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ABSTRACT

Manufacturing today is no longer a single point of production activity but a chain of activ-

ities from the acquisition of raw materials to the delivery of products to customers. This

chain is called supply chain. In this chain of activities, a generic pattern is: processing of

goods (by manufacturers) and delivery of goods (to customers). This thesis concerns the

scheduling operation for this generic supply chain. Two performance measures considered

for evaluation of a particular schedule are: time and cost. Time refers to a span of the

time that the manufacturer receives the request of goods from the customer to the time

that the delivery tool (e.g. vehicle) is back to the manufacturer. Cost refers to the delivery

cost only (as the production cost is considered as fixed). A good schedule is thus with

short time and low cost; yet the two may be in conflict. This thesis studies the algorithm

for the supply chain scheduling problem to achieve a balanced short time and low cost.

Three situations of the supply chain scheduling problem are considered in this thesis: (1)

a single machine and multiple customers, (2) multiple machines and a single customer and

(3) multiple machines and multiple customers. For each situation, different vehicles char-

acteristics and delivery patterns are considered. Properties of each problem are explored

and algorithms are developed, analyzed and tested (via simulation).
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Further, the robustness of the scheduling algorithms under uncertainty and the resilience

of the scheduling algorithms under disruptions are also studied. At last a case study,

about medical resources supply in an emergency situation, is conducted to illustrate how

the developed algorithms can be applied to solve the practical problem.

There are both technical merits and broader impacts with this thesis study. First, the

problems studied are all new problems with the particular new attributes such as on-line,

multiple-customers and multiple-machines, individual customer oriented, and limited ca-

pacity of delivery tools. Second, the notion of robustness and resilience to evaluate a

scheduling algorithm are to the best of the author’s knowledge new and may be open to a

new avenue for the evaluation of any scheduling algorithm. In the domain of manufactur-

ing and service provision in general, this thesis has provided an effective and efficient tool

for managing the operation of production and delivery in a situation where the demand

is released without any prior knowledge (i.e., on-line demand). This situation appears in

many manufacturing and service applications.
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(i)
j .

on− line: the jobs are released in the on-line environment.
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(i)
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(i)
j
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CHAPTER 1

INTRODUCTION

1.1 Supply Chain Scheduling

Supply chain is a network of autonomous and semi-autonomous business, which include

supplier, manufacturer, delivery, warehouse, distributor, retailer and customers. By au-

tonomous it is meant that all businesses in a supply chain are under independent manage-

rial framework or have independent decision making powers. By semi-autonomous it is

means that businesses in a supply chain may not be completely under different managerial

frameworks. The operations of supply chain include order taking, material supply, pro-

duction plan, job scheduling, cargo transportation, product storage and customer service.

One assumption behind a supply chain is that different businesses are located differently.

Therefore, transportation makes sense for the supply chain. A generic pattern in a supply

chain is: production-transportation pair. The goal of supply chain management is to op-

timize the effectiveness of the whole supply chain system and operation by the reduction

of cost, increase of quality, and reduction of supply time.

Supply chain scheduling is to make decisions on job flows over the production infras-

tructure and transportation infrastructure such that from a manufacturer’s perspective,

both the cost and time are minimized. The major difference between the supply chain
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scheduling problem and classic production scheduling problem lies in that the former has

to consider both production and delivery, namely integrated production and distribution

(IPD).

Two different kinds of the supply chain scheduling are concerned. If the information of

all jobs is known beforehand, it is called off-line supply chain scheduling. If the infor-

mation of future jobs is not known beforehand of scheduling, it is called on-line supply

chain scheduling. The off-line supply chain scheduling problem is similar to the traditional

production planning problem. The on-line scheduling problem is to the situations where

scheduling is carried out while jobs are arising.

1.2 The Problem Statement

This thesis considers the supply chain scheduling problem with a single manufacturer and

one or multiple customers. The problem can be described as follows: The customers

place orders of jobs to the manufacturer. The manufacturer processes the jobs on the

machines and then delivers the completed jobs to the customers by the vehicles through

a transportation network (see Figure 1.1).

Such a supply chain scheduling problem has many applications. The laptop assembly

is an example where the customers order their specific laptops to a manufacturer. The

manufacturer assembles the laptop computers on the assembly machines and then delivers

computers to the customers. Another example is catering service, where customers place

their orders through phone call. The restaurant cook the food on the hearth or in the

oven and then deliver the dishes to the customers. Applications are also found in the

2



health service sector particularly in some emergent situation. When an epidemic disease

suddenly arises, e.g., SARS, lack of proper drugs often occurs in some areas. Preparation

of drugs and delivery of them to the areas in need falls into this problem.

Machine Job 

Manufacturer 

. 

. 

. 

. 

. 

. 
 
 
. 
. 
. 
. 
. 
. 
. 

Customer 

Vehicle 

Delivery Cost 
Transportation time 

Customer 

Customer 

Vehicle 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Figure 1.1. The Layout of Supply Chain Scheduling

Two performance measurements are concerned in supply chain scheduling: time and cost.

It is always desired that the whole process has a short time and low cost. However, the

two objectives may conflict with each other. For instance, reduction of the cost by having

fewer vehicles for delivery of goods may certainly prolong the time that the customers

receive the goods. Therefore, the supply chain scheduling problem is a multi-objective

optimization problem in nature.

This thesis studied the supply chain scheduling problem which is particularly characterized

by the following attributes: (1) there is a single machine and there are multiple customers
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(mentioned before), (2) there are multiple machines and there is a single customer, and (3)

there are multiple machines and there are multiple customers. For each type of problem

characterized by these attributes, further information is specified, which includes the job

release situation, job processing situation, job delivery situation, and characteristics of

vehicles for job delivery. The time-based objective is the total makespan, which is the

time interval from the point of time a job is released to the point of time a vehicle is

returned to the manufacturing site. The cost-based objective is the total delivery cost

(which is assumed to be the number of deliveries multiplied by the unit cost).

On a general note, the existing supply chain scheduling problem does not optimize the

completion time for individual customers but the total completion time (i.e., the sum of

the completion time of each customer) [Averbakh, 2010] or the maximum completion time

among the completion time of each individual customer [Chen and Vairaktarakis, 2005].

It is however much desired in practice to schedule jobs such that the completion time

of jobs associated with each individual customer is directly concerned and optimized. In

this thesis, scheduling jobs to optimize the completion time for each individual customer

is considered, and such a problem is called customer-oriented scheduling for short in this

thesis. This looks like a paradigm shift in scheduling in the manufacturing environment.

Besides this, the existing work on supply chain scheduling has not systematically studied

the problem with multiple manufacturers and customers with constraints on the delivery

tool (e.g., vehicle). Further, this thesis attempts to explore two new measures for the

scheduling algorithm or even any general algorithm for the operations management: (1)

the robustness of a supply chain scheduling algorithm from a system’s perspective and
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(2) the resilience of a supply chain scheduling algorithm. Finally, the problem of how

the theory developed in this thesis is also addressed in the case of medical resources

distribution in emergency situations.

1.3 Objectives and Scope of the Thesis

The overall objective of the thesis was to study the supply chain scheduling problem with

the new paradigm that is the customer-orientation rather than the job-orientation. The

problem is characterized by the three attributes as discussed before. It is noted that there

could be more attributes to characterize the supply chain scheduling problem to a more

realistic situation and the three attributes should then be viewed as general assumptions

of the thesis. This thesis sought for the solution to the problem on the avenue of analytical

algorithms rather than iterative algorithms. Note that the analytical algorithm directly

generates the job actions and their orders, while the iterative algorithm generates the job

actions and orders through a particular iteration scheme of searching in a feasible region

of job actions and their orders.

Specific objectives were then defined in light of the overall objective.

Objective 1: To define the supply chain scheduling problem with the characteristics of

one machine and multiple customers and to develop analytical algorithms, including their

performance analysis, for the problem.

Objective 2: To define the supply chain scheduling problem with the characteristics
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of multiple machines and single customer and to develop analytical algorithms, including

their performance analysis, for the problem.

Objective 3: To define the supply chain scheduling problem with the characteristics of

multiple machines and multiple customers and to develop analytical algorithms, including

their performance analysis, for the problem.

Objective 4: To explore new measures to evaluate a supply chain scheduling algorith-

m, which may go beyond the existing measure (i.e. the worst scenario performance of

an algorithm) but are focused on the robustness and resilience of a system along with its

process.

Objective 5: To develop a test-bed in the area of medical resources allocation in

emergency situations to give some idea of the effectiveness and efficiency of the analytical

algorithms as developed in the first three objectives. A secondary objective with the test-

bed development was to give guidelines to applications of the analytical algorithms for

various scheduling problems in both manufacturing and service industries.

There are further specific assumptions for the development in this thesis, which are more

problem-specific and algorithm-specific, and therefore, they appear in the occasion of

specific problems and their algorithms are discussed.
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1.4 Organization of the Thesis

Chapter 2 gives a background and review of the literature on supply chain scheduling,

which also includes the preliminaries for algorithms and how they are evaluated. Chapter 3

will discuss the notation for problem descriptions and the definition of the problems that

were tackled in this thesis. Chapter 4 will describe the algorithm for the problem of one

machine and multiple customers, Chapter 5 will describe the algorithm for the problem of

multiple machines and one customer, and Chapter 6 will describe the problem of multiple

machines and multiple customers. Clearly, the foregoing three chapters correspond to the

first three objectives (see the discussion in Section 1.3). Chapter 7 discusses potential new

measures for algorithms, i.e., robustness and resilience. This chapter corresponds to the

fourth objective. Chapter 8 will describe a case study for medical resources allocation in

emergency management (EM), which corresponds to the fifth objective. Finally, Chapter 9

will summarize the contribution of this thesis, give conclusions drawn from the study

presented in this thesis, and discuss future work.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to provide the background for the problems studied in

this thesis and to present a literature review of the state of arts in solving the problems

studied in this thesis. In particular, Section 2.2 discusses basic concepts and notations

related to the work of this thesis, such as complexity analysis, intelligent algorithm, on-line

problem, traveling salesman problem, scheduling problem, multi-agent scheduling problem,

robustness and resilience. Section 2.3 presents a review of the development on the topic

of supply chain scheduling. Along with the review, a classification scheme is proposed

for all supply chain scheduling problems based on how the delivery of completed goods is

integrated with the production of goods. Particularly, this section proposes three classes

of supply chain scheduling problems. In every class, its origin is briefly discussed and the

latest literature is then commented and analyzed. Issues of the future research are also

identified.
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2.2 Preliminaries

2.2.1 Evaluation of Algorithm

The most common approaches to evaluate algorithms are ”accuracy” and ”run-time”.

For the problem that all information is known prior to the beginning of the problem

solving (which is also called off-line problem), the accurate solution to the problem can

always be achieved through enumeration. Therefore, the run-time performance becomes

an important evaluation method (for off-line problems), that is given a number of accurate

solutions, which one runs fastest.

Let P denote a set of problems and I a particular problem in P (I is also called an instance

of P). P is characterized by a set of parameters. I is then defined by a set of values of

the parameters of P . Let A denote an algorithm to P and I. Particularly, the run-time

performance of A makes sense for I and when the run-time performances of A for all Is

of P are known, the run-time performance of A for P makes sense. A for I can be viewed

as a set of operations on I, and the operations can further be decomposed into a series of

basic operations, such as addition, subtraction, multiplication, division, comparison, and

assignment. Assumes that all the basic operations take the same unit time. The run-time

of A for I can be defined as the number of basic operations on the set of specific values

of the parameters. The value of the parameter can be represented by the binary format

in the computer world. Let n = |I| denote the sum of the lengths of the binary string

of all the parameters of I. The run-time performance of A for I is thus a function of n:

T (n). However, the analytical expression of T (n) is difficult to be obtained. In practice,
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the asymptotic bound of T (n) is found, which measures the performance of A for I.

