14,741 research outputs found

    Approximation and Difference in Description Logics

    Get PDF
    Approximation is a new inference service in Description Logics first mentioned by Baader, Küsters, and Molitor. Approximating a concept, defined in one Description Logic, means to translate this concept to another concept, defined in a second typically less expressive Description Logic, such that both concepts are as closely related as possible with respect to subsumption. The present paper provides the first in-depth investigation of this inference task. We prove that approximations from the Description Logic ALC to ALE always exist and propose an algorithm computing them. As a measure for the accuracy of the approximation, we introduce a syntax-oriented difference operator, which yields a concept description that contains all aspects of the approximated concept that are not present in the approximation. It is also argued that a purely semantical difference operator, as introduced by Teege, is less suited for this purpose. Finally, for the logics under consideration, we propose an algorithm computing the difference

    A Semantic Similarity Measure for Expressive Description Logics

    Full text link
    A totally semantic measure is presented which is able to calculate a similarity value between concept descriptions and also between concept description and individual or between individuals expressed in an expressive description logic. It is applicable on symbolic descriptions although it uses a numeric approach for the calculus. Considering that Description Logics stand as the theoretic framework for the ontological knowledge representation and reasoning, the proposed measure can be effectively used for agglomerative and divisional clustering task applied to the semantic web domain.Comment: 13 pages, Appeared at CILC 2005, Convegno Italiano di Logica Computazionale also available at http://www.disp.uniroma2.it/CILC2005/downloads/papers/15.dAmato_CILC05.pd

    Syntactic vs. Semantic Locality: How Good Is a Cheap Approximation?

    Full text link
    Extracting a subset of a given OWL ontology that captures all the ontology's knowledge about a specified set of terms is a well-understood task. This task can be based, for instance, on locality-based modules (LBMs). These come in two flavours, syntactic and semantic, and a syntactic LBM is known to contain the corresponding semantic LBM. For syntactic LBMs, polynomial extraction algorithms are known, implemented in the OWL API, and being used. In contrast, extracting semantic LBMs involves reasoning, which is intractable for OWL 2 DL, and these algorithms had not been implemented yet for expressive ontology languages. We present the first implementation of semantic LBMs and report on experiments that compare them with syntactic LBMs extracted from real-life ontologies. Our study reveals whether semantic LBMs are worth the additional extraction effort, compared with syntactic LBMs

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Reasoning about exceptions in ontologies: from the lexicographic closure to the skeptical closure

    Full text link
    Reasoning about exceptions in ontologies is nowadays one of the challenges the description logics community is facing. The paper describes a preferential approach for dealing with exceptions in Description Logics, based on the rational closure. The rational closure has the merit of providing a simple and efficient approach for reasoning with exceptions, but it does not allow independent handling of the inheritance of different defeasible properties of concepts. In this work we outline a possible solution to this problem by introducing a variant of the lexicographical closure, that we call skeptical closure, which requires to construct a single base. We develop a bi-preference semantics semantics for defining a characterization of the skeptical closure
    • …
    corecore