by applying this modification to all nodes with the label f . It thus
holds that HolantΩ = HolantΩ ′ . This leads to #CSP∗

2(f , F) ≤AP #CSP∗

2(g, F).
[Linked Projection] Let f = gxi=xj=∗. To improve readability, we assume that i = 1 and j = 2; that is, f (x3, . . . , xk) =
x1∈{0,1} g(x1, x2, x3, . . . , xk). We are focused on node v labeled f in G. Let us consider a subgraph G′ consisting of this node

v and all the other nodes adjacent to v. We replace G′ by another graph G̃′ that is defined as follows. First, we replace the
label f of the node v with g . Second, we add a new edge (v, v). Now, define Ω ′ as the signature grid obtained by replacing
G′ with G̃′. It is not difficult to show that HolantΩ = HolantΩ ′ . Therefore, if we recursively replace all nodes labeled f , we
finally obtain an AP-reduction: #CSP∗

2(f , F) ≤AP #CSP∗

2(g, F).
[Exclusive Multiplication] For two disjoint sets of variables {x1, x2, . . . , xk} and {y1, . . . , yk′}, we assume that g1 and

g2 take variable series (x1, . . . , xk) and (y1, . . . , yk′), respectively, and let f = g1 · g2. Now, we consider a subgraph G′

that contains node v labeled f and all the other nodes adjacent to v. We wish to define a new subgraph G̃′ as follows.
First, we split G′ into two subgraphs G′

1 and G′

2, where G′

1 (resp., G′

2) is obtained from G′ by deleting the edges y1, . . . , yk′
(resp., x1, . . . , xk) as well as all nodes, except for v, attached to those edges. In the subgraph G′

1 (resp., G′

2), we replace the
node v by a new node v′

1 (resp., v′

2) with the label g1 (resp., g2). After eliminating all nodes with the label f in this way,
we finally obtain from Ω a signature grid, say, Ω ′. The equation HolantΩ = HolantΩ ′ easily follows, and we then obtain
#CSP∗

2(f , F) ≤AP #CSP∗

2(g1, g2, F). �

By a direct application of Lemma 4.2 with Lemma 4.1 to Sym(f), it immediately follows that #CSP∗

2(Sym(f), F) ≤AP
#CSP∗

2(f , F) for any signature set F . This simple fact is actually a key to our main theorems, which will be proven in the
subsequent subsections.

4.2. #SATC-hardness under AP-reducibility

When dealing with all complex numbers, Turing reducibility does not always induce AP-reducibility; as a result, the
computational hardness of a counting problem under Turing reducibility may not immediately result in its computational
hardness under AP-reducibility. Since there has been little work on the approximation complexity of Holant problems, there
is no written proof for the fact that #SATC ≤AP Holant∗(g1|g2) for every (g1|g2) ∈ B. To use Lemma 3.1 in our setting of
approximation complexity, we first need to establish this hardness result of Holant∗(g1|g2) under AP-reductions.
Proposition 4.3. For every pair (g1|g2) ∈ B , it holds that #SATC ≤AP Holant∗(g1|g2).
Proof. First, we show that #SATC ≤AP Holant∗(EQ3|OR). Now, let us recall a few known results from [14,15]. It is known
that #SATC ≤AP #CSP∗(OR) [14] and that #CSP∗(OR) ≡AP #CSP∗

3(OR) ≡AP Holant∗(EQ3|OR) [15]. Combining these results,
we conclude that #SATC ≤AP Holant∗(EQ3|OR).

Next, we show that #SATC ≤AP Holant∗(ONE3|EQ2). Let f = Sym(ONE3) for brevity. Our proof is made up of five steps.
Recall that all signatures in this paper are represented as row vectors.

(1) By a simple calculation, we obtain f = [4, 2, 1, 1]. Since f ≤
∗
con ONE3, Lemma 4.2 implies that Holant∗(f |EQ2) ≤AP

Holant∗(ONE3|EQ2).
(2) LetM =

a b
c d

, where a, b, c, d ∈ C are defined later.We consider a holographic transformation fromHolant∗(f |EQ2)

to Holant(EQ3|g) for a certain binary signature g . To make this transformation possible,M needs to satisfy that f = EQ3M⊗3

and gT
= M⊗2EQ T

2 . With thisM , Lemma 2.2 establishes the AP-equivalence: Holant∗(f |EQ2) ≡AP Holant∗(EQ3|g). Note that
EQ3M⊗3

= [a3+c3, a2b+c2d, ab2+cd2, b3+d3]. Since f = [4, 2, 1, 1], we obtain a3+c3 = 4, a2b+c2d = 2, ab2+cd2 = 1,
and b3 + d3 = 1. Here, we consider the case of a = 2b. Since a3 + c3 = 4, we obtain a3 + c3 = 2(a2b + c2d), which implies
c2(c − 2d) = 0. Now, we claim that c = 0. Assuming otherwise, we obtain c = 2d, which yields a3 + c3 = 8(b3 + d3) = 4.
Thus, b3 + d3 ≠ 1 follows; this is a contradiction. Hence, it must hold that c = 0. With this c , a3 + c3 = 4 implies b3 = 1/2,
and b3 + d3 = 1 also implies d3 = 1/2. Overall, it suffices to defineM as γ

2 1
0 1

, where γ = (1/2)1/3.

(3) Since gT
= M⊗2EQ T

2 , g equals γ 2
· (5, 1, 1, 1). As discussed in Section 2.3, it holds that Holant∗(EQ3|g) ≡AP #CSP∗(g);

thus, we obtain #CSP∗(g) ≤AP Holant∗(ONE3|EQ2).
(4) We want to show that #CSP∗(OR) ≤AP #CSP∗(g). In this step, we use the notion of T-constructibility [14]. Let

g ′
= [5, 1, 1] so that g ′

≤
∗
con g . Now, define h(x, y) = −(1/4)

z∈{0,1} g

′(x, z)g ′(z, y)u(z), where u = [1, −25]. It is
not difficult to show that h = [0, 5, 6]. Since h is T-constructible from {g ′, u}, by applying a result of [14, Lemma 5.2], we
obtain #CSP∗(h) ≤AP #CSP∗(g ′). It is also shown in [14, Lemma 6.4] that #CSP∗(OR) ≤AP #CSP∗([0, w, v]) for any constants
w, v ∈ C − {0}. Hence, we conclude that #CSP∗(OR) ≤AP #CSP∗(h).

(5) Since #SATC ≤AP #CSP∗(OR), we finally establish the desired AP-reduction: #SATC ≤AP Holant∗(ONE3|EQ2). �

We are now ready to prove the first main theorem, Theorem 3.4. Proposition 4.3 greatly simplifies the proof of the
theorem.
Proof of Theorem 3.4. Let f be any ternary signature not in SIG; namely, there exists a permutation σ ∈ S3 for which
Sym(fσ) ∉ Sig(1)

∪ Sig(2) and Sym(fσ) ∉ DG. With the help of Proposition 4.3, Lemma 3.1(1) leads to the conclusion
that #SATC ≤AP Holant∗(EQ2|Sym(fσ)). By Lemma 2.1(2), it follows that Holant∗(EQ2|Sym(fσ)) ≤AP #CSP∗

2(Sym(fσ)). Since
Sym(fσ) ≤

∗
con fσ by Lemma 4.1, Lemma 4.2 implies that #CSP∗

2(Sym(fσ)) ≤AP #CSP∗

2(fσ). Finally, because #CSP∗

2(fσ) and
#CSP∗

2(f) are AP-equivalent to each other, we immediately obtain #SATC ≤AP #CSP∗

2(f), as required. �

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 95

4.3. Two key propositions

The proof of Theorem 3.5 is composed of three propositions. The first proposition – Proposition 4.3 – has already proven
in Section 4.2. The second proposition below concerns the computability result of degree-2 #CSP∗s whose signatures are all
drawn from DUP. For completeness, we include the proof of this proposition.

Proposition 4.4. For any subset F ⊆ DUP, it holds that #CSP∗

2(F) is in FPC.

Proof. Let F ⊆ DUP. We demonstrate how to solve the counting problem #CSP∗

2(F) in polynomial time. Let Ω =

(G, F ′, π) be any input signature grid to #CSP∗

2(F). Our proof proceeds by induction on the number of degree-3 nodes
in G. We recursively ‘‘break down’’ ternary signatures into binary ones. Let us consider the base case: all nodes are of degree
1. We conveniently express a binary signature f = (a, b, c, d) as

a b
c d

.

[Case 1] Consider the case where all nodes are of degree 1; thus, G consists of disconnected subgraphs, each of which
is composed of two degree-1 nodes connected by one edge. For each G′ of such subgraphs, let Ω ′ denote its associated
signature grid. If G′ contains two nodes labeled f = (a, b) and g = (x, y), then the value HolantΩ ′ equals (a b)

x
y

. The

whole HolantΩ is then calculated as the product of HolantΩ ′ over all possible Ω ′’s. The computation time of HolantΩ is
obviously proportional to the number of Ω ′’s.

[Case 2] Assume that all nodes are of degrees at most 2. In a recursive way, wewish to replace nodes of degree 2 by nodes
of degree 1. In the end, all remaining nodes become degree 1. This recursive process halts after steps less than or equal to
the number of nodes in G. Now, we choose a node f1 of degree 2 and assume that node f1 has two edges e1 = (f1, f2) and
e2 = (f1, f3), where f2 and f3 are nodes of degrees at most 2. Let f1 = (a, b, c, d). By permuting e1 and e2, without loss of
generality, we may assume that an instance to f1 has the form (e2, e1). Consider a subgraph G′ consisting of the nodes f1 and
f2 and the edge e1.

(1) Assume that the node f2 has degree 1 and let f2 = (x, y). We introduce a new signature f ′
=

a b
c d

(x y) over the

variable e2. Finally, we replace G′ by a node with label f ′. Let Ω ′ be the signature grid obtained from this replacement. It is
not difficult to show that HolantΩ = HolantΩ ′ .