Definition 2.1 [Knuth, 1976]. Let f(n) and g(n) be two functions defined on N. T (n) =

O(f(n)) if and only if there exists a positive real number c1 and an integer n1 such that

T (n) ≤ c1f(n) for all n > n1. T (n) = Ω(g(n)) if and only if there exists a positive real

number c2 and an integer n2 such that T (n) ≥ c2g(n) for all n > n2. T (n) = Θ(f(n)) if

and only if T (n) = O(f(n)) and T (n) = Ω(f(n)) .

A short run-time is always desired, and the function f(n) satisfying T (n) = O(f(n)) is

concerned. Several common functions f(n) for O(f(n)) are summarized in Table 2.1.

Table 2.1. Orders of Common Functions

Notation Name

O(1) constant

O(logn) logarithmic

O(n) linear

O(nlogn) = O(logn!) loglinear

O(n2) quadratic

O(na), a ≥ 1 polynomial

O(an), a > 1 exponential

O(n!) factorial

Among them in Table 2.1, the polynomial function is of more interest as its computa-

tion rate is acceptable compared with the exponential function and the factorial function

(Figure 2.1 and Figure 2.2). Therefore, development of the algorithms is very important,
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the run-time of which is bounded by the polynomial function, that is, T (|I|) = O(p(|I|))

(p(·) is polynomial function). Such algorithms are also called ”polynomial algorithm”.

However, finding polynomial algorithms is not guaranteed for problems, and this raises

the question of whether a polynomial algorithm exists for every problem. The answer is

still not known for sure but almost all researchers believe it is not true. In fact, a classifi-

cation of problems in terms of polynomial algorithms is important to the development of

algorithms. The following is a brief introduction of the theory for this classification.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12
x 10

15

n

f(n
)

en

n10

Figure 2.1. Comparison between Polynomial Function and Exponential Function
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Figure 2.2. Comparison between Polynomial Function and Factorial Function

Definition 2.2. A decision problem is a question with a yes-or-no answer and yes answer

or no answer depends on the problem..

In general, every problem can be viewed as a decision problem. For instance, for a mini-

mization problem, the corresponding decision problem is whether the optimal value is less

than a certain value. In particular, the decision problem cannot be ”harder” than the

original one, which implies that the intractability of the (original) problem is determined

by the decision problem. In the following, the difficulty of a decision problem is discussed.
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Definition 2.3. Let I be an arbitrary instance of decision problem DP . If the answer of I

is ”yes” and and the yes answer can be proved in O(p(|I|)) time, DP is a non-deterministic

polynomial-time (NP) problem.

Among the problems characterized as the NP problem, there is a class of problems that

can be solved in the polynomial time.

Definition 2.4. Decision problem DP is polynomial time problem (P), if for every in-

stance I of DP , the answer can be determined in O(p(|I|)) time.

It is noted that the above definition does not even require that DP is in NP. This is

because the proof for Definition 2.4 is exactly the proof in Definition 2.3. Therefore,

DP ∈ P implies DP ∈ NP, or P ⊆ NP.

The decision problems in P can be viewed as the easiest problems in NP. Now, the next

step is to find the hardest ones in NP. Therefore, a method to compare the intractability

of a decision problem is needed. The following concept is defined first.

Definition 2.5 [Karp, 1972]. Decision problem DP1 is polynomially transformed to

decision problem DP2, if for an arbitrary instance I1 of DP1, an instance I2 of DP2 can

be constructed in O(p(|I1|)) time such that the answer of I1 is yes if and only if the answer

of I2 is yes.

From Definition 2.5, if DP1 can be polynomially transformed to DP2, DP2 having a

polynomial algorithm implies that DP1 also having a polynomial algorithm. In other

words, DP2 is harder than DP1. Based on this comparison, the hardest problem in NP

can be found.
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Definition 2.6 [Garey and Johnson, 1979]. Decision problem DP is called NP-

complete if:

1. DP is NP problem,

2. Every NP problem can be polynomially transformed to DP .

Although NP-complete (NPC) problems are the hardest ones in NP, there are still different

levels of intractability among these problems.

Definition 2.7. Decision problem DP is strongly NP-complete (NP-complete in the

strong sense, SNPC), if it remains NP-complete even all parameters of I are bounded

by p(|I|).

The above definitions have constructed an intractability framework for NP problems. A

natural question is whether this framework can be implemented to general problems which

may not be decision problems. The definition NPC and the method of polynomial transfor-

mation cannot be applied directly as they are only for decision problems. In the following,

a method to compare the intractability of the general problems is given.

Definition 2.8 [Goldreich, 2008]. Suppose that GP1 and GP2 are two problems, if

GP1’s algorithm A1 calls GP2’s algorithm A2 a polynomial number of times, then GP1 is

polynomially reducible to GP2.

It is noted that GP2 is harder than GP1 if GP1 is polynomially reducible to GP2. In that

sense, the intractability framework for NP problems can be implemented to the general

problem.
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Definition 2.9. Problem GP is called NP-hard, if a NPC problem is polynomially re-

ducible to it. Problem GP is called strongly NP-hard (SNP-hard), if a SNPC problem is

polynomially reducible to it.

Back to the original question: Does a polynomial algorithm exist for every problem? If

the answer is ’yes’, this implies that P=NP. However, this is still unknown and most

researchers even believe that this is not true. Actually, a famous conjecture states that

P 6=NP, which means there are decision problems which do not have polynomial algorithms

[Gasarch, 2002; Rosenberger, 2012]. As NPC is a class of the hardest decision problems,

the conjecture concludes that NPC problems do not have polynomial algorithms and nor

do NP-hard problems. Figure 2.3 shows a venn diagram to illustrate the relationship

among P, NP, NPC, SNPC, NP-hard and SNP-hard under the condition P 6=NP.

From the current point of view, it is almost impossible to develop polynomial algorithms

for NP-hard problems, which frequently occurs in practice. Therefore, it makes sense to

develop algorithms that are not accurate or that are approximate but with a good run-

time performance, which leads to the notion of approximate algorithms. The definition of

approximate algorithms for minimization (maximum) problem is as follows.
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Figure 2.3. Venn Diagram of Complexity Concepts for P6=NP

Definition 2.10. LetMP be a minimization problem and I be an instance ofMP , A(I)

be the value of objective function of algorithm A for I and OPT (I) be the optimal value

for I. If A(I)
OPT (I)

≤ r for all I and r ≥ 1, then the algorithm A is called a r-approximate

algorithm. Furthermore, if RA = inf{r ≥ 1, A(I)
OPT (I)

≤ r, for all I}, the algorithm A

has approximate ratio RA. A similar definition can be made for maximum problem by

replacing A(I)
OPT (I)

with OPT (I)
A(I) .

2.2.2 Intelligent Algorithm

For the NP-hard problems that the accuracy is of the first importance, the traditional

analytical algorithms cannot satisfy the requirement and then the notion of intelligent

algorithms emerges. Different from the deterministic analytical algorithms, the intelligent
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algorithms are stochastic, which empowers them to escape from local optimality and search

for better results. Most common intelligent algorithms imitate the pattern of physical

system, natural selection, pheromone communication, learning mechanism to construct the

models, such as simulated annealing (SA), genetic algorithm (GA), ant colony optimization

(ACO), neural network (NN). In the following, the SA and GA are introduced.

Simulated annealing (SA) is inspired by an annealing process in metallurgy and proposed in

the early 80s [Kirkpatrick et al., 1983; Černý, 1985]. In the process of annealing, the cooling

implies the decrease of molecular energy (temperature) and the crystallization of metal.

Simulating this process, SA sets a temperature parameter and accepts worse solutions

with a certain probability which falls with the decrease of the temperature parameter.

One practically acceptable probability is e−
∆
T , where T is the temperature parameter and

∆ is the difference of objective values between the current solution and the new solution.

Figure 2.4 presents the flow chart for SA.

Genetic algorithm (GA) mimics the process of natural selection and dates back to the

work of Holland [1975]. First, every solution is encoded as a string of chromosomes,

which is also called individual. Next, GA initializes a population of solutions and evolves

better solutions. The main process contains three operators: selection operator, crossover

operator and mutation operator, which are illustrated as follows.
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Figure 2.4. Flow Chart for SA

• A portion of the existing solutions in the population are selected for breeding the

new generation. The selecting process bases on a fitness function which is related to

the objective function. The solution with a higher fitness function is more likely to

be selected.

• The selected solutions are pairwise coupled to crossover and generate new child

solutions under a certain probability.
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• Several chromosomes of a child solution are mutated to generate a new solution

under a certain probability.

Figure 2.5 presents the flow chart for GA.

Initialize a population 𝑝(0) and set 𝑡 = 0 

Compute fitness function 

Selecting operator 

Terminal condition 

is satisfied? 

Termination 

The new population 𝑝(𝑡 + 1) 
𝑡 = 𝑡 + 1 

Yes 

No 

With a certain probability 

Crossover operator 

With a certain probability 

Mutation operator 

Figure 2.5. Flow Chart for GA

The probability that SA and GA can achieve a global optimal solution approaches 1

[Granville et al., 1994; Schmitt, 2004]. However, this convergency theory is asymptotical

based on an infinity number of iterations, which is not practically applicable. In reality,

19



if a enough number of iterations are implemented, SA and GA can find a solution, which

can be viewed as an important reference of the global optimal solution.

2.2.3 On-line Problem and On-line Algorithm

In the modern era of information explosion, on-line problems apply to many practical

cases and arise in many areas [Albers, 2003]. A formal definition of the on-line problem

can be described as follows.

Definition 2.11 [Albers, 2003]. There is a request sequence of services s = s(t1), s(t2),

· · · , s(tn), which must be served by a server. At time t, no knowledge of any request s(t′)

with t′ > t is known. There will be a cost to serve for these requests and the goal of

making service decisions is to minimize the total cost for the entire request sequence.

From Definition 2.11, at time t, on-line algorithms must decide the services for requests

s(t′) with t′ ≤ t without the knowledge of requests s(t′′) with t′′ > t. The evaluation

of an algorithm is a step in the algorithm development process. Different from off-line

algorithms, on-line algorithms can be measured through the so-called competitive ratio

analysis [Borodin and El-Yaniv, 1998; Prush et al., 2004].

Definition 2.12. Let OMP be an on-line minimization problem and I be an instance

of OMP , A(I) be the value of the objective function of on-line algorithm A for I and

OPT (I) be the off-line optimal value for I. If A(I)
OPT (I)

≤ r for all I and r ≥ 1, then the

on-line algorithm A is called a r-competitive algorithm. Furthermore, if RA = inf{r ≥

1, A(I)
OPT (I)

≤ r, for all I}, the on-line algorithm A has competitive ratio RA. A similar

definition can be made for on-line maximum problem by replacing A(I)
OPT (I)

with OPT (I)
A(I) .
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Based on the competitive ratio analysis, the measurement of the intractability of an on-line

problem problem is developed, which is called the lower bound of the on-line problem.

Definition 2.13. For an on-line problem, if no on-line algorithm can achieve a competitive

ratio less than L, L is the lower bound of this on-line problem.

To obtain such a lower bound, a series of ’bad’ instances of the on-line problem need to

be constructed and then to prove that no on-line algorithm can satisfy A(I)
OPT (I)

≤ L for

these instances. The construction of these instances is sophisticated and is related to

exploration of the structure properties. In particular, it is always desired to make L as

large as possible.

From the developers’ perspective, the competitive ratio of a certain on-line algorithm can

be viewed as an upper bound of the on-line problem. Therefore, when the two bounds are

identical, the on-line algorithm is considered to achieve the on-line optimality.

