3 research outputs found

    Bütünleşik tedarik zinciri çizelgeleme modelleri: Bir literatür taraması

    Get PDF
    Research on integration of supply chain and scheduling is relatively recent, and number of studies on this topic is increasing. This study provides a comprehensive literature survey about Integrated Supply Chain Scheduling (ISCS) models to help identify deficiencies in this area. For this purpose, it is thought that this study will contribute in terms of guiding researchers working in this field. In this study, existing literature on ISCS problems are reviewed and summarized by introducing the new classification scheme. The studies were categorized by considering the features such as the number of customers (single or multiple), product lifespan (limited or unlimited), order sizes (equal or general), vehicle characteristics (limited/sufficient and homogeneous/heterogeneous), machine configurations and number of objective function (single or multi objective). In addition, properties of mathematical models applied for problems and solution approaches are also discussed.Bütünleşik Tedarik Zinciri Çizelgeleme (BTZÇ) üzerine yapılan araştırmalar nispeten yenidir ve bu konu üzerine yapılan çalışma sayısı artmaktadır. Bu çalışma, bu alandaki eksiklikleri tespit etmeye yardımcı olmak için BTZÇ modelleri hakkında kapsamlı bir literatür araştırması sunmaktadır. Bu amaçla, bu çalışmanın bu alanda çalışan araştırmacılara rehberlik etmesi açısından katkı sağlayacağı düşünülmektedir. Bu çalışmada, BTZÇ problemleri üzerine mevcut literatür gözden geçirilmiş ve yeni sınıflandırma şeması tanıtılarak çalışmalar özetlenmiştir. Çalışmalar; tek veya çoklu müşteri sayısı, sipariş büyüklüğü tipi (eşit veya genel), ürün ömrü (sınırlı veya sınırsız), araç karakteristikleri (sınırlı/yeterli ve homojen/heterojen), makine konfigürasyonları ve amaç fonksiyonu sayısı (tek veya çok amaçlı) gibi özellikler dikkate alınarak kategorize edildi. Ayrıca problemler için uygulanan matematiksel modellerin özellikleri ve çözüm yaklaşımları da tartışılmıştır

    Order Acceptance and Scheduling: A Taxonomy and Review

    Get PDF
    Over the past 20 years, the topic of order acceptance has attracted considerable attention from those who study scheduling and those who practice it. In a firm that strives to align its functions so that profit is maximized, the coordination of capacity with demand may require that business sometimes be turned away. In particular, there is a trade-off between the revenue brought in by a particular order, and all of its associated costs of processing. The present study focuses on the body of research that approaches this trade-off by considering two decisions: which orders to accept for processing, and how to schedule them. This paper presents a taxonomy and a review of this literature, catalogs its contributions and suggests opportunities for future research in this area

    SUPPLY CHAIN SCHEDULING FOR MULTI-MACHINES AND MULTI-CUSTOMERS

    Get PDF
    Manufacturing today is no longer a single point of production activity but a chain of activities from the acquisition of raw materials to the delivery of products to customers. This chain is called supply chain. In this chain of activities, a generic pattern is: processing of goods (by manufacturers) and delivery of goods (to customers). This thesis concerns the scheduling operation for this generic supply chain. Two performance measures considered for evaluation of a particular schedule are: time and cost. Time refers to a span of the time that the manufacturer receives the request of goods from the customer to the time that the delivery tool (e.g. vehicle) is back to the manufacturer. Cost refers to the delivery cost only (as the production cost is considered as fi xed). A good schedule is thus with short time and low cost; yet the two may be in conflict. This thesis studies the algorithm for the supply chain scheduling problem to achieve a balanced short time and low cost. Three situations of the supply chain scheduling problem are considered in this thesis: (1) a single machine and multiple customers, (2) multiple machines and a single customer and (3) multiple machines and multiple customers. For each situation, di fferent vehicles characteristics and delivery patterns are considered. Properties of each problem are explored and algorithms are developed, analysed and tested (via simulation). Further, the robustness of the scheduling algorithms under uncertainty and the resilience of the scheduling algorithms under disruptions are also studied. At last a case study, about medical resources supply in an emergency situation, is conducted to illustrate how the developed algorithms can be applied to solve the practical problem. There are both technical merits and broader impacts with this thesis study. First, the problems studied are all new problems with the particular new attributes such as on-line, multiple-customers and multiple-machines, individual customer oriented, and limited capacity of delivery tools. Second, the notion of robustness and resilience to evaluate a scheduling algorithm are to the best of the author's knowledge new and may be open to a new avenue for the evaluation of any scheduling algorithm. In the domain of manufacturing and service provision in general, this thesis has provided an e ffective and effi cient tool for managing the operation of production and delivery in a situation where the demand is released without any prior knowledge (i.e., on-line demand). This situation appears in many manufacturing and service applications
    corecore