(2) Next, we assume that the node f2 is of degree 2 and assume that f2 = (x, y, z, w) takes a variable series (e1, e3), where
e3 is another edge. A new signature f ′ is defined as

a b
c d

 x y
z w

. We then replace G′ by a node labeled f ′. This replacement

does not change the value HolantΩ .
[Case 3] We assume that certain nodes still have degree 3. We recursively replace each node of degree 3 by two nodes

of degree 2 and of degree 1. First, choose a node f1 of degree 3 and assume that f1 has edges e1 = (f1, f2), e2 = (f1, f3), and
e3 = (f1, f4). Since f1 ∈ DUP, f1 has the form u(x1) · (f0, f0), where f0 is of arity 2. Next, we consider a subgraph G′ made
up of four nodes labeled f1, f2, f3, f4 and four edges e1, e2, e3, e4. We then delete the edge e1 from G′ and split G′ into two
disconnected subgraphs, say, G1 and G2. Assume that G1 consists of the node f2 and G2 consists of the three nodes f1, f3, f4.
For G1, we prepare a new node labeled u and attach it to the node f2 by a new edge e′

1. For G2, we replace the node f1 by the
node f0. Let Ω ′ be the signature grid obtained by this modification. It is not difficult to show that HolantΩ = HolantΩ ′ . �

Finally, we state the third proposition, which gives a crucial property of signatures in SIG1.

Proposition 4.5. Let f be an arbitrary signature in SIG1. If f is not inDUP, then there exists a non-degenerate symmetric signature
g = [g0, g1, g2] such that g ≤

∗
con G ∪ {f }, where G is a finite subset of U, and (g0 ≠ g2 ∨ g1 ≠ 0) ∧ g0 + g2 ≠ 0.

With a use of Propositions 4.3–4.5, Theorem 3.5 can be succinctly proven below.

Proof of Theorem 3.5. Let f be any ternary signature in SIG1. If f is in DUP, then Proposition 4.4 imposes #CSP∗

2(f) to
be inside FPC. Next, we assume that f ∉ DUP. By Proposition 4.5, there exists a non-degenerate symmetric binary
signature g such that g is either not of the form [a, b, −a] or not of the form [a, 0, a] for any numbers a, b ∈ C. This g is
T2-constructed from G∪ {f }, where G is a finite subset of U. Hence, it follows by Lemma 4.2 that #CSP∗

2(f , g) ≤AP #CSP∗

2(f).
Moreover, Lemma 3.1(2) ensures the existence of a pair (g1|g2) ∈ B satisfying that Holant∗(g1|g2) ≤AP Holant∗(EQ2|f , g).
Proposition 4.3 shows that #SATC ≤AP Holant∗(g1|g2). By Lemma 2.1(2), Holant∗(EQ2|f , g) ≤AP #CSP∗

2(f , g) also holds.
Combining those AP-reductions, we conclude that #SATC ≤AP #CSP∗

2(f), as requested. �

Now, the remaining task is to prove Proposition 4.5 and the rest of this paper is devoted to giving its proof. For our
purpose, we will need another new idea, called parametrized symmetrization.

5. Parametrized symmetrization technique

We have shown in Section 3.2 how to transform arbitrary ternary signatures into symmetric ternary signatures. To prove
Proposition 4.5, we also need to produce symmetric ‘‘binary’’ signatures from arbitrary ‘‘ternary’’ signatures so that we can
make use of Lemma 3.1(2). Here, we will introduce the second scheme of symmetrization, which is quite different from the
first scheme given in Section 3.2; in fact, this new scheme is ‘‘parametrized.’’ In other words, it is not a fixed symmetrized
signature as in Eq. (1); instead, it consists of an ‘‘infinite series’’ of symmetrized signatures. In this section, we assume that
our target ternary signature f has the form (a, b, c, d, x, y, z, w). Later in Section 5.2,wewill give the proof of Proposition 4.5.

96 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

5.1. Parametrized symmetrization scheme

A parametrized symmetrization scheme produces a set of degree-2 polynomials. This scheme is simple and easy to apply in
the proof of Proposition 4.5. We first fix an arbitrary unary signature u andwe introduce SymL(f) as a new signature defined
as

SymL(f)(x2, y2) =

x1,x3,y1∈{0,1}

f (x1, x2, x3)f (y1, y2, x3)u(x1)u(y1).

It is important to note that SymL(f) ≤
∗
con {f , u}. A simple calculation shows that, in particular, when u = [0, 1], SymL(f)

equals [x2 + y2, xz + yw, z2 + w2
]. In contrast, when u = [1, ε] for a complex value ε, SymL(f) = [g0, g1, g2] satisfies:

1. g0 = ε2(x2 + y2) + 2ε(ax + by) + a2 + b2,
2. g1 = ε2(xz + yw) + ε(az + bw + cx + dy) + ac + bd, and
3. g2 = ε2(z2 + w2) + 2ε(cz + dw) + c2 + d2.

In the rest of this paper, we fix u = [1, ε]. To emphasize the parameter ε inside u, we also write SymL(f)ε and
[g0,ε, g1,ε, g2,ε]. One of the most important and useful properties is the non-degeneracy of SymL(fσ)ε . Here, we prove that,
when f does not belong to DUP, SymL(f) cannot be a degenerate signature.

Proposition 5.1. Let f be any ternary signature. If f ∉ DUP, then SymL(fσ)ε is non-degenerate for any permutation σ ∈ S3 and
for all but finitely many numbers ε ∈ C.

Since the proof of this proposition demands fundamental properties of SymL(f) that are listed in Section 6, we postpone
the proof until Section 7.

5.2. Proof of Proposition 4.5

In Sections 3.2 and 5.1, we have introduced two schemes of symmetrization. These schemes are powerful enough to
prove Proposition 4.5, which is a basis of the proof of Theorem 3.5. Henceforth, we will present the proof of Proposition 4.5.
Our goal is to prove that, for a given ternary signature f in SIG1, if f ∉ DUP, then SymL(fσ)ε becomes the desired g stated
in the proposition for certain values of σ and ε. We proceed our argument by way of contradiction. Let us describe this
argument in more details.

Let f be any ternary signature not in DUP. Without loss of generality, we fix a permutation (123) and assume that Sym(f)
is non-degenerate and is SIG1-legal. For any given permutation σ ∈ S3, we write SymL(fσ)ε = [gσ

0,ε, g
σ
1,ε, g

σ
2,ε], as done

in Section 5.1. Hereafter, we want to prove that there exists a permutation σ ∈ S3 such that both gσ
0,ε + gσ

2,ε ≠ 0 and
gσ
0,ε ≠ gσ

2,ε ∨ gσ
1,ε ≠ 0 hold for all but finitely many values ε ∈ C. Now, assume otherwise; that is,

(*) for every permutation σ and for all but finitely many values of ε, either (i) gσ
0,ε + gσ

2,ε = 0 or (ii) gσ
0,ε = gσ

2,ε ∧ gσ
1,ε = 0

holds.

We first note that the above two conditions (i) and (ii) do not hold simultaneously. To see this, assume that the two conditions
hold together; thus, gσ

0,ε = gσ
1,ε = gσ

2,ε = 0 follows. In short, it holds that SymL(fσ)ε = [0, 0, 0]. This clearly indicates the
degeneracy of SymL(fσ)ε , contradicting Proposition 5.1. Therefore, exactly one of the two conditions should hold. This fact
will be frequently used in Sections 7–10.

Our assumption (*) can be nailed down to the following three cases so that each case can be discussed separately. First,
let us consider the case where the condition (ii) always holds for every permutation σ and for almost all values of ε. For
each fixed σ ∈ S3, since the equations gσ

0,ε = gσ
2,ε and gσ

1,ε = 0 can be viewed as a set of polynomial equations in ε of
degrees at most two, the condition (ii) fails for at most two values of ε. Since f is SIG1-legal, this case obviously contradicts
the consequence of Proposition 5.2 given below. For readability, we postpone the proof of this proposition until Section 8.

Proposition 5.2. Let f be any ternary signature not in DUP. If f is SIG1-legal, then there exists a permutation σ such that either
gσ
0,ε ≠ gσ

2,ε or gσ
1,ε ≠ 0 holds for at least three distinct values of ε.

Next, let us consider the case where two distinct permutations σ and τ satisfy the conditions (i) and (ii), respectively, for
almost all values of ε. As the following proposition indicates, Statement (*) forces this case to fail. The proposition will be
proven in Section 9.

Proposition 5.3. Let f be any ternary signature such that f is SIG1-legal. Assume that f ∉ DUP. If Statement (*) holds, then
the following property is never satisfied: there are two distinct permutations σ and τ for which gσ

0,ε = gσ
2,ε ∧ gσ

1,ε = 0 and
gτ
0,ε + gτ

2,ε = 0 for all but finitely many values of ε.

Finally, we consider the remaining situation that the condition (i) holds for every permutation σ and for almost all values
of ε. Proposition 5.4 implies that f ∈ DUP; however, this contradicts our assumption that f ∉ DUP. In Section 10, we will
give the proof of this proposition.

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 97

Proposition 5.4. Let f be any ternary signature that is SIG1-legal. Assume that, for every permutation σ ∈ S3 and for all but
finitely many ε’s , gσ

0,ε + gσ
2,ε = 0 holds. It then holds that f ∈ DUP.

Since all the above three cases lead to contradictions, we then conclude that Statement (*) does not hold. Hence, there
exist a permutation σ ∈ S3 and a value ε ∈ C for which gσ

0,ε + gσ
2,ε ≠ 0 and gσ

0,ε ≠ gσ
2,ε ∨ gσ

1,ε ≠ 0. Choose such a pair (σ , ε)
and define the desired g (stated in Proposition 4.5) to be SymL(fσ)ε . Notice that, since f ∉ DUP, Proposition 5.1 guarantees
the non-degeneracy of g . Therefore, the proof is now completed.

6. Fundamental properties of symmetrization schemes

To simplify proofs that will be given in Sections 7–10, we wish to list useful properties, equations, and conditions
that fulfill the requirements of Sym(f) as well as SymL(f). Throughout this section, we fix a ternary signature f =

(a, b, c, d, x, y, z, w).
In the subsequent subsections,wewill take the following convention. A permutationσ in S3 should be formally expressed

as, e.g., σ = (312); for clarity, we slightly abuse this notation and treat it as a permutation over three different variables
x1, x2, x3. Thus, we write σ = (x3x1x2) instead of σ = (312) to stress the central roles of those variables.