Definition 2.14. The on-line algorithm for an on-line problem is called on-line optimal,

if the competitive ratio of this on-line algorithm equals the lower bound of the on-line

problem.

2.2.4 Traveling Salesman Problem

The traveling salesman problem (TSP) aims to find the shortest route for a traveling

salesman to visit each node of a given transportation network exactly once and return

the origin. An instance of the TSP is given by a weighted graph and an initial vertex.

The goal is to find a tour, i.e., a Hamiltonian circuit, which has a minimum length.

The decision problem version of TSP is NP-complete because the Hamiltonian Circuit
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problem can be polynomial transformed to it [Karp, 1972]. Therefore, TSP is a NP-hard

problem. It has also been proved that the general TSP cannot be approximated within

any constant unless P=NP [Orponen and Mannila, 1990]. In the metric case, however,

there is an approximation algorithm according to [Christofides, 1976]. His algorithm gives

an approximation ratio of 3
2
. If the edge weights are restricted to 1 and 2, there is a

8
7
-approximation algorithm [Berman and Karpinsk, 2006]. The situation is even more

favorable in the Euclidean plane, for which Arora [1997] gives a (1 + ε) approximation

scheme.

In the on-line version of the problem (OLTSP), the salesman can communicate with the

nodes to visit (also called the server) while he is traveling. Every request has a release time

that represents the time when the request of the node is available to the salesman. The

objective function is given by the maximum completion time (makespan). This variation

is also called the nomadic OLTSP (NOLTSP). Ausiello et al. [2001] give a 2.5-competitive

algorithm for general metric spaces and prove that no on-line algorithm can be better than

2-comprtitive. They also give a 7
3
-competitive algorithm for the special case of the real

line. Lipmann [2003] gives algorithm RETURN HOME which attains an improved upper

bound of (1 + ε) on general metric spaces. He also gives a 2.06-competitive algorithm for

the real line, together with a lower bound for this case of approximately 2.03.

2.2.5 Concepts in Classical Scheduling

Scheduling theory governs the decision process for the rational use of resources to ac-

complish multiple tasks. The work of scheduling is rooted in manufacturing industry, so
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the terms ”job”, ”machine” and so on are wildly used in this field. Usually, notation-

s J1, J2, · · · , Jn are used to represent jobs and M1,M2, · · · ,Mm to represent machines,

where n and m are the number of jobs and machines, respectively. A classic scheduling

problem is to assign jobs to machines timely.

In scheduling, there are three machine configurations: single machine, parallel machines

and dedicated machines. For the single machine case, there is only one machine to process

jobs. For the parallel machines case, each machine has the same function and every job

only needs to be processed on one machine. For the dedicated machines case, the ma-

chines have different functions and every job includes different operations which need to

be processed in different machines. Flow shop is a special case of the dedicated machine

where every job has one operation at one machine and all the jobs have the same order of

operations.

Given a schedule η, the completion time Cj(η) of job Jj in η can be determined, which is

the time that Jj completes the processing (the last operation of Jj completes the process-

ing for the dedicated machines case). When the schedule is not specified, the completion

time is represented as Cj for short. Thus, the objectives of the scheduling are the function

of jobs’ completion time. The common objectives in scheduling problems are listed as

follows.

(1) Cmax: the maximum completion time, Cmax = max
1≤j≤n

Cj.

(2) Lmax: the maximum lateness time, Lmax = max
1≤j≤n

Lj, where Lj = Cj − dj is

the lateness of Jj and dj is deadline.
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(3) Tmax: the maximum tardiness time, Tmax = max
1≤j≤n

Tj, where

Tj = max{0, Cj − dj}.

(4) Fmax: the maximum flow time, Fmax = max
1≤j≤n

Fj, where Fj = Cj − rj is flow

time of Jj and rj is release time.

(5)
∑n

j=1(wj)Cj: the total (weighted) completion time, where wj is the weight for Jj.

(6)
∑n

j=1(wj)Tj: the total (weighted) tardiness.

(7)
∑n

j=1(wj)Fj: the total (weighted) flow time.

(8)
∑n

j=1(wj)Uj: the total (weighted) number of tardy jobs, where Uj =


0, Cj ≤ dj,

1, otherwise.

As this thesis aims to consider the makespan as the time objective, the related work of

the classic scheduling problem is also reviewed in the following.

When the machine configuration is a case of parallel machines, there are m identical ma-

chines, and a particular machine and a particular job are however exclusively related to

each other at any time. Several results have been obtained for the on-line problem of the

classical parallel-machine scheduling to minimize the makespan. If the preemption of job

processing is allowed, the 1-competitive on-line algorithm (Re-schedule Algorithm) is avail-

able according to Hong and Leung [1992], whereby the McNaughton algorithm is applied

whenever there is a new job. The McNaughton algorithm finds the shortest preemption

schedule on parallel machines [McNaughton, 1959]. If the preemption of job processing is

not allowed, the longest processing time (LPT) rule can generate a 3
2
-competitive schedule.

According to the LPT rule, the job with the longest processing time is processed whenever
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there are idle machines [Chen and Vestjens, 1997].

In the context of classic scheduling, the makespan refers to Cmax. In the context of supply

chain scheduling, completion of the task of a job includes not only the processing or pro-

duction but also the delivery. Therefore, the completion of a job extends to the completion

of the delivery of a job (particularly the event that the job delivery vehicle is back to the

production or manufacturing site). Dj refers to the time that the delivery vehicle of job

Jj is back to the production site. As such, for supply chain scheduling, the makespan is

Dmax = max
1≤j≤n

Dj. Likewise, the corresponding lateness, tardiness, flow time, and number

of tardy jobs can also be defined. The objective in classic scheduling is then extended to

the objective in supply chain scheduling.

2.2.6 Multi-agent Scheduling

In the scheduling problem, when there is more than one customer, the competition for

production resources among the customers needs to be considered. Each customer desires

to achieve an optimality, so the problem is a multiple objectives problem. In literature, the

customer is also viewed as agents, and the scheduling of multiple customers is also called

multi-agents scheduling. There are different kinds of criteria for the multiple objectives

optimization: minimize the primary objective while the others are bounded [Agnetis et

al., 2004]; combine all the objectives into a single one [Baker and Smith, 2003]; formulate

the Pareto-solutions [Agnetis et al., 2000]. However, most of the studies in literature are

focused on the cases that there are two agents or customers [Ng et al., 2006; Mor and

Mosheiov, 2010; Wang et al., 2010].
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For the on-line problem for single machine and two customers, to minimize the total

makespan, lower bound analysis was presented first, and then the on-line algorithms were

given for both the preemption and non-preemption cases [Ding and Sun, 2010]. The

algorithm for the preemption case achieved on-line optimal but the other one did not. For

the problem with the batch-processing, an on-line algorithm with the competitive ratio

of 2 was developed, which achieved an on-line optimum for the case that the capacity of

batches were unbounded [Nong et al., 2008].

2.2.7 Robustness and Resilience

Robustness is a property that allows the system to be strong and health against the in-

ternal and external disturbances. This definition of robustness has been applied to many

fields, including biology [Kitano, 2004; Félix and Wagner, 2006], control [Ray and Stengel,

1991; Bhattacharyya et al., 2000] and computer science [Baker et al., 2008; Sørensen, 2011].

Essentially, robustness in these fields reflects the ability of the system being insensitive to

uncertainty. In engineering, particularly from an engineering system’s perspective, strong

and health become the performing functions. Robustness is thus related to the function

of a system; particularly, a system still performs its required function under disturbances

[Zhang and Lin, 2010]. In the field of algorithm for decision making (e.g., scheduling),

uncertainty may be represented by the deterministic variability in the parameters and the

robustness is particulary measured by the worst case performance of algorithm [Bertsimas

and Sim, 2004; Ben-Tal et al., 2009], e.g., approximative analysis and competitive anal-

ysis mentioned before. In this thesis, both kinds of robustness, as aforementioned, are

discussed for algorithms.
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Resilience is a property that allows the system to be persistent against the changes, which

is first proposed from ecology [Holling, 1973] and then applied to management and en-

gineering [Zhang, 2007, 2008; Zhang and Lin, 2010]. The resilience of algorithms is also

discussed in this thesis.

2.3 Supply Chain Scheduling

Scheduling refers to the timely allocation of resources to complete a task or job. The rise

of the importance of scheduling is congruent with the age of mass production since the mid

50s [Johnson, 1954; Jackson, 1955; Smith, 1956; McNaughton, 1959]. The method for the

best scheduling practice has been gradually improved in the second half of the last century,

especially after the proposal of the three field notation [Graham, 1979]. A large number of

research results were obtained in this period of time [Hu, 1961; Graham, 1969; Garey and

Johnson, 1976; Gonzalez et al., 1977; Frederickson, 1983; Friesen, 1987]. However, these

research results are limited in applications due to the rapid change of how the business

world operates in the last decade. The traditional scheduling approach met challenges,

as more and more new situations have appeared in the business world, demanding higher

quality, cheaper price, and faster supply time.

The major change in the business world is that the business organization tends to be more

dividing into small units, each of which keeps its core competence, and this makes the

business organization more agile [Zhang et al., 1997]. Further, this change also leads that

the business world is more like a network with nodes representing the business entities and

edges representing their connections. Consequently, traditional scheduling, which fuscous
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on a single unit in the context of this network, faces a big challenge that is local optimal

result. It is clear that scheduling must be conducted over an entire network (or chain

in a bit narrow sense). Another generalization out of this network characteristic of the

business world is that every activity is called supply.

The above has been pushing to the emergency of the notion of supply chain scheduling. In

supply chain scheduling, it is particularly assumed that the manufacturer and the customer

are not at the same place and thus the distribution of products from the manufacturer to

the customer becomes an indispensable element to be considered. The scheduling in pro-

duction with the coverage of distribution is a generic problem studied by many researchers

in the last decade [Potts, 1980; Hall and Shmoys, 1992; Cheng et al., 1996]. In general,

the integrated production-distribution (IPD) scheduling can significantly reduce the cost

and improve the performance [Hall and Potts, 2003; Chen and Vairaktarakis, 2005].

Further, as the supply chain scheduling aims to describe a more realistic mechanism of

industry, different situations have raised great attention in the scheduling community. In

the first situation, all information of future jobs is known beforehand and thus the corre-

sponding schedule can be decided beforehand. In the second situation, none of information

of future jobs is known beforehand and the decisions of schedule are taken as jobs arrive at

manufacturers. This second situation is also called on-line supply chain scheduling while

the first situation is called off-line supply chain scheduling [Averbakh and Xue, 2007; Han,

2012]. As a schedule is determined by an algorithm, there are thus off-line algorithm and

on-line algorithm, respectively. The evaluation of an algorithm is crucial to the efficiency
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of a schedule. It is noted that the off-line algorithm and on-line algorithm can be mea-

sured by the so-called complexity analysis and competitive analysis, respectively (see the

previous discussion in Section 8.2 and Section 2.2.3).

Several review articles of supply chain scheduling appear such as Sarmiento and Nagi

[1999], Goetschalckx et al. [2002], Chen [2010]. In particular, Chen [2010] extended the

three field notation for the classical scheduling problem to the five field notation for the

supply chain scheduling problem. However, a systematic classification of the supply chain

scheduling problem is still missing, and remedy of this deficiency is the motivation of the

following discussion. .

Hereafter, a classification scheme for the problems of supply chain scheduling is first built,

three classes in particular. Later, the existing articles are reviewed, which propose so-

lutions to the supply chain scheduling problems against the three classes, especially the

articles in the recent five years, summarize their results, and list them into the three class

framework. For each class, the papers in literature are introduced first and their con-

tributions are presented. The literature review is concluded and the directions of future

research is discussed at the end of this chapter.