6.1. Basic properties of SymL(f)

Let us consider the parametrized symmetrization SymL(f)ε = [gσ
0,ε, g

σ
1,ε, g

σ
2,ε] of f . We want to present necessary

conditions for three different situations in which each of the following holds: (i) gσ
0,ε + gσ

2,ε = 0, (ii) gσ
0,ε = gσ

2,ε ∧ gσ
1,ε = 0,

and (iii) gσ
0,εg

σ
2,ε = (gσ

1,ε)
2. The parameter ε tends to be omitted whenever it is clear from the context.

6.1.1. Situation 1: g0 + g2 = 0
Meanwhile, we fix σ = (x1x2x3) and omit subscript ‘‘σ .’’ Let us consider the first situation that g0,ε + g2,ε = 0 holds for

all but two values of ε. Clearly, the equation g0,ε + g2,ε = 0 is equivalent to

ε2(x2 + y2 + z2 + w2) + 2ε(ax + by + cz + dw) + a2 + b2 + c2 + d2 = 0.

Since at least three different values of ε satisfy the above equation, the coefficient of each term εi (i ∈ {0, 1, 2}) should
be zero. Therefore, the following Eq. (2) should hold. Eq. (2) also holds for σ = (x1x3x2) because an exchange of the two
variables x2 and x3 does not change those equations.

(x1x2x3) or (x1x3x2) x2 + y2 + z2 + w2
= a2 + b2 + c2 + d2 = ax + by + cz + dw = 0. (2)

By permuting variable indices further, we obtain two more properties:

(x2x1x3) or (x2x3x1) a2 + b2 + x2 + y2 = c2 + d2 + z2 + w2
= ac + bd + xz + yw = 0. (3)

(x3x2x1) or (x3x1x2) a2 + c2 + x2 + z2 = b2 + d2 + y2 + w2
= ab + cd + xy + zw = 0. (4)

For later convenience, we claim that if all the above properties hold then Eqs. (5)–(6) described below hold. This claim is
proven as follows. From a2 + b2 + c2 + d2 = c2 + d2 + z2 + w2

= 0 (Eqs. (2)–(3)), we obtain a2 + b2 − z2 − w2
= 0.

Similarly, from x2 + y2 + z2 + w2
= a2 + c2 + x2 + z2 = 0 (Eqs. (2) & (4)) follows a2 + c2 − y2 − w2

= 0. By combining
these two obtained equations, we conclude that b2 + y2 − c2 − z2 = 0. Moreover, a2 + b2 + c2 + d2 = a2 + c2 + x2 + z2 = 0
(Eqs. (2) & (4)) implies b2 + d2 − x2 − z2 = 0. From a2 + b2 + c2 + d2 = a2 + b2 + x2 + y2 = 0 (Eqs. (2)–(3)), we obtain
c2 + d2 − x2 − y2 = 0, and a2 + b2 − z2 − w2

= b2 + d2 − x2 − z2 = 0 also implies a2 + x2 − d2 − w2
= 0. In summary,

we obtain two conditions given below.

a2 + b2 − z2 − w2
= a2 + c2 − y2 − w2

= b2 + y2 − c2 − z2 = 0. (5)
b2 + d2 − x2 − z2 = c2 + d2 − x2 − y2 = a2 + x2 − d2 − w2

= 0. (6)

We can further draw Eq. (7) by the following argument. Assuming b2 + d2 + y2 + w2
= a2 + b2 − z2 − w2

= 0
(Eqs. (4) & (5)), a2 = d2 leads to x2 = w2. Since its opposite direction holds as well, we conclude that a2 = d2 iff x2 = w2.
In a similar way, we obtain three more equivalence relations: a2 = z2 iff b2 = w2, a2 = y2 iff c2 = w2, and b2 = c2 iff
y2 = z2. Overall, we can establish the following conditions.

a2 = d2 ⇐⇒ x2 = w2, a2 = z2 ⇐⇒ b2 = w2, a2 = y2 ⇐⇒ c2 = w2. (7)

Next, let us recall xy + zw = −(ab + cd) (Eq. (4)) and xz + yw = −(ac + bd) (Eq. (3)). Using these equations, we can
transform (x + w)(y + z) into −(a + d)(b + c) as follow.

(x + w)(y + z) = (xy + zw) + (xz + yw) = −(ab + cd) − (ac + bd) = −(a + d)(b + c).

Thus, we immediately obtain the following equation.

(x1x2x3) (a + d)(b + c) + (x + w)(y + z) = 0. (8)

98 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

By permuting variable indices, we also obtain the two more equations shown below.

(x2x1x3) (a + y)(b + x) + (c + w)(d + z) = 0. (9)
(x3x2x1) (a + z)(c + x) + (b + w)(d + y) = 0. (10)

6.1.2. Situation 2: g0 = g2 ∧ g1 = 0
Let us assume that both g0,ε = g2,ε and g1,ε = 0 hold for at least three distinct values of ε. In what follows, we will

discuss these two conditions separately.
[Case: g0 = g2] Consider the first case where g0,ε = g2,ε holds for at least three distinct values of ε. Using the value

[g0,ε, g1,ε, g2,ε] given in Section 5.1, the equation g0,ε − g2,ε = 0 is equivalent to

ε2(x2 + y2 − z2 − w2) + 2ε(ax + by − cz − dw) + a2 + b2 − c2 − d2 = 0.

Since there are three distinct values ε satisfying the above equation, it follows that

(x1x2x3) x2 + y2 − z2 − w2
= a2 + b2 − c2 − d2 = ax + by − cz − dw = 0. (11)

Permuting variable indices further produces the following five more conditions.

(x1x3x2) x2 + z2 − y2 − w2
= a2 + c2 − b2 − d2 = ax + cz − by − dw = 0. (12)

(x2x1x3) c2 + d2 − z2 − w2
= a2 + b2 − x2 − y2 = ac + bd − xz − yw = 0. (13)

(x2x3x1) c2 + z2 − d2 − w2
= a2 + x2 − b2 − y2 = ac + xz − bd − yw = 0. (14)

(x3x2x1) b2 + y2 − d2 − w2
= a2 + x2 − c2 − z2 = ab + xy − cd − zw = 0. (15)

(x3x1x2) b2 + d2 − y2 − w2
= a2 + c2 − x2 − z2 = ab + cd − xy − zw = 0. (16)

Now, we claim, by the argument that follows, that Eqs. (11)–(12) imply a2 = d2, b2 = c2, x2 = w2, y2 = z2, ax = dw,
and by = cz. From x2 + y2 = z2 + w2 (Eq. (11)) and x2 + z2 = y2 + w2 (Eq. (12)) follows y2 = z2; thus x2 = w2 also holds.
Similarly, using both a2 + b2 = c2 + d2 (Eq. (11)) and a2 + c2 = b2 + d2 (Eq. (12)), we obtain b2 = c2 and a2 = d2. In
addition, we obtain by = cz and ax = dw from ax + by = cz + dw (Eq. (11)) and ax + cz = by + dw (Eq. (12)). Therefore,
the claim should be true.

Similarly, Eqs. (13)–(14) imply that a2 = z2, b2 = w2, c2 = x2, d2 = y2, ab = zw, and cd = xy. Moreover, from
Eqs. (15)–(16), it follows that a2 = y2, b2 = x2, c2 = w2, d2 = z2, ac = yw, and bd = xz.

[Case: g1 = 0] Let us consider the second case where g1,ε = 0 holds for at least three distinct values of ε. This case can
be rephrased as

ε2(xz + yw) + ε(az + bw + cx + dy) + ac + bd = 0.

Since this equation has degree at most 2 with respect to the parameter ε, we can conclude the following.

(x1x2x3) az + bw + cx + dy = ac + bd = xz + yw = 0. (17)

When permuting variable indices further, the following five conditions can be also induced.

(x1x3x2) ay + bx + cw + dz = ab + cd = xy + zw = 0. (18)
(x2x1x3) az + bw + cx + dy = ax + by = cz + dw = 0. (19)
(x2x3x1) ad + bc + xw + yz = ab + xy = cd + zw = 0. (20)
(x3x2x1) ad + bc + xw + yz = ac + xz = bd + yw = 0. (21)
(x3x1x2) ay + bx + cw + dz = ax + cz = by + dw = 0. (22)

6.1.3. Situation 3: g0g2 = g2
1

Let us consider the third situation that gσ
0,εg

σ
2,ε = (gσ

1,ε)
2 holds for at least five distinct values of ε. This situation can be

expressed as a degree-4 polynomial equation in ε. First, we fix σ = (x1x2x3) and omit superscript ‘‘σ .’’ Using the values
g0,ε, g1,ε, g2,ε given in Section 5.1, the terms g0,εg2,ε and (g1,ε)2 can be calculated as follows.

g0,εg2,ε = (x2 + y2)(z2 + w2)ε4
+ 2[(ax + by)(z2 + w2) + (cz + dw)(x2 + y2)]ε3

+[(x2 + y2)(c2 + d2) + (z2 + w2)(a2 + b2) + 4(ax + by)(cz + dw)]ε2

+2[(ax + by)(c2 + d2) + (cz + dw)(a2 + b2)]ε + (a2 + b2)(c2 + d2).
(g1,ε)2 = (xz + yw)2ε4

+ 2(xz + yw)(az + bw + cx + dy)ε3

+[2(xz + yw)(ac + bd) + (az + bw + cx + dy)2]ε2

+2(ac + bd)(az + bw + cx + dy)ε + (ac + bd)2.

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 99

Since g0,εg2,ε = (g1,ε)2 holds for at least five distinct values of ε, coefficients of each term εi (i ∈ {0, 1, 2, 3}) in both
g0,εg2,ε and (g1,ε)2 coincide. For instance, two coefficients of the term ε0 in g0,εg2,ε and (g1,ε)2 are equal, and thus we obtain
(a2 + b2)(c2 + d2) = (xz + yw)2, which is equivalent to ad = bc. By a similar calculation of each term εi, the equation
g0,εg2,ε = (g1,ε)2 implies the following.

(x1x2x3) ad − bc = xw − yz = aw − bz − cy + dx = 0. (23)

By permuting variable indices, we also obtain additional two sets of equations.

(x2x1x3) ay − bx = cw − dz = aw − bz + cy − dx = 0. (24)
(x3x2x1) az − cx = bw − dy = aw + bz − cy − dx = 0. (25)

6.2. Basic properties of Sym(f)

Finally, we will present a set of basic properties concerning the symmetrization Sym(f), where f = (a, b, c, d, x, y, z, w)
is any ternary signature. Here, we fix σ ∈ {(x1x2x3), (x1x3x2)}. Each element of Sym(f) = [h0, h1, h2, h3] can be calculated
as follows.

h0 = (a + d)[(a + d)2 + 3(bc − ad)]. (26)
h1 = (a2 + bc)x + (a + d)(bz + cy) + (bc + d2)w. (27)
h2 = a(x2 + yz) + (bz + cy)(x + w) + d(yz + w2). (28)
h3 = (x + w)[(x + w)2 + 3(yz − xw)]. (29)

7. Proof of Proposition 5.1

As promised in Section 5.1, we will present the proof of Proposition 5.1. Our argument that will follow shortly is quite
elementary and it requires only a straightforward analysis of a set of low-degree polynomial equations listed in Section 6.1.3.
An underlying goal of the analysis is to prove that such a set of equations has no common solution.

Let f = (a, b, c, d, x, y, z, w) denote an arbitrary ternary signature and assume that f ∉ DUP. In addition, we denote by
σ an arbitrary permutation in S3 and we set SymL(fσ) = [gσ

0,ε, g
σ
1,ε, g

σ
2,ε]. To lead to a contradiction, we first assume that

SymL(fσ) is degenerate. More precisely, we assume that gσ
0,εg

σ
2,ε = (gσ

1,ε)
2 for at least five distinct values of ε. As discussed in

Section 6.1.3, this assumption implies Eqs. (23)–(25). We split the proof into three situations, depending on the choice of σ .
Since the third situation, in which σ = (x3x2x1) or (x3x1x2), is essentially the same as the first two situations, for readability,
we omit this situation. Finally, we conveniently set σ1 = (x1x2x3), σ2 = (x2x1x3), and σ3 = (x3x2x1).

7.1. Situation: σ = (x1x2x3) or (x1x3x2)

Here, we consider only the situation where σ = (x1x2x3). For this σ , Eq. (23) must hold; that is, ad = bc , xw = yz, and
aw + dx = bz + cy. In what follows, we intend to show that f belongs to DUP using Eq. (23), because this clearly contradicts
our assumption of f ∉ DUP.

[Case: ax ≠ 0] Initially, we set γ =
b
a and δ =

y
x . From ad = bc and xw = yz, we obtain b = γ a, d = γ c , y = δx,

and w = δz. At this point, f is expressed as (a, γ a, c, γ c, x, δx, z, δz). From aw + dx = bz + cy, it easily follows that (1’)
(δ − γ)(az − cx) = 0; thus, either δ = γ or az = cx holds. Now, we discuss these two cases separately. When δ = γ , fσ3
equals [1, γ](x3) · (a, x, c, z, a, x, c, z); thus, f belongs to DUP. If δ ≠ γ , then (1’) implies az = cx. Next, let θ =

c
a , implying

c = θa and z = θx from az = cx. Since d = γ c = θγ a andw = δz = θδx, fσ2 becomes [1, θ](x2) ·(a, γ a, x, δx, a, γ a, x, δx).
This proves f to be in DUP.

[Case: ax = 0] Since this case is more involved, we split it into three subcases.
[Subcase: a = x = 0] From ad = bc , we immediately obtain (3’) bc = 0, which implies either b = 0 or c = 0.

Similarly, xw = yz implies (4’) yz = 0, which means either y = 0 or z = 0. Firstly, we assume that b = y = 0. For the
permutation σ2, this assumption makes fσ2 equal (0, 0, 0, 0, c, d, z, w), and thus f belongs to DUP. Secondly, we assume
that b = 0∧y ≠ 0. From (4’) follows z = 0. By aw+dx = bz+ cy, we obtain cy = 0, which yields c = 0. For σ3, fσ3 becomes
(0, 0, 0, 0, 0, y, d, w), again in DUP. Thirdly, we consider the case where b ≠ 0 ∧ y = 0. Using (3’), we deduce c = 0. From
aw + dx = bz + cy, we also obtain bz = 0, implying z = 0. Since fσ3 = (0, 0, 0, 0, b, y, d, w), obviously f belongs to DUP.
Finally, we discuss the case where b ≠ 0 ∧ y ≠ 0. The two equations (3’) and (4’) indicate that c = z = 0. Moreover, we
obtain fσ3 = [1, γ](x3) · (0, x, 0, 0, 0, x, 0, 0), making f fall into DUP. In all the cases, contradictions follow.

[Subcase: a = 0 ∧ x ≠ 0] From ad = bc , we have (5’) bc = 0, which implies either b = 0 or c = 0. Setting γ =
y
x , we

obtain y = γ x and w = γ z from xw = yz. Now, we begin with examining the case of b = 0. Since aw + dx = bz + cy,
it holds that x(d − γ c) = 0; thus, d = γ c follows. This concludes that fσ3 = [1, γ](x3) · (0, x, c, z, 0, x, c, z). Obviously,
this makes f fall into DUP. Next, let us consider the case of b ≠ 0. From (5’) follows c = 0. We also obtain dx = bz from

100 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

aw + dx = bz + cy. Letting δ =
z
x , we further obtain z = δx and d = δb from dx = bz. Note that xw = yz implies

γ x(z − δx) = 0, yielding z = δx. It thus holds that w = γ z = δγ z. For the permutation σ2, fσ2 can be written in the form
[1, δ](x2) · (0, b, x, γ x, 0, b, x, γ x), which is clearly in DUP.

[Subcase: a ≠ 0 ∧ x = 0] Because this subcase is essentially the same as the previous subcase a = 0 ∧ x ≠ 0, we omit
this subcase for readability.

7.2. Situation: σ = (x2x1x3) or (x2x3x1)

In this subsection, we assume that σ = (x2x1x3). Notice that our assumption gσ
0 g

σ
2 = (gσ

1)2 ensures Eq. (24); that is,
ay = bx, cw = dz, and aw + cy = bz + dx. With these equations, we wish to lead to a contradiction.

[Case: az ≠ 0] Using ay = bx and cw = dz, we conveniently set γ =
b
a and δ =

w
z ; thus, γ and δ satisfy that b = γ a,

d = δc , y = γ x, and w = δz. From aw + cy = bz + dx, it follows that (1’) (δ − γ)(az − cx) = 0. Hereafter, let us consider
two subcases: δ = γ and δ ≠ γ . First, we assume that δ = γ . Obviously, fσ3 equals [1, γ](x3) · (a, x, c, z, a, x, c, z), and
thus f belongs to DUP. Next, we assume that δ ≠ γ . Clearly, (1’) implies az = cx. Note that c ≠ 0 because of az ≠ 0. Now,
let θ =

c
a ; thus, c = θa and z = θx hold. Using this θ , f can be expressed as [a, x](x1) · (1, γ , θ, θδ, 1, γ , θ, θδ), which is

clearly in DUP.
[Case: az = 0] To handle this case, we will consider three subcases.
[Subcase: a = z = 0] By ay = bx, we obtain (2’) bx = 0, implying either x = 0 or b = 0. Similarly, cw = dz implies

(3’) cw = 0; thus, either c = 0 or w = 0 holds. Firstly, we assume that c = x = 0. This implies that fσ3 is of the form
(0, 0, 0, 0, b, y, d, w), which forces f to be in DUP. Secondly, we assume that c = 0 ∧ x ≠ 0. From (2’) follows b = 0. Since
x ≠ 0, we obtain d = 0 from aw + cy = bz + dx. Therefore, it holds that f = (0, 0, 0, 0, x, y, z, γ z), proving that f ∈ DUP.
Thirdly, we assume that c ≠ 0 ∧ x = 0. Note that w = 0 by (3’). The equation aw + cy = bz + cy yields c = 0; hence, fσ3
becomes (0, 0, 0, 0, b, y, d, 0) ∈ DUP. The remaining case is that c ≠ 0 ∧ x ≠ 0. From (2’) & (3’) follows b = w = 0. The
equation aw+ cy = bz+dx is thus equivalent to dx = cy. If we set γ =

c
d , then we obtain c = γ d and x = γ y from dx = cy,

and thus fσ3 can be written as [γ , 1](x3) · (0, y, d, 0, 0, y, d, 0). Clearly, f belongs to DUP.
[Subcase: a = 0 ∧ z ≠ 0] From ay = bx, we obtain (4’) bx = 0. Letting γ =

w
z , we obtain w = γ z and d = γ c from

cw = dz. Firstly, we assume that b = c = 0; thus, d = γ c = 0. We immediately obtain f = (0, 0, 0, 0, x, y, z, γ z) ∈ DUP.
Secondly, assume that b = 0 ∧ c ≠ 0. Since aw + cy = bz + dx is equivalent to c(y − γ x) = 0, c ≠ 0 implies y = γ x. Thus,
fσ3 becomes [1, γ](x3) · (0, x, c, z, 0, x, c, z). This implies that f ∈ DUP. Finally, let us handle the case of b ≠ 0. Here, we
obtain x = 0 by (4’). Using aw + cy = bz + dx, we also obtain cy = bz. Now, let δ =

y
b since b ≠ 0. With this δ, it follows

that y = δb and z = δc. Obviously, f equals [1, δ](x1) · (0, b, c, γ c, 0, b, c, γ c). Obviously, f belongs to DUP.
[Subcase: a ≠ 0 ∧ z = 0] Note that (5’) cw = 0 is obtained from cw = dz. Now, let γ =

b
a ; thus, ay = bx implies

both b = γ a and y = γ x. First of all, we consider the case where c = 0. Note that aw + cy = bz + dx immediately
leads to aw = dx. Conveniently, we set δ =

d
a . It then follows from aw = dx that d = δa and w = δx. Hence, we obtain

f = [a, x](x1) · (1, γ , 0, δ, 1, γ , 0, δ) ∈ DUP. What still remains is the case where c ≠ 0. By (5’), we immediately obtain
w = 0. Moreover, aw + cy = bz + dx implies x(d − γ c) = 0. If x ≠ 0, then d = γ c also follows. In summary, fσ3 must
have the form [1, γ](x3) · (a, x, c, 0, a, x, c, 0), proving that f ∈ DUP. On the contrary, if x = 0, then we immediately obtain
f = (a, γ a, c, γ c, 0, 0, 0, 0). This makes f fall into DUP, as requested.