2.3.1 Classification of the Supply Chain Scheduling Problem

The supply chain scheduling problems are classified in terms of how distribution is in-

tegrated with production, or integration of production and distribution (IPD for short).

There are three ways of IPD, and they are:
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(1) The distribution is considered as a part of production and only the production cost is

concerned [Hall and Shmoys, 1992; Lee and Chen, 2001; Wang and Cheng, 2007];

(2) The production and the distribution are two sequential activities and both the pro-

duction cost and the transportation cost are concerned [Chen and Vairaktarakis, 2005;

Hall and Potts, 2005; Averbakh and Xue, 2007];

(3) More than two activities in a total supply chain, such as supply, production, inventory,

loading, setup, transportation and so on, are concerned [Hall and Potts, 2003; Lee et

al., 2003; Delavar et al., 2010].

Three classes of IPD are practically meaningful. Class (1) refers to traditional manufactur-

ers, e.g., steel mill [Cowling and Johansson, 2002]. Class (2) refers to emerging businesses,

e.g., apparel business [Pundoor and Chen, 2005] and catering service [Chen and Vairak-

tarakis, 2005], which pay an equal attention to the production and distribution. Class (3)

refers to a set of units that are globally distributed [Zhang et al., 1997; Viswanadham,

2002].

Although many solutions to the supply chain scheduling problem were proposed in the

1980s and 1990s, the rise of research in this field happened in the last decade, especially

in the recent five years. Further, most of the new studies still belong to the above three

classes. In Table 2.2, an overview of the existing solutions to supply chain scheduling

problems is given based on the above classification. Then, in the subsequent sections,

details of these solutions will be discussed.
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2.3.2 Algorithms for Class 1 - Distribution as an Extension of Production

The earliest paper may refer to Potts [1980], who considered that there was a transporta-

tion time for every completed job and the time objective included the delivery time of jobs.

The machine configuration was a single-machine case and the objective was the makespan.

For this problem, a 3
2
-approximated algorithm was designed and analyzed. Later, the re-

sult was extended to the cases that there were different constraints on jobs. For instance,

there was a fixed delivery date for jobs [Hall et al., 2001], there was a priority order of

jobs [Hall and Shmoys, 1992], there was a setup time for the machine to start [Zdrzalka,

1991, 1995], and preemption was allowed [Zdrzalka, 1994].

The above studies only considered the situations where (1) there was one job for every

customer, (2) there were a sufficient number of vehicles, and (3) a vehicle may contain one

job only. Later, the problems of one customer but with a limited number of vehicles and

with a limited capacity of vehicles were also studied [Lee and Chen, 2001; Li et al., 2005;

Wang and Cheng, 2009a]. In addition, the problems with different machine configurations

were studied, such as parallel machines [Wang and Cheng, 2007] and flow shop machines

[Lee and Chen, 2001]. Chen [2010] made a survey for the supply chain scheduling problems

as well as their algorithms for this class of problems with a focus on the constraints. In

the following, the latest results of this class are reviewed in terms of different objectives

of the problems.

The objective of the makespan was discussed by many researchers in the recent years. Li

et al. [2011] investigated the batch processing. They assumed that the jobs of different
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customers cannot be processed and delivered in the same batch. They showed that for

one vehicle the problem was NP-hard. An algorithm with the approximate ratio of 3
2

was developed. The configuration of two-machine open shop was studied by Dong et al.

[2013]. They solved the problem of one vehicle with the vehicle capacity c. An algorithm

with the approximate ratio of 2 was proposed for general c while a 3
2
-approximation algo-

rithm was proposed for c = 1 especially. Zhong and Lv [2014] studied the supply chain

scheduling problem with the flow-shop configuration of machines, where stage one was

single-machine and stage two was two parallel-machine. The jobs need to be transported

between two stages and the vehicle can only take one job every shipment. They stated

that the problem was strongly NP-hard and applied a heuristic with approximation ratio

3
2
. Numerical simulation was conducted to show the normal performance. Pei et al. [2014a]

explored the supply chain scheduling problem with non-identical job sizes. They showed

that the problem was strongly NP-hard and derived a lower bound. A two-phase heuris-

tic algorithm was applied to solve the problem, which was 7
2
-approximating. Later, they

extended the work to the case that there were multiple manufacturers [Pei et al., 2014b].

A modified gravitational search algorithm was designed and a simulated experiment was

conducted to demonstrate the performance. Gao et al. [2015] studied the problem that the

production was batch processing where batch processing time is the summary of all jobs

and the distribution was no-wait. They proved that the problem was strongly NP-hard

and provided polynomial exact solutions for some special cases. For the general case, they

designed a 2-approximate algorithm and numerically demonstrated the performance of the

algorithms.
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Ng and Lu [2012] studied the problem for single-machine and single-customer in the on-

line environment. There was one vehicle with capacity c and the objective was also to

minimize the makespan. When the preemption was allowed, an on-line algorithm with

the best competitive ratio
√
5+1
2

was designed for c ≤ 2. When the preemption was not

allowed, an on-line algorithm with the best competitive ratio
√
5+1
2

was designed for c = 1

and an on-line algorithm with asymptotic competitive ratio
√
5+1
2

was designed for c ≤ 2.

Liu et al. [2014] also investigated the on-line problem of supply chain scheduling with the

processing time being constrained in an interval [p,
√
5+1
2
p], where p > 0. The on-line algo-

rithms with the competitive ratio of
√
5+1
2

were proposed for both cases that the capacity

of vehicles was limited and unlimited, respectively. In particular, The result was on-line

optimal for the case the capacity of vehicles was unlimited.

There were studies with the objectives other than the makespan. Fan [2010] considered the

objective as a total flow time for the supply chain scheduling problem for single-machine

and two customers. The total flow time differs from the makespan in that the former

refers to the level of the whole procedure while the latter refers to the level of all jobs.

The preemption of jobs processing was allowed and there was one vehicle with the unlim-

ited capacity. The author analyzed the complexity of the problem and applied dynamic

programming to solve it. Condotta et al. [2013] considered the supply chain scheduling

problem to minimize the maximum lateness. The problem involved single machine, one

customer and multiple vehicles of limited capacity. A mixed integer linear program was

first formulated and a tabu search algorithm for production part was proposed. The co-

ordinated solutions were generated by complementing every production scheduling with
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an optimal distribution scheme. The performance of the solutions was shown in a com-

putational simulation. Ullrich [2013] studied the problem to minimize the total tardiness.

There were parallel-machine and multiple vehicles. In particular, the vehicles may be with

a different capacity. In addition, the delivery of every job should be implemented in a time

window. He applied a genetic algorithm for this problem and conducted a numerical s-

tudy. It was shown that the algorithm had a great performance for small-size instances.

Wan and Zhang [2014] investigated the case with m parallel-machine for single-customer

to minimize the total delivery times, where v vehicles with limited capacity served the de-

livery. They proved that the problem was strongly NP-hard for arbitrary m and provided

a 2 − 1
m

-approximation algorithm. The problem with the objective of the total number

of tardy jobs was discussed by Li and Li [2014], where the departure date of delivery was

prescribed. They showed that the problem can be solved by a polynomial algorithm.

2.3.3 Algorithms for Class 2 - Production and Distribution as Two Stages

In this situation, the distribution becomes an independent business entity. This mean-

s that the transportation or delivery may work for multiple units. Therefore, both the

production cost and the transportation cost are considered. Research on supply chain

scheduling for this situation may refer to the studies of [Cheng et al., 1996; Yang, 2000].

The first systematic work for this situation was from Hall and Potts [2003], who integrat-

ed the transportation cost with classical scheduling problems and considered the case of

single-machine and single-customer. There were a sufficient number of vehicles and the ca-

pacity of all vehicles was unlimited in their problem. The production costs in their paper

were the common objective of classical scheduling problems, such as the total (weight-
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ed) completion times, the total (weighted) flow times, the maximum lateness, the total

(weighted) number of tardy jobs. For each problem, they either proved the NP-hardness

or proposed a polynomial algorithm. They extended their work to the case that there was

constraint on vehicles [Hall and Potts, 2005]. The basic work for multiple customers was

proposed by Chen and Vairaktarakis [2005], who aimed to minimize the makespan or the

total completion times with both single-machine and parallel-machine. There were a suffi-

cient number of vehicles but the capacity of all vehicles was limited in their problem. They

assumed that the number of customers was prescribed and applied enumeration for the

routing. After that, the number of studies in this field with the different characteristics of

real life problems increased dramatically. For instance, there were multiple manufacturers

[Chen and Pundoor, 2006; Li and Ou, 2007], there were both time-based objective and

cost-based objective [Chen and Pundoor, 2006], vehicle characteristics were different [Li

and Ou, 2005], the delivery batches were constrained [Ji et al., 2007], etc. In particular, as

the combination into a single objective was one method for the problem with multiple ob-

jectives, another method was to minimize the primary objective with the others bounded.

As such, there were results to minimize the transportation cost with the production cost

being bounded [Chen and Pundoor, 2006, 2009]. The survey of Chen [2010] also reviewed

the work in these problems.

There were a lot of studies for the objective of the total (weighted) flow/delivery times

and the transportation cost. Mazdeh et al. [2007] addressed the scheduling with single-

machine for single-customer to minimize the total flow times and the transportation cost.

They devised a branch-and-bound algorithm and showed a significant improvement by
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simulated experiments. They later extended their result to the case with the batch pro-

cessing machine to minimize the total weighted flow times and the transportation cost

[Mazdeh et al., 2011]. Another work of the batch processing machines was from Feng and

Zheng [2013], which aimed to minimize the total delivery times and the transportation

cost. For both cases with the unbounded and bounded batch, dynamic programming algo-

rithms were developed. Chang et al. [2014] considered the case with the parallel-machines

for multi-customers to minimize the total weighted delivery times and the transportation

cost. There were a sufficient number of vehicles with the limited capacity in their problem.

An algorithm using ant colony techniques was applied to search near-optimal solutions.

Selvarajah and Zhang [2014] considered the special case that the jobs could be outsourced.

When the outsourcing budgets were limited, they showed that it was NP-hard to minimize

the total delivery times and the transportation cost and proposed a pseudo-polynomial al-

gorithm and a polynomial approximation algorithm. When the outsourcing budgets were

unlimited, they stated the equivalence of the problem and the shortest path problem. Fan

et al. [2015] explored the single-machine configuration with an availability constraint to

minimize the total delivery times and the transportation cost. For the resumable case

that the jobs processing can be continued after interrupting, an optimal algorithm was

developed; for the non-resumable case that jobs processing must be re-started after inter-

ruption, a 3
2
-approximate algorithm was developed.

Another main concern of the objective was the total weighted number of tardy jobs and

the total transportation cost. Steiner and Zhang [2009] studied the supply chain schedul-

ing problem for single-machine and multi-customers. Jobs of the same customer could
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be processed and delivered in batches and there was a batch setup time. Due to the

NP-hardness of the problem, a pseudo-polynomial algorithm was designed for a restrict-

ed case and then a fully polynomial-time approximation scheme (FPTAS) was proposed.

They also considered the case that the due dates could be relaxed with a penalty cost

[Steiner and Zhang, 2011]. Kim and Oron [2013b] explored the problem with the multi-

location production for single-customer. A vehicle with the limited capacity was available

and all jobs had the same processing time. They solved the problem by reducing it to a

shortest-path problem but the algorithm was exponential for a general number of machine

locations. The numerical results were presented for the single-machine case. The work

of Rasti-Barzoki et al. [2013] addressed the problem with two stages of the processing of

single-machine and two flow-shop machines. The number and the capacity of vehicles were

sufficient and single-customer was considered. They analyzed the structural properties of

both cases and derived a branch and bound algorithm, which outperformed the dynamic

programming algorithm. The result was extended to the case of multi-customers and that

the total weighted tardiness was added into the objective [Rasti-Barzoki and Hejazi, 2013].