8. Proof of Proposition 5.2

Here,wewill prove Proposition 5.2. In this proof,we assume that f is of the form (a, b, c, d, x, y, z, w) and let SymL(fσ)ε =

[gσ
0,ε, g

σ
1,ε, g

σ
2,ε] for each permutation σ and each value ε. Furthermore, we assume that f is SIG1-legal; that is, the signature

Sym(f) = [h0, h1, h2, h3] satisfies h0 + h2 = h1 + h3 = 0 and h0 ≠ ξh1 for any constant ξ ∈ {±i}. Toward a contradiction,
we further assume that, for every permutation σ and almost all values of ε, both gσ

0,ε = gσ
2,ε and gσ

1,ε = 0 hold. Notice
that this assumption implies Eqs. (11)–(22). As shown in Section 6.1.2, Eqs. (11)–(16) imply that a2 = d2 = y2 = z2 and
b2 = c2 = x2 = w2. From these equations, we can set z = e1a, y = e2a, d = e3a, b = e4w, c = e5w, and x = e6w using
appropriate constants ei ∈ {±1}. Eqs. (11)–(16) also provide with the following equations: ax = dw, by = cz, ac = yw,
bd = xz, ab = zw, and cd = xy. Now, we split our proof into two cases, depending on whether aw = 0 or not, and we try
to argue that each case indeed leads to a contradiction.

[Case: aw ≠ 0] From ax = dw, we obtain e6aw = e3aw, or equivalently (e6 − e3)aw = 0; thus, e3 = e6 must hold since
aw ≠ 0. Similarly, from ac = yw and ab = zw, it follows that e1 = e4 and e2 = e5, respectively. Moreover, ac + bd = 0
(Eq. (17)) implies (e2 + e1e3)aw = 0, which yields e3 = −e1e2. Similarly, from az + bw + cx + dy = 0 (Eq. (17)) follows
2e1(a2 + w2) = 0; hence, we obtain a2 + w2

= 0. Let us assume that w = γ a for an appropriate constant γ ∈ {±i}. At
present, f equals (a, e1γ a, e2γ a, −e1e2a, −e1e2γ a, e2a, e1a, γ a). Next, let us consider the values h0 and h1. Making a direct
calculation of Eqs. (26)–(27), we obtain h0 = (1 − e1e2)3a3 and h1 = γ (1 − e1e2)(3 − e1e2)a3. When e1e2 = 1, it clearly
follows that h0 = h1 = 0, a contradiction against h0 ≠ ξh1 for every ξ ∈ {±i}; therefore, e1e2 must be −1, or equivalently
e2 = −e1. Using this result, we further simplify h0 and h1 as h0 = 8a3 and h1 = 8γ a3. These values imply h1 = γ h0. Since
γ ∈ {±i}, this equality leads to a contradiction, as requested.

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 101

[Case: aw = 0] First, note that both a = 0 and w = 0 never happen simultaneously because, otherwise, f becomes
an all-zero function, and thus f belongs to DUP, a contradiction. When a = 0, f equals (0, e1w, e2w, 0, e3w, 0, 0, w).
From az + bw + cx + dy = 0 (Eq. (17)) follows (e1 + e2e3)w2

= 0, which implies e3 = −e1e2. Hence, we obtain
f = w · (0, e1, e2, 0, −e1e2, 0, 0, 1). By Eqs. (26)–(27), it follows that h1 = e1e2 − 1 and h3 = 2 + e1e2; as a result,
h1 + h3 = 1 + 2e1e2 ≠ 0 follows. This consequence clearly contradicts the assumption that h1 + h3 = 0. Similarly, when
w = 0, since a ≠ 0, f equals (a, 0, 0, e3a, 0, e2a, e1a, 0). Using az+bw+cx+dy = 0 (Eq. (17)), we obtain (e1+e2e3)a2 = 0,
implying e3 = −e1e2. This makes f equal a · (1, 0, 0, −e1e2, 0, e2, e1, 0). Since h0 = 2 + e1e2 and h2 = e1e2 − 1, we then
conclude that h0 + h2 = 1 + 2e1e2 ≠ 0, a contradiction against h0 + h2 = 0.

9. Proof of Proposition 5.3

Assume that f = (a, b, c, d, x, y, z, w) /∈ DUP is SIG1-legal and let SymL(fσ) = [gσ
0 , gσ

1 , gσ
2] for any permutation σ ∈ S3.

Here, we aim at proving Proposition 5.3 by contradiction. To achieve this goal, we first assume that, together with Statement
(*), there are two distinct permutations σ and τ for which (i) gσ

0 = gσ
2 ∧ gσ

1 = 0 and (ii) gτ
0 + gτ

2 = 0 hold. From this
assumption, we want to lead to a contradiction. As shown in Section 5.2, Statement (*) implies that, for every σ ′

∈ S3, the
two conditions (i) and (ii) are not satisfied simultaneously. Since f is SIG1-legal, it also holds that h0 + h2 = h1 + h3 = 0 and
h2
0 + h2

1 ≠ 0, provided that Sym(f) = [h0, h1, h2, h3]. Notice that h2
2 + h2

3 ≠ 0 also holds.

9.1. Situation: σ = (x1x2x3) and τ = (x2x1x3)

For our choice of σ and τ , we assume that gσ
0 = gσ

2 ∧ gσ
1 = 0 and gτ

0 + gτ
2 = 0. Letting σ ′

= (x1x3x2), we first claim that
gσ ′

0 +gσ ′

2 ≠ 0 holds.Meanwhile, assume otherwise. Because of the close similarity between σ and σ ′, as seen in Section 6.1.1,
gσ
0 + gσ

2 = 0 should hold for σ . This indicates the condition gσ
0 = gσ

2 ∧ gσ
1 = 0 to fail; thus, we obtain a contradiction.

Therefore, since gσ ′

0 + gσ ′

2 ≠ 0, we conclude that gσ ′

0 = gσ ′

2 ∧ gσ ′

1 = 0.
From our assumption, Eqs. (11)–(12) and Eqs. (17)–(18) hold respectively for σ and σ ′, and Eq. (3) holds for τ . As

Section 6.1.2 showed, Eqs. (11)–(12) produce the following six simple equations: a2 = d2, b2 = c2, x2 = w2, y2 = z2,
(1’) ax = dw, and (2’) by = cz. Since a2 = d2, we assume that d = e1a for a certain constant e1 ∈ {±1}. Similarly, using
three relations, b2 = c2, x2 = w2, and y2 = z2, it is possible to set c = e2b,w = e3x and z = e4y using appropriate constants
e2, e3, e4 ∈ {±1}. Let us examine the following two cases.

[Case: a = 0]We split this case into two subcases, depending on whether x = 0 or not. The first subcase is rather simple.
Note that d = 0 holds because d = e1a.

[Subcase: x = 0] Clearly, w = e3x = 0 holds. We also obtain b2 + y2 = 0 because a2 + b2 + x2 + y2 = 0 (Eq. (3)) holds.
From this equation, we conclude that b = 0 iff y = 0. In particular, if by = 0, then f is composed of all zeros, forcing f fall
into DUP, a contradiction. It thus suffices to assume that by ≠ 0. By (2’), we obtain (1 − e2e4)by = 0; thus, e2e4 = 1, or
equivalently, e4 = e2 holds. A vigorous calculation of Eqs. (26)–(27) shows that h0 = h1 = 0. This is a contradiction against
our requirement that h1 ≠ ξh0 for any ξ ∈ {±i}.

[Subcase: x ≠ 0] First, we want to claim that b ≠ 0. Assume otherwise. Since b = 0 implies c = e2b = 0, it follows that
a = b = c = d = 0. We therefore conclude that f is in DUP. This is a clear contradiction; therefore, b ≠ 0 should hold.
Using Eqs. (26)–(28), we obtain h0 = 0, h1 = (1+ e3)e2b2x, and h2 = (e2 + e4)(1+ e3)bxy. Since h0 ≠ ξh1 for any ξ ∈ {±i},
h1 ≠ 0 must hold; thus, e3 ≠ −1, or equivalently e3 = 1 follows. Therefore, h2 is of the form h2 = 2(e2 + e4)bxy. First, let
us consider the case where y ≠ 0. Since h0 + h2 = 0, we obtain 2(e2 + e4)bxy = 0, which yields e4 = −e2. By contrast, from
(2’) follows (1 − e2e4)by = 0. We thus conclude that e2e4 = 1, or equivalently e4 = e2. This is obviously a contradiction.
Next, consider the case where y = 0. We can simplify az + bw + cx + dy = 0 (Eq. (17)) to (1 + e2)bx = 0; thus, e2 = −1
follows. Similarly, from a2 + b2 + x2 + y2 = 0 (Eq. (3)), we deduce (3’) b2 + x2 = 0. The values h1 and h3 take h1 = −2b2x
and h3 = 2x3 by Eqs. (27) & (29). The requirement h1 +h3 = 0 implies 2x(x2 −b2) = 0; thus, x2 = b2 follows. By combining
this equation with (3’), we conclude that x = b = 0. This is obviously a contradiction against b ≠ 0.

[Case: a ≠ 0] This case is more involved. Similar to the previous case, we split this case into two subcases.
[Subcase: x = 0] Note that w = e3x = 0.
(i) We start with assuming by ≠ 0. Using az + bw + cx + dy = 0 (Eq. (17)), we deduce (e1 + e4)ay = 0, from which

e4 = −e1 follows. Similarly, from ac+bd = 0 (Eq. (17)), we obtain (e1+e2)ay = 0 and then e2 = −e1. Now, let us determine
the value e1 using Eqs. (26)–(29). Since h3 = 0 and h1 = −2e1(1+e1)aby by a direct calculation, the requirement h1+h3 = 0
leads to e1(1 + e1)aby = 0, further implying e1 = −1. At present, f has the form (a, b, b, −a, 0, y, y, 0). Since the value h2
becomes 0, we therefore conclude that h2 = h3 = 0, contradicting the requirement h2

1 + h2
3 ≠ 0.