A heuristic algorithm and a branch and bound algorithm were provided.

The studies with other objectives were studied in literature as well. Gao [2011] considered

the objective of the total weighted tardiness, the total weighted earliness, and the trans-

portation cost, where there was single-machine for multi-customers and there were a fleet of

vehicles with limited capacity. A modified greedy algorithm was applied for this problem.

Kim and Oron [2013a] studied the total weighted tardiness and the transportation cost

with multi-location production for single-customer. They designed an algorithm which
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was exponential to the number of machines. Special cases with reduced computational

complexity were further discussed. With a single batching machine for one customer, Tang

et al. [2014] applied different optimization treatments to bi-criteria (the makespan and the

transportation cost) supply chain scheduling. Four variations of the problem are defined:

to minimize the makespan and the transportation cost (P1), to minimize the makespan

with the transportation cost bounded (P2), to minimize the transportation cost with the

makespan bounded (P3), and to find the Pareto set (P4). After proving the strongly NP-

hardness of these problems, heuristic algorithms with worst case analysis were proposed

for P1, P2 and P3, while an exact algorithm was designed for P4.

The on-line version of this algorithm was first considered by Averbakh and Xue [2007].

There was a single-machine and there were a sufficient number of vehicles with an unlim-

ited capacity. The objective was to minimize the total flow time and the delivery cost.

Due to lack of future information, there was a lower bound 2 for the competitive ratio of

all on-line algorithms even for the case of one customer. They designed a best possible on-

line algorithm for the case of one customer, which achieved the competitive ratio 2. The

algorithm was modified to the multi-customers case (jobs of different customers did not

share a batch and thus routing was not allowed) but the result was not good. Averbakh

[2010] later extended the work to the case that the capacity of vehicles was limited. He

considered several special cases and designed the corresponding on-line algorithms. For

the one customer case the algorithms were on-line optimal but for multi-customers case the

algorithm was not good. Another improved on-line algorithm for the multi-customers case

was presented. The competitive ratio of this algorithm was 3 + α, where α is the ratio of
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the largest processing time to the smallest processing time [Averbakh and Baysan, 2013a].

They also studied the problem in the semi-online environment, where partial information

of future was known [Averbakh and Baysan, 2012, 2013b].

2.3.4 Algorithms for Class 3 - More than Two Stages

The globalization of production industry in the new century implied the integration of

supply, production, transportation, inventory, loading, and so on. As such, more than two

stages were involved and different kinds of costs and revenues were considered. Hall and

Potts [2003] considered the combined problem of supply, production and transportation.

Meanwhile, they stated that the integration could significantly reduce the cost comparing

with the optimization of three single stages. The inventory cost was included into the

objectives of supply chain scheduling model [Lee et al., 2003; Bertazzi et al., 2005; Sawik,

2009; Wang and Cheng, 2009b]. As the integration of different stages, the decisions of

scheduling and transportation could be made simultaneously, which would reduce the in-

ventory cost and improve the efficiency [Qi, 2005].

In the new decade, more and more studies have been conducted in this field. Yeung et al.

[2011] considered the supply chain scheduling problem with dual delivery modes, which

was modeled by a flow shop with time windows. As the transportation cost and the in-

ventory cost were both involved, the problem was proved to be NP-hard. By exploring

several structural properties, they developed optimal pseudo-polynomial algorithms. Lat-

er, the flow shop configuration was modified by assuming parallel machines at every stage

and nonzero transportation times [Ullrich, 2012]. As the problem was strongly NP-hard
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even for special case with zero transportation times, only a numerical study for small-size

instances was conducted to analyze the performance of the work. Further, the objectives

for classical scheduling were also explored for the new problems, such as the weighted flow

time [Lee and Yoon, 2010], the total delivery time [Lee et al., 2012], and the total tardiness

[Lee et al., 2013].

Furthermore, new problem structures and more complex objectives were introduced. Alonso-

Ayuso et al. [2013] considered warehousing as the crucial role of the supply chain and

wished to optimally organize the involved operations. The objective was to minimize the

total loading time of vehicles. They used data from a real mattress warehouse to conduct

a computational experiment to demonstrate the performance of the solution. Fan et al.

[2010, 2013] studied the supply chain scheduling problem with heterogeneous vessels to

minimize the total shortage, inventory and transportation cost. Celikbilek [2014] investi-

gated the manufacturing scheduling and transportation mode in a cellular manufacturing

where production should be completed in cells and transportation methods were limited

by mode and capacity. A mixed integer mathematical model was constructed to maximize

the total profit and a small size instance experiment was conducted to show the results.

However, analytical algorithms could only be applied to very few problems in these models

because of the complexity. Therefore, different techniques were adopted, such as intelligent

algorithm [Hajiaghaei-Keshteli and Aminnayeri, 2014; Meinecke and Scholz-Reiter, 2014;

Wang et al., 2014], Taguchi’s method [Hajiaghaei-Keshteli et al., 2014], dynamic property

with control theory [Li et al., 2001; Zhang, 2010; Ivanov et al., 2012; Inanov and Sokolov,

2012], and piecewise linear model [Baghalian et al., 2013].
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2.3.5 Conclusion with Further Discussion

The supply chain scheduling is getting its popularity with the globalization of manu-

facturing industry and market, especially the advancement of transportation tools and

communication techniques. This chapter focused on the strategies as well methods to

model the supply chain scheduling problem. Three classes of problems were established

and the related work, in particular in the recent five years on these problems, were re-

viewed.

There are a couple of future works in the area of supply chain scheduling. First, more at-

tention should be paid to the supply chain scheduling problems in the on-line environment

as they are in line with the real application situation and in a natural manner. In this

thesis, more than half of the work is about the on-line supply chain scheduling problems,

which is expected to significantly advance the research status of this field. Second, in the

previous work of the supply chain scheduling problem in Class 2, the objective includes the

time function involved with either all the jobs [Averbakh and Xue, 2007; Averbakh, 2010]

or the whole procedure [Chen and Vairaktarakis, 2005] but never all the customers. While

in this thesis, the objective of the total makespan and the total delivery cost will be con-

sidered, which is indeed a new problem or new feature of the problem in this area. Third,

more different configurations of machines and customers and more different characteris-

tics of constraints for supply chain scheduling should be studied. Three configurations

are studied in this thesis (see the discussion in Section 1.3): (1) single-machine multi-

customers, (2) multi-machines single-customer and (3) multi-machines multi-customers.
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For every configurations, new features of the problems will be further defined in terms of

the different release environments, processing patterns, vehicle characteristics and delivery

patterns. Forth, the robustness and the resilience of algorithms for supply chain scheduling

should be discussed as disturbances and damages always exist in real world problems. In

this thesis, the robustness and the resilience of algorithms for the above new problems are

explored, which is new, to the best of the author’s knowledge, in algorithm development.
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CHAPTER 3

PROBLEM ASSUMPTIONS AND NOTATIONS

3.1 Problem Descriptions

In a large-scale manufacturing and/or service operation, the customers demand products

(jobs) and place orders to the manufacturer. The order placing of a job is also called job

release. There are two different situations for jobs release: (1) all the information of the

jobs is known beforehand and (2) the information of jobs release is not known until they

are released. Scheduling algorithms for the two situations are completely different.

After knowing the jobs, or the jobs being released, the manufacturer need time to process

them on machines. Therefore, when a job is released, the decision maker should decide

when to process it and which machine to process it. The first two constraints on the

processing of a job are: (1) the job is released and (2) there are free machines.

The manufacturer and the customers are at different locations which form a transportation

network. Therefore, when a job is processed and completed, they should be delivered to

the corresponding customers. For each completed job, the decision maker should decide

when to deliver it, which vehicle to load it, and which path of the transportation network to

travel through if there is more than one customer (Figure 3.1 shows that the manufacturer
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and customers formulate a transportation network where the vehicles are delivering). The

constraint on the delivery a job is that (1) the job has been completed and (2) there

are available vehicles at that moment. In particular, the delivery is implemented on the

transportation network, at which the road situation will be one constraint.

  

  

  

  

  

  Manufacturer 
  

Customer 

  

  

  

  

  

Vehicle 

 

Figure 3.1. Network of The Manufacturer and Customers

The time when a job is released is called ”release time” of the job. The time period that

takes to process a job is called ”processing time” of the job. The time when a job starts is

called ”starting time” of the job. The time when a job is completed is called ”completion

time” of the job. The time when a job leaves the manufacturer is called ”departure time”
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of the job. The time when a shipment returns to the manufacturer is called ”return time”.

Thus, the time-based objective is defined as a function of release time, processing time,

starting time, completion time, departure time and return time. Obviously, this objective

should be minimized to make the whole process efficient.

When a vehicle delivers a job to its destination, there is a transportation cost for the

shipment. Therefore, the total transportation cost arises for the whole delivery process,

which is the cost-based objective. It is noted that the transportation cost gets larger as the

increase of deliveries. For the efficiency of the whole schedule, this objective also should

be minimized.

In this thesis, the above two kinds of objectives are considered, which conflict with each

other. Minimization of the time-based objective implies a high frequency of vehicles trans-

portation, which definitely causes additional transportation cost. On the other hand, min-

imization of the cost-based objective requires a high economize the utilization of vehicles,

which will delay the delivery of jobs and result in a poor time performance. Therefore, a

trade-off between the two objectives needs to be conducted.

In its very nature, the problem is a multi-objective problem. Different approaches can

be used for the multi-objective problem. Taking two objectives as an example, there are

approaches: (1) to minimize one first and then minimize the other; (2) to minimize one by

taking the other as a constraint and vice versa; (3) to combine the objectives into a single

objective and minimize their weighted sum. The three approaches share the common trait

of subjectivity. For instance, in method (3), the user’s choice of weights is subjective. In
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method (2), the threshold that defines the constraint is subjective. Several problems con-

sidered in this thesis are in an on-line environment, which implies that future information

of jobs is unknown. Therefore, it is difficult to set a threshold for the time-based function

or the cost-based function. Therefore, this study explores method (3), i.e., to minimize

the weighted sum of the objectives. From another point of view, the weights are the prices

for the two groups of values with different unit. In this sense, the combination of two

objectives into a single one is meaningful.

3.2 Problem Assumptions

As this thesis studies the problem of supply chain scheduling and develops algorithms to

solve them, several assumptions need to be made such that the problems are tractable. It

is noted that the assumptions are valid in the procedure of algorithms development but

will be relaxed in the algorithms assessment and case study. In this way, the results of

this thesis take into account of both theory and practice.

In this study, the following assumptions are made for algorithms development.

1. There is only one manufacturer

In practice, one manufacturer situation is often valid in the context of manufacturing.

Multiple manufacturers should be the case in emergency situations.

2. There is no constraint on the transportation network

47



No constraint on the transportation network means that the capacity of the transporta-

tion network is assumed unlimited. This means that no competition on the transportation

network happens among the customers and manufacturer. This assumption is not unre-

alistic in the modern city according to [Rainey and Andreas, 2015; Wang et al., 2013a].

In Chapter 7, to evaluate the resilience of the algorithms, the case that transportation

network is disrupted is considered.

3. All parameters are deterministic

It is reasonable to assume that all the parameters of jobs are deterministic. Any uncer-

tainty on parameters can be considered the so-called noise. The effect of the noise on the

algorithm will be examined under the notion of robustness of the algorithm.

3.3 Problem Formulation and Notations

Suppose there are ni jobs J
(i)
1 , · · · , J (i)

ni with the processing time p
(i)
1 , · · · , p

(i)
ni , released at

the time r
(i)
1 , · · · , r

(i)
ni from the ith customer (i = 1, 2, · · · , k), respectively, to the manu-

facturer which has machines to process them. After jobs are completed, they are loaded

into batches or shipments and then transported to the customers by vehicles. There is a

delivery cost for a batch.

Both off-line and on-line environments of jobs release are considered. In the off-line en-

vironment, information (release time, processing time and the number) of jobs is known

beforehand. In the on-line environment, the information of future jobs is unknown before-

hand until but their release time.
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Both single-machine configuration and multi-machines configuration are considered. In

the single-machine configuration, the manufacturer only has one machine. In the multi-

machines configuration, the manufacturer has multiple parallel machines which have the

same function.

Two different delivery patterns are considered. In the first delivery pattern, the jobs of

different customers do not share a batch which means that all jobs need to be delivered to

the corresponding customer directly. In the second delivery pattern, the jobs of different

customers share a batch, which means that a routing path is needed to deliver a batch.

The routing path in this case means that there must be several options of delivery with

respect to different customers (e.g., customer 1 goes first and then customer 2, etc.) .

The goal of the problem is to minimize both time-based objective and cost-based objec-

tive. For every customer, its own time-based objective is the time that the manufacturer

operates for it, which is the time that the delivery vehicle for its last job is back to the

manufacturer, i.e., makespan. Therefore, the time-based objective for all customers is the

total makespans. The cost-based objective is the total delivery cost, which is the number

of batches multiplied by the cost of one batch delivery (noticing: the cost of one batch

delivery is constant but the number of the batches is a variable). As mentioned before,

to minimize the weighted sum of the two objectives is the method taken in this thesis to

deal with the two objectives problem.

The solution of the problem is a schedule which should specify when a job is processed,

which machine a job is processed on, which batch a job is loaded in, when a batch is
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transported, and which path a batch is transported through.

The following notations are listed to describe the problem:

• η: a feasible schedule.

• opt: an optimal off-line schedule.

• k: the number of customers.

• K: the set of all customers, {1, 2, · · · , k}

• m: the number of machines.

• J (i)
j : the jth job for the ith customer, where i = 1, 2, · · · , k.

• J (i): the set of all jobs for the ith customer.

• J (i)
≤t : the set of all jobs for the ith customer released before t.

• ni: the number of all jobs for the ith customer.

• n: the number of all jobs, n =
∑k

i=1 ni.

• r(i)j : the release time of job J
(i)
j .

• on− line: the jobs are released in the on-line environment.

• p(i)j : the processing time for job J
(i)
j

• P (i): the sum of the processing time of all the jobs for the ith customer.

• P (i)
[t1,t2]

(η): the sum of the processing time of the jobs for the ith customer which are

processed in the interval [t1, t2] in the schedule η.

• P : the sum of the processing time of all the jobs.

• pmtn: the processing of jobs can be interrupted and restarted later.

• C(i)
j (η): the completion time of job J

(i)
j in the schedule η.

• C(i)
max(η): max

J
(i)
j ∈J (i)

C
(i)
j (η).
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• idle time: when there are free machines and there are no uncompleted jobs.

• waiting time: when there are free machines but there are uncompleted jobs.

• delay: there is waiting time in the schedule.

• block: a time interval that a machine is not free.

• Cmax(U,m, η): the completion time for jobs set U being processed on m machines in

schedule η.

• Cmax(U): the optimal maximum completion time for jobs set U being processed on a

single machine, which can be found by scheduling all the jobs on the machine without

delay.

• ρ(i)j (η): the departure time of job J
(i)
j in the schedule η.

• ρ(i)max(η): max
J

(i)
j ∈J (i)

ρ
(i)
j (η), the latest time of delivery of jobs in η.

• Tcd: the transportation time between place c and place d, where c, d = 0, 1, 2, · · · , k (’0’

represents the manufacturer, ’1, 2, · · · , k’ represent the customers).

• direct: the jobs of different customers do not share a batch, which means that all jobs

need to be delivered to the corresponding customer directly.

• routing: the jobs of different customers share a batch, which means that a routing path

is needed to deliver a batch.

V (x, y): there are x vehicles available, each with a capacity y, where x ∈ {1,∞} and

y ∈ {C,∞} (the symbol ”∞” means ”enough” in the engineering sense).

• D(i)
j (η): the return time of the vehicle which delivers the job J

(i)
j in the schedule η.

• D(i)
max(η): max

J
(i)
j ∈J (i)

D
(i)
j (η), makespan of the ith customer in the schedule η.

•
∑k

i=1D
(i)
max(η): the total makespans in the schedule η.

• D: the cost of one delivery, which is a constant.
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• TC(η): the total cost of all the deliveries in the schedule η, which is the number of

deliveries timing by D.

• Z(η): the weighted sum of two objectives in the schedule η, w1

∑k
i=1D

(i)
max(η)+w2TC(η),

where w1 and w2 are two weights.

This thesis assumes that the cost for each batch is the same. Therefore,

w1

k∑
i=1

D(i)
max + w2TC = w1

k∑
i=1

D(i)
max + w2D × z = w1(

k∑
i=1

D(i)
max +

w2

w1

D × z), (3.1)

where w1 and w2 are the weights and z is the number of batches. Thus, minimizing

w1

∑k
i=1D

(i)
max + w2TC is equivalent to minimizing

∑k
i=1D

(i)
max + w2

w1
D × z. The unit de-

livery cost is D. Let D′ = w2

w1
D and let TC ′ be the total delivery cost. Then the problem

is equivalent to minimizing
∑k

i=1D
(i)
max + TC ′. Without loss of generality and without

confusion, in the remainder of this thesis the objective function is
∑k

i=1D
(i)
max + TC (TC

replaces TC ′). The final objective in the schedule η is Z(η) =
∑k

i=1D
(i)
max(η) + TC(η).

In this thesis, problems are considered in terms of different configurations of machines and

customers. Three types of problems are considered: (1) there is one machine in the man-

ufacturer and there are multiple customers, (2) there are multiple (parallel) machines in

the manufacturer and there is one customer, and (3) there are multiple parallel machines

in the manufacturer and there multiple customers. For each type, specific problems with

different characteristics that describe for example the vehicle capacity are defined. The

following are all the specific problems derived from the three general problems along with

their five field notation representation [Chen, 2010].
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(1) Single-machine Multi-customers Problem (SMP)

Eight specific problems are defined:

SMP1: 1|rj, pmtn|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released off-line, processed in ”pmtn” pattern and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

SMP2: 1|rj, pmtn, on− line|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released on-line, processed in ”pmtn” pattern and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

SMP3: 1|rj|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released off-line and delivered in ”direct” pattern. The capacity of vehicles

and the number of vehicles are both enough.

SMP4: 1|rj, on− line|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released on-line and delivered in ”direct” pattern. The capacity of vehicles

and the number of vehicles are both enough.
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SMP5: 1|rj, pmtn|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released off-line, processed in ”pmtn” pattern and delivered in ”routing” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

SMP6: 1|rj, pmtn, on− line|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released on-line, processed in ”pmtn” pattern and delivered in ”routing” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

SMP7: 1|rj|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released off-line and delivered in ”routing” pattern. The capacity of vehicles

and the number of vehicles are both enough.

SMP8: 1|rj, on− line|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released on-line and delivered in ”routing” pattern. The capacity of vehicles

and the number of vehicles are both enough.
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(2) Multi-machines Single-customer Problem (MSP)

Five specific problems are defined (as there is one customer, D
(1)
max is written as Dmax for

short):

MSP1: Pm|rj, on− line|V (1,∞), direct|1|Dmax + TC

Jobs are released on-line and delivered in ”direct” pattern. The capacity of vehicles is

enough but the number of vehicles is one.

MSP2: Pm|rj, on− line|V (∞,∞), direct|1|Dmax + TC

Jobs are released on-line and delivered in ”direct” pattern. The capacity of vehicles

and the number of vehicles are both enough.

MSP3: Pm|rj, pmtn, on− line|V (1, C), direct|1|Dmax + TC

Jobs are released on-line, processed in ”pmtn” pattern and delivered in ”direct” pat-

tern. The capacity of vehicles is C and the number of vehicles is one.

MSP4: Pm|rj, on− line|V (1, C), direct|1|Dmax + TC

Jobs are released on-line and delivered in ”direct” pattern. The capacity of vehicles is
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C and the number of vehicles is one.

MSP5: Pm|rj, on− line|V (∞, C), direct|1|Dmax + TC

Jobs are released on-line and delivered in ”direct” pattern. The capacity of vehicles is

C and the number of vehicles is enough.

(3) Multi-machines Multi-customers Problem (MMP)

Eight sepecific problems are defined:

MMP1: Pm|rj, pmtn|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released off-line, processed in ”pmtn” pattern and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

MMP2: Pm|rj, pmtn, on− line|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released on-line, processed in ”pmtn” pattern and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

MMP3: Pm|rj|V (∞,∞), direct|k|
∑
D

(i)
max + TC
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Jobs are released off-line and delivered in ”direct” pattern. The capacity of vehicles

and the number of vehicles are both enough.

MMP4: Pm|rj, on− line|V (∞,∞), direct|k|
∑
D

(i)
max + TC

Jobs are released on-line and delivered in ”direct” pattern. The capacity of vehicles

and the number of vehicles are both enough.

MMP5: Pm|rj, pmtn|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released off-line, processed in ”pmtn” pattern and delivered in ”routing” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

MMP6: Pm|rj, pmtn, on− line|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released on-line, processed in ”pmtn” pattern and delivered in ”routing” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

MMP7: Pm|rj|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released off-line and delivered in ”routing” pattern. The capacity of vehicles

and the number of vehicles are both enough.
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MMP8: Pm|rj, on− line|V (∞,∞), routing|k|
∑
D

(i)
max + TC

Jobs are released on-line and delivered in ”routing” pattern. The capacity of vehicles

and the number of vehicles are both enough.
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CHAPTER 4

ALGORITHMS FOR SINGLE-MACHINE AND MULTI-CUSTOMERS PROBLEMS

In this chapter, the problems for single-machine and multi-customers are considered and

corresponding algorithms are developed. As described in Section 3.3, eight problems are

defined in terms of different release environments, preparation patterns and delivery pat-

terns. For all these problems, the corresponding algorithms are developed, their analysis

is proposed, and the simulation is also conducted to give an idea of the effectiveness of

the algorithms.

4.1 Algorithm for Problem SMP1

SMP1 has the following features: Jobs are released off-line, processed in ”pmtn” pattern

and delivered in ”direct” pattern. The capacity of vehicles and the number of vehicles are

both enough.

As the information of jobs is known beforehand, all the jobs of the same customer should

be delivered in one batch when they are all completed. Therefore, there are k batches

in the optimal schedule and D
(i)
max(opt) = ρ

(i)
max(opt) + 2T0i = C

(i)
max(opt) + 2T0i for i =

1, 2, · · · , k, which implies that Z(opt) =
∑k

i=1D
(i)
max(opt) + TC(opt) =

∑k
i=1C

(i)
max(opt) +

2
∑k

i=1 T0i + kD. Then, this problem is equivalent with the agent scheduling problem
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1|rj, pmtn|
∑
C

(i)
max. This problem to two customers has been discussed in [Ding and Sun,

2010]. However, the result for the case there are more than two customers is not known.

This section will solve the problem for general case. Therefore, in the following discussion,

it is assumed that T0i = 0 for all i and D = 0.

Meanwhile, because job processing can be interrupted and resumed later, any uncompleted

job can be chosen to process. In this situation, it is only needed to determine which

customer’s jobs needs to be processed. Therefore, the mechanism to choose a customer

need to be developed. Such a mechanism can be based on the concept of the priority of

customers, which is defined as follows.