(ii) Next, we assume that b = y = 0. Since a2 + b2 + x2 + y2 = 0 (Eq. (3)), we immediately obtain a = 0. This contradicts
our assumption a ≠ 0.

(iii) Let us assume that b = 0 ∧ y ≠ 0. Note that c = e2b = 0. The equation az + bw + cx + dy = 0 (Eq. (17)) implies
(e1 + e4)ay = 0, which yields e4 = −e1. It thus follows by Eqs. (28)–(29) that h2 = −(1+ e1)ay2 and h3 = 0. Here, we claim
that e1 ≠ −1 because, otherwise, we obtain h2 = h3 = 0, a contradiction. Since e1 ≠ −1, e1 = 1 must hold. The value h2
then becomes h2 = −2ay2. Since h0 = 2a3, the requirement h0 + h2 = 0 implies 2a(a2 − y2) = 0, which is equivalent to

102 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

(4’) a2 = y2. Next, we use a2 + b2 + x2 + y2 = 0 (Eq. (3)) to obtain a2 + y2 = 0. From (4’), we conclude that a = y = 0. This
is a clear contradiction.

(iv) Finally, we assume that b ≠ 0 ∧ y = 0. Obviously, z = e4y = 0 holds. We then obtain (e1 + e2)ab = 0 from
ac + bd = 0 (Eq. (17)). This yields e2 = −e1. By a simple calculation, we obtain h2 = h3 = 0, from which a contradiction
follows.

[Subcase: x ≠ 0] We use (1’) to obtain (1− e2e3)ax = 0, fromwhich we conclude that e2e3 = 1, or equivalently e2 = e3.
(i) Assume that by ≠ 0. It follows from (2’) that (1− e2e4)by = 0; thus, e4 = e2 holds. Because of xz + yw = 0 (Eq. (17)),

we conclude that 2e2xy = 0. This implies that either x = 0 or y = 0, and it clearly contradicts our current assumption.
(ii) Assuming that b = y = 0,we can simplify ax+by−cz−dw = 0 (Eq. (11)) to (1−e1e2)ax = 0, further implying e2 = e1.

Now, we show that e1 = 1. For this purpose, we first calculate h2 and h3 as h2 = (1 + e1)ax2 and h3 = (1 + e1)(2 − e1)x3.
If e1 = −1, then h2 = h3 = 0 follows. Since this is a contradiction, it must hold that e1 ≠ −1, or equivalently e1 = 1, as
requested. The equation a2 +b2 + x2 + y2 = 0 (Eq. (3)) then becomes a2 + x2 = 0. Now, we set x = γ a using an appropriate
constant γ ∈ {±i}. It is easy to show that h0 = 2a3 and h1 = 2γ a3; thus, h1 = γ h0 holds, a contradiction.

(iii) Next, we assume that b = 0 ∧ y ≠ 0. It follows from xz + yw = 0 (Eq. (17)) that (e2 + e4)xy = 0; thus, e4 = −e2
holds. By az + bw + cx + dy = 0 (Eq. (17)), we also obtain (e1 − e2)ay = 0, from which e2 = e1 follows. Now, we want to
claim that e1 = 1. This is shown as follows. Note that h0 = (1 + e1)(2 − e1)a3 and h1 = (1 + e1)a2x. If e1 = −1, then we
immediately obtain h0 = h1 = 0, contradicting the requirement h2

0 + h2
1 ≠ 0. Since e1 ∈ {±1}, e1 = 1 follows. Therefore, it

holds that h0 = 2a3 and h2 = 2a(x2 −y2). Since h0 +h2 = 0, we obtain 2a(a2 + x2 −y2) = 0; thus, a2 + x2 −y2 = 0 follows.
Now, a2 + b2 + x2 + y2 = 0 (Eq. (3)) becomes a2 + x2 + y2 = 0. These two equations clearly imply y = 0, a contradiction
against y ≠ 0.

(iv) The remaining case is that b ≠ 0 ∧ y = 0. By ac + bd = 0 (Eq. (17)), it follows that (e1 + e2)ab = 0; thus, we
have e2 = −e1. Moreover, from ax + by − cz − dw = 0 (Eq. (11)) follows (1 + e1)ax = 0, yielding e1 = −1. The equation
az + bw + cx + dy = 0 (Eq. (17)) therefore becomes equivalent to bx = 0, leading to a contradiction against b ≠ 0 and
x ≠ 0.

9.2. Situation: σ = (x2x1x3) and τ = (x1x2x3)

Let us assume that gσ
0 = gσ

2 ∧ gσ
1 = 0 for σ = (x2x1x3) and gτ

0 + gτ
2 = 0 for τ = (x1x2x3). For brevity, we set

σ ′
= (x2x3x1) and σ3 = (x3x2x1). Following a similar argument given in Section 9.1, we can conclude another condition

that gσ ′

0 = gσ ′

2 ∧ gσ ′

1 = 0 for σ ′. Notice that our assumption guarantees Eqs. (13)–(14) and Eqs. (19)–(20) for σ and σ ′,
respectively, and also Eq. (2) for τ . As discussed in Section 6.1.2, Eqs. (13)–(14) implies the following equations: a2 = z2,
b2 = w2, c2 = x2, d2 = y2, (1’) ab = zw, and (2’) cd = xy. With appropriate constants e1, e2, e3, e4 ∈ {±1}, we can set
z = e1a, w = e2b, x = e3c , and y = e4d.

[Case: a = 0] First, we obtain z = 0 from z = e1a. In what follows, we will discuss two subcases.
[Subcase: b = 0] Since b = 0, w = 0 follows. Now, we claim that e4 = e3. To show this claim, assume that e4 ≠ e3, or

equivalently e3e4 ≠ 1. From (2’), we obtain (1−e3e4)cd = 0,whichmeans cd = 0. The equation a2+b2+c2+d2 = 0 (Eq. (2))
is then equivalent to c2 +d2 = 0. Moreover, cd = 0 and c2 +d2 = 0 imply c = d = 0. Hence, f is composed of all zeros, and
thus it is in DUP, a contradiction. As a consequence, we conclude that e4 = e3. For σ3, fσ3 becomes (0, e3c, c, 0, 0, e3, d, d, 0),
which is written as [c, d](x3) · (0, e3, 1, 0, 0, e3, 1, 0). Thus, f belongs to DUP.

[Subcase: b ≠ 0] There are two situations to consider separately.
(i) Let us consider the case where d = 0. Note that b2 = c2 follows from a2 + x2 = b2 + y2 (Eq. (14)). Moreover, from

a2 + b2 + c2 + d2 = 0 (Eq. (2)), we conclude that b2 + c2 = 0. These two equations immediately yield b = c = 0, which
contradicts b ≠ 0.

(ii) Next, consider the case where d ≠ 0. Note that (e2 + e4)bd = 0 holds since ax + by + cz + dw = 0 (Eq. (2)); thus,
e4 = −e2 holds. Firstly, we assume that c ≠ 0. It follows by (2’) that (1 + e2e3)cd = 0; hence, we obtain e3 = −e2. From
a2 + b2 = x2 + y2 (Eq. (13)) and a2 + b2 + c2 + d2 = 0 (Eq. (2)), it also follows that b2 − c2 − d2 = 0 and b2 + c2 + d2 = 0,
respectively. Combining these two equations, we lead to 2b2 = 0, a contradiction. Secondly, we assume that c = 0. Note
that x = z = 0. The equation a2 + b2 + c2 + d2 = 0 (Eq. (2)) implies b2 + d2 = 0. Furthermore, from c2 + d2 − z2 − w2

= 0
(Eq. (13)), we obtain b2 = d2. Combining these two consequences, we conclude that b = d = 0. Hence, f is an all-zero
function and belongs to DUP, a contradiction.

[Case: a ≠ 0] Here, we will consider two subcases.
[Subcase: bd ≠ 0] From (1’), we have (1 − e1e2)ab = 0. Thus, we have e2 = e1.
(i) Assume that c = 0; thus, x = e3c = 0 holds. We deduce from ax + by + cz + dw = 0 (Eq. (2)) the equation

(e1 + e4)bd = 0, which leads to e4 = −e1. Use ac + bd = xz + yw (Eq. (13)), and we then obtain 2bd = 0; however, this is
a contradiction against our assumption.

(ii) Next, assume that c ≠ 0. The equation (2’) implies (1 − e3e4)cd = 0, yielding e4 = e3. From ax + by + cz + dw = 0
(Eq. (2)), it follows that (3’) (e1 + e3)(ac + bd) = 0. This implies either e1 + e3 = 0 or ac + bd = 0. Here, we will examine
these two possibilities.

(a) Assume that e1+e3 = 0, or equivalently e3 = −e1. From c2+d2 = z2+w2 (Eq. (13)), we obtain a2+b2−c2−d2 = 0.
Combining this equation with a2 + b2 + c2 + d2 = 0 (Eq. (2)), we also obtain a2 + b2 = 0, from which c2 + d2 = 0

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 103

immediately follows. Now, we set b = γ a and d = δc for two constants γ , δ ∈ {±i}. From ac + bd = xz + yw (Eq. (13)),
it follows that 2(1 + δγ)ac = 0. Since ac ≠ 0, we conclude that γ δ = 1, or equivalently δ = γ . Overall, fσ3 has the form
[1, γ](x3) · (a, −e1c, c, e1a, a, −e1c, c, e1a). Clearly, this contradicts f ∉ DUP.

(b) Assume that e1 + e3 ≠ 0; thus, e3 ≠ −e1, or equivalently e3 = e1 follows. By (3’), we obtain ac + bd = 0. Letting
γ =

b
a , we obtain b = γ a and c = −γ d from ac + bd = 0. Next, we claim that γ 2

= −1. Assume otherwise. The equation
a2+b2+c2+d2 = 0 (Eq. (2)) then becomes (1+γ 2)(a2+d2) = 0, implying a2+d2 = 0. On the contrary, from a2+b2 = x2+y2
(Eq. (13)),we obtain (1+γ 2)(a2−d2) = 0,which implies a2−d2 = 0. These two equations lead to a = d = 0, a contradiction.
Thus, we obtain γ 2

= −1. For σ3, fσ3 can be expressed as [−γ , 1](x3) · (γ a, e3d, d, γ e1a, γ a, e3d, d, γ e1a), which implies
f ∈ DUP, a contradiction.