Definition 4.1. A priority of customers is a permutation (i1, i2, · · · , ik) of the customer

set K = {1, 2, · · · , k}.

Next, a schedule can be constructed based on the priority of customers in the following

way: at every time, the customer with the highest priority can occupy the machine. Such

a schedule called priority schedule.

Lemma 4.1. There exists an optimal schedule for SMP1 which is a priority schedule and

the priority of the customers is consistent with the order of the customers’ completion

time in the schedule.

Proof of Lemma 4.1: Without loss of generality, suppose the order of the customers’

completion time is 1, 2, · · · , k in an optimal schedule opt, that is, C
(1)
max(opt) ≤ C

(2)
max(opt) ≤

· · · ≤ C
(k)
max(opt). The priority of customers is set as 1, 2, · · · , k, and at every time the

machine processes the job of the customer with the highest priority, which generates the

60



priority schedule opt′.

C(1)
max(opt

′) = Cmax(J (1)) ≤ C(1)
max(opt)

C(2)
max(opt

′) = Cmax(
2⋃
i=1

J (i)) ≤ C(2)
max(opt)

· · ·

C(k)
max(opt

′) = Cmax(
k⋃
i=1

J (i)) ≤ C(k)
max(opt)

(4.1)

As the optimality of opt, it should be satisfied that C
(i)
max(opt′) = C

(i)
max(opt) for i =

1, 2, · · · , k and thus opt′ is also an optimal schedule, which completes the proof. �

When k = 2, the priority can be found by comparing Cmax(J (1)) and Cmax(J (2)), which

then solves the problem [Ding and Sun, 2010]. However, the method cannot be extended

to a larger k. For the following instance with k = 3: Customer 1 has two jobs J
(1)
1 = (0, 1)

and J
(1)
2 = (2, 1), Customer 2 has two jobs J

(2)
1 = (0, 1) and J

(2)
2 = (2, 1), and Customer

3 has one job J
(3)
1 = (0, 2.6). The optimal schedule will process the jobs with the priority

of the customers (1, 2, 3) while Cmax(J (1)) = Cmax(J (2)) > Cmax(J (3)). Therefore, more

properties need to be explored.

Lemma 4.2. The optimal schedule for SMP1 that satisfies Lemma 4.1 has sub-optimality,

that is, if (i1, i2, · · · , ik) is the optimal priority for the customer set {1, 2, · · · , k}, then

(i1, i2, · · · , ih) is an optimal priority for the customer set {i1, i2, · · · , ih} for all h ≤ k.

Proof of Lemma 4.2: Suppose there exists a h0 such that (i1, i2, · · · , ih0) is not the

optimal priority of the customer set {i1, i2, · · · , ih0} but (i′1, i
′
2, · · · , i′h0

) is. Let the schedule

generated by the priority (i1, i2, · · · , ih0 , ih0+1, · · · , ik) be η while the schedule generated
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by (i′1, i
′
2, · · · , i′h0

, ih0+1, · · · , ik) be η′.

k∑
l=1

C(il)
max(η) =

h0∑
l=1

C(il)
max(η) +

k∑
l=h0+1

C(il)
max(η) (4.2)

For the customers il (l = h0 + 1, · · · , k), their jobs processing are the same in η and η′,

which implies C
(il)
max(η) = C

(il)
max(η′) for l = h0 + 1, · · · , k. In addition, as (i1, i2, · · · , ih0) is

not the optimal priority of the customer set {i1, i2, · · · , ih0} but (i′1, i
′
2, · · · , i′h0

), there is∑h0

l=1C
(il)
max(η) >

∑h0

l=1C
(i′l)
max(η′).

k∑
l=1

C(il)
max(η) >

h0∑
l=1

C
(i′l)
max(η

′) +
k∑

l=h0+1

C(il)
max(η

′) =
k∑
l=1

C
(i′l)
max(η

′) (4.3)

This contradicts with the assumption that η is optimal. Therefore, no such h0 exists,

which proves the lemma. �

Based on the above two lemmas, a dynamic programming for this problem is proposed

as follows (dynamic programming is a recursive method to solve a complex problem by

dividing it into simpler subproblems with an optimal substructure [Sniedovich, 2010]).

Algorithm SMH1

Value function:

F (A) = the minimum total cost for the jobs of the customers in set A.

f(A) = the customer with the least priority in a schedule achieving F (A).

Initial conditions:

F (∅) = 0.

Recursive relation:

For A ⊆ {1, 2, · · · , k}, F (A) = min{F (A \ {i}) + Cmax(∪l∈AJ (l))|i ∈ A}; f(A) =
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argmin{F (A \ {i}) + Cmax(∪l∈AJ (l))|i ∈ A}. Ties can be broken by choosing the largest

index.

Optimal solution value:

F ({1, 2, · · · , k}).

Theorem 4.1. The problem SMP1 can be solved by the algorithm SMH1 in the time

O(nk2k).

Proof of Theorem 4.1: It needs to prove that the function F (A) can find the optimal

value for the customer set A. Induction for |A| is applied. The statement is obviously true

when |A| = 0 and suppose that it is also true for the case that |A| = h (h ≥ 1). Then

when |A| = h+ 1, for any i ∈ A, the following two cases are discussed.

Case 1: There exists an optimal solution opt such that Customer i has the least

priority.

From the hypothesis, F (A\{i}) can find the optimal value for the customer set A\{i}.

By Lemma 4.2,

F (A \ {i}) + Cmax(∪l∈AJ (l)) =
∑

l∈A\{i}

C(l)
max(opt) + C(i)

max(opt) =
∑
l∈A

C(l)
max(opt) (4.4)

Case 2: There is no optimal solution such that Customer i has the least priority.

Let i1, i2, · · · , ih be the optimal priority for A \ {i}. Then the schedule η generated by

the priority (i1, i2, · · · , ih, i) cannot be optimal for A. Therefore,

F (A \ {i}) + Cmax(∪l∈AJ (l)) ≥
∑

l∈A\{i}

C(l)
max(η) + C(i)

max(η)

=
∑
l∈A

C(l)
max(η) >

∑
l∈A

C(l)
max(opt).

(4.5)

63



Combining along with their discussion, it holds: F (A) = min{F (A\{i})+Cmax(∪l∈AJ (l))|i ∈

A} =
∑

i∈AC
(i)
max(opt). Meanwhile, f(A) can find the customer with the least priority in

the optimal solution.

F (K) can find the optimal value, and the optimal priority (i1, i2, · · · ik) can be deter-

mined as follows: ik = f(K) and for l = k − 1, · · · , 1, il = f(K \ {ik, · · · , il+1}), where

K = {1, 2, · · · , k}.

For the set A with i elements, the computation time of F (A) isO(ni). As the number of

such sets is Ci
k for i = 1, 2, · · · , k, the total computation time is O(

∑k
i=1 niC

i
k) = O(nk2k).

�

Note that when k is a parameter, this algorithm is exponential. For a large k, a simulated

annealing algorithm SA SMH1 based on Lemma 4.1 is proposed.

Algorithm SA SMH1

Initialize a priority list: (i1, i2, · · · , ik). Let η be the schedule generated by this priority.

Initialize the temperature loop parameter T and the internal loop parameter TT .

Temperature loop: T exponentially decreases to 1

Internal loop: from 1 to TT

Randomly choose two sequential customers from the list: ia and ia+1. Let

η′ be the schedule generated by (i1, i2, · · · , ia−1, ia+1, ia, · · · , ik). Let ∆ be

the difference between the objective values of η and η′. If ∆ < 0, accept

the new schedule and update the schedule and the priority list; otherwise,

accept the new schedule with the probability e−
∆
T .
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In the application, the parameter T is set to be P while the parameter TT is set to be n2,

where P is the sum of the processing time of all the jobs and n is the number of all the

jobs. The performance of SA SMH1 is shown in a simulated experiment (or simulation

for short) which will be presented later.

4.2 Algorithm for Problem SMP2

SMP2 has the following features: Jobs are released on-line, processed in ”pmtn” pattern

and delivered in ”direct” pattern. The capacity of vehicles and the number of vehicles

are both enough. Actually, SMP2 is the on-line version of SMP1. When there is only

one customer, the lower bound of the problem is 2 [Han, 2012]. The lower bound can be

constructed similarly (see Appendix). Therefore, the lower bound of SMP2 is at least 2.

Corollary 4.1. No on-line algorithm for SMP2 can have competitive ratio less than 2,

even all processing times being 0.

Note that the lower bound construction releases a job for Customer i every D period (see

Appendix). The main idea to develop an on-line algorithm is to deal with such a situation.

Meanwhile, the completion time of jobs for each customer is an important index to solve

the competition among customers. In the following, an on-line algorithm is proposed for

SMP2.

Algorithm SMH2

At the time t that a new job arrives, the customers are re-indexed in an increasing

order of Cmax(J (i)
≤t ) (If there is more than one customer with the same Cmax(J (i)

≤t ), their

order is the original index order). When a new job arrives or the machine is free, process
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available jobs of the customer with the highest on-line priority.

At the time of lD where l ≥ 1 and l is integer, if there is no uncompleted job for

Customer i, then there must be a batch to deliver all the completed jobs of Customer i;

otherwise, there is no operation for these jobs.

On-line algorithm SMH2 for SMP2 can achieve a good result both cases that k = 2 and

k = 3.

Theorem 4.2. The competitive ratio of on-line algorithm SMH2 for SMP2 with k = 2 is

2, which is on-line optimal.

Proof of Theorem 4.2: Let η be the schedule obtained by the algorithm SMH2. Suppose

that the jobs of Customer 1 are completed earlier in opt, which implies that Cmax(J (1)) =

C
(1)
max(opt) ≤ Cmax(J (2)). In η, at the time of max{r(i)j |J

(i)
j ∈ J (i), i = 1, 2}, all the jobs

are released and there are uncompleted jobs for Customer 2. By the algorithm SMH2,

the jobs of Customer 1 will have the top priority at this moment. Therefore, the jobs of

Customer 1 are also completed earlier in η.

Suppose that l1D is the last idle delivery point (l1D is idle time) before C
(1)
max(opt)

in η (if there is no such l1D, let l1 = 0), where l1 is a non-negative integer. For the

interval (l1D,C
(1)
max(η)], the schedule can be modified such that the jobs of Customer 2

has a higher priority. According to the algorithm, the completion time of Customer 1 will

not be changed, and the processing of Customer 2’s jobs in this interval will be before

C
(1)
max(opt). Meanwhile, as all the jobs processed in this interval are released after l1D,

P
(1)

(l1D,C
(1)
max(η)]

(η) ≤ C
(1)
max(opt)− l1D. Therefore, in the modified schedule, the machine will
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only process Customer 1’s jobs in the interval (C
(1)
max(opt), C

(1)
max(η)].

C(1)
max(η) ≤ C(1)

max(opt) + P
(1)

[l1D,C
(1)
max(η)]

(η) ≤ 2C(1)
max(opt)− l1D

C(2)
max(η) = C(2)

max(opt)

ρ(1)max(η) = dC
(1)
max(η)

D
eD ≤ C(1)

max(η) +D ≤ 2C(1)
max(opt)− l1D +D

ρ(2)max(η) = dC
(2)
max(η)

D
eD ≤ C(2)

max(η) +D = C(2)
max(opt) +D

(4.6)

The delivery cost in η can be analyzed as follows.

In the interval (0, l1D], there are at most two batches at every delivery point, so the

delivery cost will not be more than 2l1D.

In the interval (l1D,C
(1)
max(opt)], there is at most one batch at every delivery point, so

the delivery cost will not be more than bC
(1)
max(opt)
D

cD − l1D.