[Subcase: bd = 0] Firstly, we assume that b = d = 0. In this case, fσ3 equals (a, x, c, z, 0, 0, 0, 0), a contradiction against
f ∉ DUP. Secondly, we assume that b = 0 ∧ d ≠ 0. From a2 + b2 + c2 + d2 = 0 (Eq. (2)) and a2 + b2 = x2 + y2 (Eq. (13)),
we obtain a2 + c2 + d2 = 0 and a2 − c2 − d2 = 0, respectively. Combining these two equations leads to 2a2 = 0. This is a
contradiction against a ≠ 0. Finally, we assume that b ≠ 0 ∧ d = 0. Applying (1’), we then obtain (1 − e1e2)ab = 0, which
yields e2 = e1. Similar to the second case, from a2 + b2 + c2 + d2 = 0 (Eq. (2)) and a2 + b2 = x2 + y2 (Eq. (13)), we conclude
that c = 0. Hence, a2 + b2 + c2 + d2 = 0 becomes a2 + b2 = 0. Now, we set b = γ awith an appropriate constant γ ∈ {±i}.
With this γ , fσ3 is written as a · [1, γ](x3) · (1, 0, 0, e1, 1, 0, 0, e1), which clearly belongs to DUP, a contradiction.

10. Proof of Proposition 5.4

This last sectionwill prove Proposition 5.4, completing thewhole proof of Proposition 4.5. Aswe have done in Sections 7–
9, we set f = (a, b, c, d, x, y, z, w) and let SymL(fσ) = [gσ

0 , gσ
1 , gσ

2] for each permutation σ ∈ S3.
In this proof, we assume that f is SIG1-legal; namely, Sym(f) = [h0, h1, h2, h3] satisfies that h0 + h2 = h1 + h3 = 0

and h0 ≠ ξh1 for any value ξ ∈ {±i}. Moreover, we assume that gσ
0,ε + gσ

2,ε = 0 holds for every permutation σ ∈ S3 and
for almost all values of ε. Since the degree of this polynomial equation is at most two, in the rest of this proof, we fix an
appropriate value ε and assume that gσ

0,ε + gσ
2,ε = 0 for every σ ∈ S3. For simplicity, hereafter, we omit subscript ‘‘ε.’’ To

proceed our proof by contradiction, we further assume that f ∉ DUP. Notice that, as discussed in Section 6.1.1, Eqs. (2)–(10)
should be satisfied.

First, we fix σ = (x1x2x3) and, for this σ , we want to prove that (a + d)(y + z)(x + w) ≠ 0 and xw = yz. Let us begin
with the poof of (a + d)(y + z)(x + w) ≠ 0.
Claim 1. (a + d)(y + z)(x + w) ≠ 0.
Proof. Our proof goes by way of contradiction: namely, assuming (a + d)(y + z)(x + w) = 0, we aim at drawing a
contradiction. This assumption implies that at least one of the following three terms must be zero: a + d, y + z, and x + w.
In what follows, we consider the situation in which a + d = 0 is satisfied. The other two possible situations can be treated
similarly. It follows from (a+ d)(b+ c) + (x+ w)(y+ z) = 0 (Eq. (8)) that (1’) (x+ w)(y+ z) = 0; thus, either x+ w = 0
or y + z = 0 should hold.

[Case: x+ w = 0] Note that w = −x. From ax+ by+ cz + dw = 0 (Eq. (2)), we obtain (2’) 2ax+ by+ cz = 0. Moreover,
the equation ac + bd+ xz + yw = 0 (Eq. (3)) implies (3’) a(b− c)+ x(y− z) = 0. Hereafter, we will examine four subcases,
depending on the values of a and x.

[Subcase: ax ≠ 0] Let γ =
x
a . Note that γ ≠ 0. From (3’), we obtain both (4’) x = γ a and (5’) b − c = −γ (y − z). Next,

we use x2 + y2 + z2 + w2
= 0 (Eq. (2)) and then obtain (6’) 2γ 2a2 + y2 + z2 = 0. Since b2 − c2 + y2 − z2 = 0 (Eq. (5)) is

equivalent to (b + c)(b − c) + (y + z)(y − z) = 0, (5’) implies (7’) (y − z)[(y + z) − γ (b + c)] = 0.
(i) First, assume that y = z; thus, b = c also holds by (5’). We can deduce (8’) y2 + γ 2a2 = 0 from (6’). In addition,

applying (2’), we obtain (9’) γ a2 + by = 0. Now, we calculate (8’) − (9’)×γ . We then obtain y2 − γ by = 0, or equivalently
y(y − γ b) = 0. This equation gives y = γ b, and hence f becomes (a, b, b, −a, γ a, γ b, γ b, −γ a), which is also written as
[1, γ](x1) · (a, b, b, −a, a, b, b, −a). Obviously, f belongs to DUP, a contradiction.

(ii) On the contrary, we assume that y ≠ z. This inequality implies (10’) y + z = γ (b + c) by (7’). By calculating (10’)
+ (5’)×γ , we obtain (11’) 2γ b = (1 − γ 2)y + (1 + γ 2)z. Similarly, by calculating (10’) − (5’)×γ , we easily obtain (12’)
2γ c = (1 + γ 2) + (1 − γ 2)z. It then follows from ax + by + cz + dw = 0 (Eq. (2)) that 2γ a2 + by + cz = 0; thus, (13’)
2γ (by + cz + 2γ a2) = 0 holds. By inserting (11’) & (12’) and 2γ 2a2 = −(y2 + z2) obtained from (6’) into (13’), we deduce
the equation (1 − γ 2)(y2 + z2) + 2(1 + γ 2)yz − 2(y2 + z2) = 0, which is simplified as (1 + γ 2)(y − z)2 = 0. Since y ≠ z,
we conclude that γ 2

= −1. Using this value, we can draw from (11’) & (12’) the consequences: y = γ b and z = γ c . Hence,
f is of the form (a, b, c, −a, γ a, γ b, γ c, −γ a). This makes f fall into DUP, a contradiction.

[Subcase: a = x = 0] From the equation a2 + b2 + c2 + d2 = 0 (Eq. (2)), it follows that b2 + c2 = 0. Similarly,
x2 + y2 + z2 + w2

= 0 (Eq. (2)) implies y2 + z2 = 0. Inserting these equations into b2 − c2 + y2 − z2 = 0 (Eq. (5)), we
obtain b2 + y2 = 0. Now, let y = γ b using an appropriate constant γ ∈ {±i}. It then follows from y2 + z2 = 0 that (14’)
γ 2b2 + z2 = 0. In addition, ax + by + cz + dw = 0 (Eq. (2)) leads to (15’) γ b2 + cz = 0. Next, we calculate (15’)×γ − (14’)
and then obtain (16’) z(z − γ c) = 0.

Here, we assume that z = 0. Since this assumption implies y = b = c = 0, f becomes an all-zero function, belonging
to DUP, a contradiction. On the contrary, we assume that z ≠ 0; thus, (16’) implies z = γ c . Obviously, f is of the form
(0, b, c, 0, 0, γ b, γ c, 0), which is also in DUP.

104 T. Yamakami / Theoretical Computer Science 461 (2012) 86–105

[Subcase: a = 0∧x ≠ 0] From (3’), we immediately obtain x(y−z) = 0, yielding y = z. From b2−c2+y2−z2 = 0 (Eq. (5)),
we also obtain (18’) b2 = c2. Moreover, from a2 + b2 + c2 + d2 = 0 (Eq. (2)) follows (19’) b2 + c2 = 0. Using (18’)–(19’), we
deduce b = c = 0. Overall, f must have the form (0, 0, 0, 0, x, y, y, −x), indicating that f ∈ DUP, a contradiction.

[Subcase: a ≠ 0 ∧ x = 0] This subcase is similar to the previous subcase for a = x = 0 and is omitted.
[Case: x + w ≠ 0] Assume that x + w ≠ 0. By (1’), x + w ≠ 0 implies y + z = 0. Let us recall the equation

a2 − d2 + x2 − w2
= 0 (Eq. (5)), which is equivalent to (a − d)(a + d) + (x − w)(x + w) = 0. Since a + d = 0, we

obtain (x − w)(x + w) = 0. By our assumption, it follows that x = w; thus, x cannot be zero. Next, we use the equation
x2 + y2 + z2 +w2

= 0 (Eq. (2)) to obtain (17’) x2 + y2 = 0. Here, we let y = δx for a certain constant δ ∈ {±i}. The equation
ax + by + cz + dw = 0 (Eq. (2)) leads to y(b − c) = 0; thus, either y = 0 or b = c holds.

We begin studying the case y = 0. By (17’), we immediately conclude that x = 0, a contradiction. Next, we consider the
case b = c. The equation a2 +b2 +c2 +d2 = 0 (Eq. (2)) then becomes a2 +b2 = 0. Now, we set b = γ a using an appropriate
constant γ ∈ {±i}. There are two subcases to examine. When γ = −δ is satisfied, for the permutation σ2 = (x2x1x3), fσ2
can be expressed as [1, γ](x2) · (a, γ a, x, −γ x, a, γ a, x, −γ x), which is obviously in DUP. On the contrary, when γ = δ, for
σ3 = (x3x2x1), fσ3 becomes [1, γ](x3)·(a, x, γ a, −γ x, a, x, γ a, −γ x), and thus f falls into DUP. This contradicts f ∉ DUP. �

What we need to prove next is the equality xw = yz. Note that, by Claim 1, none of the following terms is zero: a + d,
y + z, and x + w. We will use this fact in the proof of Claim 2.

Claim 2. xw = yz.

Proof. Since a + d ≠ 0, let γ =
x+w
a+d ; thus, we obtain two equations: (1’) x + w = γ (a + d) and (2’) b + c = −γ (y + z).

Note that b2 − c2 + y2 − z2 = 0 (Eq. (5)) is equivalent to (b − c)(b + c) + (y − z)(y + z) = 0. We insert (2’)
to this equation and then obtain (y + z)[(y − z) − γ (b − c)] = 0. Moreover, since y + z ≠ 0, it follows that (3’)
y − z = γ (b − c). To remove the term c , we calculate (2’)×γ + (3’) and then obtain (10’) 2γ b = (1 − γ 2)y − (1 + γ 2)z.
Similarly, by calculating (2’)×γ − (3’), we obtain (11’) 2γ c = −(1 + γ 2)y + (1 − γ 2)z. These equations help evaluate
the term 2γ (by + cz) as 2γ (by + cz) = (1 − γ 2)(y2 + z2) − 2(1 + γ 2)yx, which is obviously equivalent to (7’)
2γ (by + cz) = (1 + γ 2)(y − z)2 − 2γ 2(y2 + z2).

In a similar manner, since a2 − d2 + x2 −w2
= 0 (Eq. (6)) is equivalent to (a− d)(a+ d)+ (x−w)(x+w) = 0, we insert

(1’) and then obtain (a + d)[(a − d) + γ (x − w)] = 0, implying (4’) a − d = −γ (x − w). By calculating (1’) + (4’)×γ , we
obtain (5’) 2γ a = (1−γ 2)x+(1+γ 2)w. Similarly, the calculation of (1’)− (4’)×γ shows (6’) 2γ d = (1+γ 2)x+(1−γ 2)w.
This implies (8’) 2γ (ax + dw) = (1 + γ 2)(x + w)2 − 2γ 2(x2 + w2).

Inserting (7’)–(8’) into 2γ (ax+by+cz+dw) = 0 (Eq. (2)), we obtain (1+γ 2)[(x+w)2+(y−z)2]−2γ (x2+y2+z2+w2) =

0. Since x2 + y2 + z2 +w2
= 0 (Eq. (2)), it holds that (9’) (1+ γ 2)[(x+w)2 + (y− z)2] = 0. Now, we examine two possible

cases.
(i) First, assume that γ 2

= −1. By (5’)–(6’) and (10’)–(11’), it follows that 2γ b = 2y, 2γ c = 2z, 2γ a = 2x, and 2γ d = 2w;
in other words, y = γ b, z = γ c , x = γ a, and w = γ d. These values make f equal (a, b, c, d, γ a, γ b, γ c, γ d), which can be
written as [1, γ](x1) · (a, b, c, d, a, b, c, d). Hence, f clearly belongs to DUP, a contradiction.

(ii) Assume that γ 2
≠ −1; thus, (9’) implies (x+w)2+(y−z)2 = 0,which is the same as x2+y2+z2+w2

+2(xw−yz) = 0.
Since x2 + y2 + z2 + w2

= 0 (Eq. (2)), we conclude that xw = yz. �

By this point, we have proven, for σ = (x1x2x3), that both (a + d)(y + z)(x + w) ≠ 0 and xw = yz hold. By simply
permuting the variable indices, a similar argument can show that, for σ2 = (x2x1x3), both (a + y)(d + z)(c + w) ≠ 0 and
cw = dz hold. Similarly, when σ3 = (x3x2x1), we obtain both (a + z)(d + y)(b + w) ≠ 0 and bw = dy. To complete the
proof of Proposition 5.4, we consider four cases separately.

[Case: xy ≠ 0] Now, let δ =
y
x . This implies that y = δx and w = δz. The assumption y ≠ 0 implies that δ ≠ 0. From

cw = dz, we obtain δcz = dz, implying z(d − δc) = 0. Hence, d = δc follows. Using b2 + d2 + y2 + w2
= 0 (Eq. (4)), we

obtain b2 + δ2(c2 + x2 + z2) = 0. Applying a2 = −(c2 + x2 + z2), which is obtained from a2 + c2 + x2 + z2 = 0 (Eq. (4)),
we conclude that b2 − δ2a2 = 0; thus, either b = δa or b = −δa holds. First, let us consider the case where b = −δa. It
follows from ab + cd + xy + zw = 0 (Eq. (4)) that −δa2 + δ(c2 + x2 + z2) = 0. As discussed before, this is equivalent
to −δa2 + δ(−a2) = 0, which yields −2δa2 = 0. Since a2 = 0, we obtain b = 0. This implies that, for the permutation
σ3 = (x3x2x1), fσ3 = (0, x, c, z, 0, δx, δc, δz); thus, f is in DUP, a contradiction. For the next case where b = δa, fσ3 also
equals (a, x, c, z, δa, δx, δc, δz) and f thus falls into DUP, a contradiction.

[Case: x = y = 0] Note that, since x + w ≠ 0, x = 0 implies w ≠ 0. Since (y + z)(a + y)(d + y) ≠ 0, y = 0 implies
zad ≠ 0. Moreover, from bw = dy, we obtain bw = 0; thus, b = 0 follows. From x2 + y2 + z2 + w2

= 0 (Eq. (2)), we obtain
z2 + w2

= 0. Here, let z = γw for a certain constant γ ∈ {±i}. It then follows from ax + by + cz + dw = 0 (Eq. (2)) that
γ cw+dw = 0, implyingw(d+γ c) = 0. Hence, we obtain d = −γ c. Finally, a2 +b2 + c2 +d2 = 0 (Eq. (2)) implies a2 = 0.
This proves that a + y = 0, a contradiction.

[Case: x = 0 ∧ y ≠ 0] Since x + w ≠ 0, it holds that w ≠ 0. Let γ =
w
y . By bw = dy, we obtain w = γ y and d = γ b.

Moreover, from xw = yz follows z = 0. We thus obtain c = 0 from cw = dz. It then follows from x2 + y2 + z2 + w2
= 0

(Eq. (2)) that (1+γ 2)y2 = 0; thus, γ 2
= −1. Here, the equation a2 +b2 + c2 +d2 = 0 (Eq. (2)) implies a2 + (1+γ 2)b2 = 0,

which immediately yields a2 = 0. Hence, fσ3 is of the form (0, b, 0, y, 0, γ b, 0, γ y), making f fall into DUP, a contradiction.

T. Yamakami / Theoretical Computer Science 461 (2012) 86–105 105

[Case: x ≠ 0 ∧ y = 0] Since (y + z)(a + y)(d + y) ≠ 0, y = 0 implies zad ≠ 0. The equation xw = yz leads to xw = 0,
implying w = 0. Moreover, cw = dz implies dz = 0. This contradicts the result zad ≠ 0.

In this end, we have completed the proof of Proposition 5.4.

References

[1] J. Cai, P. Lu, Signature theory in holographic algorithms, in: In Proc. of the 19th International Symposium on Algorithms and Computation, ISAAC 2008,
in: Lecture Notes in Computer Science, Vol.5369, Springer, 2008, pp. 568–579.

[2] J. Cai, P. Lu, Holographic algorithms: from arts to science, J. Comput. Syst. Sci. 77 (2011) 41–61.
[3] J. Cai, P. Lu, M. Xia, Holant problems and counting CSP, in: Proc. of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp.715–724.
[4] N. Creignou, M. Hermann, Complexity of generalized satisfiability counting problems, Inform. and Comput. 125 (1996) 1–12.
[5] M. Dyer, L.A. Goldberg, C. Greenhill, M. Jerrum, The relative complexity of approximating counting problems, Algorithmica 38 (2003) 471–500.
[6] M. Dyer, L.A. Goldberg, M. Jalsenius, D. Richerby, The complexity of approximating bounded-degree Boolean #CSP, in: Proc. of the 27th International

Symposium on Theoretical Aspects of Computer Science, STACS 2010, Leibniz International Proceedings in Informatics, 2010, pp.323–334.
[7] M. Dyer, L.A. Goldberg, M. Jerrum, The complexity of weighted Boolean #CSP, SIAM J. Comput. 38 (2009) 1970–1986.
[8] M. Dyer, L.A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean #CSP, J. Comput. System Sci. 76 (2010) 267–277.
[9] T.J. Schaefer, The complexity of satisfiability problems, in: Proc. of the 10th ACM Symposium on Theory of Computing, STOC 78, 1978, pp. 216–226.

[10] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM J. Comput. 8 (1979) 410–421.
[11] L.G. Valiant, Expressiveness of matchgates, Theoret. Comput. Sci. 289 (2002) 457–471.
[12] L.G. Valiant, Accidental algorithms, in: Proc. of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, 2006, pp. 509–517.
[13] L.G. Valiant, Holographic algorithms, SIAM J. Comput. 37 (2008) 1565–1594.
[14] T. Yamakami, Approximate counting for complex-weighted Boolean constraint satisfaction problems, arXive:1007.0391, 2010. An older version

appeared in the Proc. of the 8th Workshop on Approximation and Online Algorithms, WAOA 2010, Lecture Notes in Computer Science, Springer,
Vol. 6534, pp. 261–272, 2011.

[15] T. Yamakami, A dichotomy theorem for the approximation complexity of complex-weighted bounded-degree Boolean #CSPs, arXiv:1008.2688, 2010.
An older version appeared in the Proc. of the 4th Annual International Conference on Combinatorial Optimization and Applications, COCOA 2010,
Lecture Notes in Computer Science, Vol. 6508, Part I, pp. 285–299, Springer, 2010.

http://arxiv.org/1007.0391
http://arxiv.org/1008.2688

	Approximation complexity of complex-weighted degree-two counting constraint satisfaction problems
	Approximation complexity of bounded-degree #CSPs
	Fundamental notions and notations
	Signatures and relations
	#CSPs and Holant problems
	FPC and AP-reducibility
	Holographic transformation

	Main theorems
	Symmetric signatures of arity 3
	Arbitrary signatures of arity 3

	T2-constructibility technique
	T2-constructibility
	#SATC-hardness under AP-reducibility
	Two key propositions

	Parametrized symmetrization technique
	Parametrized symmetrization scheme
	Proof of Proposition 4.5

	Fundamental properties of symmetrization schemes
	Basic properties of SymL(f)
	Situation 1: g0+g2=0
	Situation 2: g0=g2g1=0
	Situation 3: g0g2=g12

	Basic properties of Sym(f)

	Proof of Proposition 5.1
	Situation: σ =(x1x2x3) or (x1x3x2)
	Situation: σ =(x2x1x3) or (x2x3x1)

	Proof of Proposition 5.2
	Proof of Proposition 5.3
	Situation: σ =(x1x2x3) and τ =(x2x1x3)
	Situation: σ =(x2x1x3) and τ =(x1x2x3)

	Proof of Proposition 5.4
	References