In the interval (C
(1)
max(opt), ρ

(2)
max(η)], there is at most one batch for Customer 2 at every

deliver point, and there is one batch in total for Customer 1, so the delivery cost will not

be more than ρ
(2)
max(η)− bC

(1)
max(opt)
D

cD +D.

TC(η) ≤ 2l1D + ρ(2)max(η)− l1D +D = ρ(2)max(η) + l1D +D

≤ C(2)
max(opt) + l1D + 2D

(4.7)

67



Therefore,

Z(η)

Z(opt)
=

D
(1)
max(η) +D

(2)
max(η) + TC(η)

D
(1)
max(opt) +D

(2)
max(opt) + TC(opt)

=
ρ
(1)
max(η) + 2T01 + ρ

(2)
max(η) + 2T02 + TC(η)

C
(1)
max(opt) + 2T01 + C

(2)
max(opt) + 2T02 + 2D

≤ ρ
(1)
max(η) + ρ

(2)
max(η) + TC(η)

C
(1)
max(opt) + C

(2)
max(opt) + 2D

≤ 2C
(1)
max(opt)− l1D +D + C

(2)
max(opt) +D + C

(2)
max(opt) + l1D + 2D

C
(1)
max(opt) + C

(2)
max(opt) + 2D

=
2C

(1)
max(opt) + 2C

(2)
max(opt) + 4D

C
(1)
max(opt) + C

(2)
max(opt) + 2D

= 2

(4.8)

From Corollary 4.1, there is no on-line algorithm with competitive ratio less than 2,

which completes the proof. �

Theorem 4.3. The competitive ratio of on-line algorithm SMH2 for SMP2 with k = 3 is

2 + 2
27

.

Let η be the algorithm schedule, (1, 2, 3) be the order of customer’ completion times in η,

and (i1, i2, i3) be the order of customer’ completion times in opt. Suppose that the last

idle delivery point before C
(1)
max(η) is l1D (l1 is a non-negative integer). From the proof of

the Theorem 4.2, the transportation time will not affect the result, so in the following it

is assumed that T0i = 0 for i = 1, 2, 3. The proof of this theorem is completed by proving

the following three lemmas.

Lemma 4.3. If there is idle delivery point between C
(1)
max(η) and C

(2)
max(η), the algorithm

is 2 + 1
22

competitive.

Proof of Lemma 4.3: Suppose that the last idle delivery point in (C
(1)
max(η), C

(2)
max(η)] be

l2D (l2 is a positive integer and l2 > l1). The preparation after l2D is equivalent to the

68



case k = 2, so (i1, i2, i3) = (1, 2, 3) from Theorem 4.2. Figure 4.1 shows the jobs processing

in η under this situation.

η:

0 l1D Cmax(J (1)) C
(1)
max(η) l2D C

(2)
max(η) C

(3)
max(η) ρ

(3)
max(η)

=C
(1)
max(opt)

Figure 4.1. The Jobs Processing in η (1)

In the interval (0, l1D], there are at most three batches for every delivery point, so the

deliver cost will not be more than 3l1D.

In the interval (l1D,C
(1)
max(opt)], there are at most two batches for every delivery point,

so the deliver cost will not be more than 2(bC
(1)
max(opt)
D

c − l1)D.

In the interval (C
(1)
max(opt), C

(1)
max(η)], all the jobs of Customer 1 are released, so the jobs

of Customer 2 and Customer 3 processed in this interval must be released before C
(1)
max(opt),

which implies that there are at most two batches in total for these two customers. Suppose

that the delivery cost in this interval is sD, where s is a non-negative integer not greater

than 2.

In the interval (C
(1)
max(η), l2D], there is at most two batch for every delivery point for

Customer 2 and Customer 3, and there is one batch in total for Customer 1, so the delivery

cost will not be more than 2(l2 − bC
(1)
max(η)
D
c)D +D.

In the interval (l2D, ρ
(3)
max(η)], there is at most one batch for every delivery point except

dC
(2)
max(η)
D
eD, and there is at most two batches at dC

(2)
max(η)
D
eD, so the delivery cost will not
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be more than (dC
(3)
max(η)
D
e − l2)D +D.

TC(η) ≤ 3l1D + 2(bC
(1)
max(opt)

D
c − l1)D + sD + 2(l2 − b

C
(1)
max(η)

D
c)D +D+

(dC
(2)
max(η)

D
e − l2)D +D

≤ l1D + 2C(1)
max(opt)− 2(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD) + l2D−

2bC
(1)
max(η)

D
cD + C(3)

max(η) + (s+ 3)D

(4.9)

Therefore,

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + dC

(3)
max(η)

D
eD + TC(η)

≤ 2C(1)
max(opt) + 2C(3)

max(η) + (s+ 6)D + l1D + l2D + C(2)
max(η)−

bC
(1)
max(η)

D
cD − 2(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

(4.10)

For the jobs processing in the interval (l2D,C
(2)
max(η)], the similar way in the Theorem 4.2

can be applied to show C
(2)
max(η) ≤ l2D + 2(C

(2)
max(opt) − l2D), which implies that l2D +

C
(2)
max(η) ≤ 2C

(2)
max(opt).

Case 1: C
(1)
max(η) ≥ l1D + D. In this case, bC

(1)
max(η)
D
c ≥ l1 + 1. Meanwhile, as l2D >

C
(1)
max(η), it should be satisfied that l2 ≥ l1+2. Furthermore, there is C

(1)
max(opt) ≥ l1D+ 1

3
D.

If not, the similar modifying method from the Theorem 4.2 can show C
(1)
max(η) ≤ l1D +

3(C
(1)
max(opt) − l1D) < l1D + D, which contradicts with the assumption. So, one can

conclude that C
(1)
max(opt) ≥ l1D + 1

3
D.

Case 1.1: C
(1)
max(opt) < l1D+D. Then, C

(1)
max(opt)−bC

(1)
max(opt)
D

cD = C
(1)
max(opt)− l1D >

1
3
D.

Z(opt) = C(1)
max(opt) + C(2)

max(opt) + C(3)
max(opt) + 3D

≥ l1D +
1

3
D + l2D + l2D + 3D

≥ 3l1D +
22

3
D ≥ 22

3
D.

(4.11)
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Therefore,

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(opt) + (s+ 6)D + l1D + 2C(2)
max(opt)− b

C
(1)
max(η)

D
cD

− 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(1)
max(opt) + 2C(1)

max(opt) + 2C(3)
max(opt) + 6D + (s− 1)D − 2 · 1

3
D

≤ 2Z(opt) +
1

3
D ≤ (2 +

1

22
)Z(opt).

(4.12)

Case 1.2: C
(1)
max(opt) ≥ l1D +D.

If dC
(1)
max(opt)
D

e = dC
(1)
max(η)
D
e, there is no delivery in the interval (C

(1)
max(opt), C

(1)
max(η)], and

then s = 0.

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(opt) + 6D + l1D + 2C(2)
max(opt)− b

C
(1)
max(η)

D
cD

− 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(1)
max(opt) + 2C(1)

max(opt) + 2C(3)
max(opt) + 6D = 2Z(opt).

(4.13)

If dC
(1)
max(opt)
D

e < dC
(1)
max(η)
D
e, bC

(1)
max(η)
D
c ≥ dC

(1)
max(opt)
D

e ≥ l1 + 2.

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(opt) + (s+ 6)D + l1D + 2C(2)
max(opt)− b

C
(1)
max(η)

D
cD

− 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(1)
max(opt) + 2C(1)

max(opt) + 2C(3)
max(opt) + 6D + sD − 2D ≤ 2Z(opt).

(4.14)

Case 2: C
(1)
max(η) < l1D+D. There is no delivery in the interval (C

(1)
max(opt), C

(1)
max(η)],

so s = 0.

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(opt) + 6D + l1D + 2C(2)
max(opt)− b

C
(1)
max(η)

D
cD

− 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(1)
max(opt) + 2C(1)

max(opt) + 2C(3)
max(opt) + 6D = 2Z(opt).

(4.15)

As such, this lemma is proved. �
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Lemma 4.4. If there is no idle delivery point between C
(1)
max(η) and C

(2)
max(η) and (i1, i2, i3) =

(1, 2, 3), the algorithm is 2 + 2
27

competitive.

Proof of Lemma 4.4: Figure 4.2 shows the jobs processing in η under this situation.

η:

0 l1D C
(1)
max(opt) C

(1)
max(η) C

(2)
max(η) C

(3)
max(η) ρ

(3)
max(η)

Figure 4.2. The Jobs Preparation in η (2)

In the interval (0, l1D], there are at most three batches for every delivery point, so the

deliver cost will not be more than 3l1D.

In the interval (l1D,C
(1)
max(opt)], there are at most two batches for every delivery point,

so the deliver cost will not be more than 2(bC
(1)
max(opt)
D

c − l1)D.

In the interval (C
(1)
max(opt), C

(1)
max(η)], all the jobs of Customer 1 are released, so the jobs

of Customer 2 and Customer 3 processed in this interval must be released before C
(1)
max(opt),

which implies that there are at most two batches in total for these two customers. Suppose

that the delivery cost in this interval is sD, where s is a non-negative integer not greater

than 2.

In the interval (C
(1)
max(η), ρ

(3)
max(η)], there is at most one batch for every delivery point

except dC
(1)
max(η)
D
eD and dC

(2)
max(η)
D
eD, and there is at most two batches at dC

(1)
max(η)
D
eD and

dC
(2)
max(η)
D
eD, so the delivery cost will not be more than (dC

(3)
max(η)
D
e − bC

(1)
max(η)
D
c)D + 2D.
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TC(η) ≤ 3l1D + 2(bC
(1)
max(opt)

D
c − l1)D + sD + (dC

(3)
max(η)

D
e−

bC
(1)
max(η)

D
c)D + 2D

≤ l1D + 2C(1)
max(opt)− 2(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)+

dC
(3)
max(η)

D
eD − bC

(1)
max(η)

D
cD + (s+ 2)D

(4.16)

Therefore,

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + dC

(3)
max(η)

D
eD + TC(η)

≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)−

bC
(1)
max(opt)

D
cD) + dC

(2)
max(η)

D
eD + (s+ 5)D

(4.17)

Case 1: C
(1)
max(η) ≥ l1D+D. Similar to case 1 in the Lemma 4.3, C

(1)
max(opt) ≥ l1D+ 1

3
D.

Case 1.1: C
(1)
max(opt) < l1D+D. Then, C

(1)
max(opt)−bC

(1)
max(opt)
D

cD = C
(1)
max(opt)− l1D ≥

1
3
D. It is easy to show that C

(2)
max(η) − l1D ≤ (C

(2)
max(opt) − l1D) + (Cmax(J (2)) − l1D)

which results in C
(2)
max(η) + l1D ≤ 2C

(2)
max(opt).

Case 1.1.1: s = 0.

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)−

bC
(1)
max(opt)

D
cD) + dC

(2)
max(η)

D
eD + 5D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D − 2(C(1)

max(opt)−

bC
(1)
max(opt)

D
cD)

≤ 2Z(opt)

(4.18)

Case 1.1.2: s = 1. Modify the jobs processing in the interval (l1D,C
(1)
max(η)] as the

priority order (1, 2, 3), such that all Customer 1’s jobs are completed at the time l1D +

P (1, 1), all Customer 2’s jobs are completed at the time l1D + P (1, 1) + P (1, 2), and all
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Customer 3’s jobs are completed at the time l1D+P (1, 1) +P (1, 2) +P (1, 3) (see Fig. 4).

It is clear that l1D+P (1, 1) = C
(1)
max(opt), P (1, 2) ≤ P (1, 1), and P (1, 3) ≤ P (1, 1). Modify

the jobs processing in the interval (C
(1)
max(η), C

(2)
max(η)] as the priority order (2, 3), such that

all Customer 2’s jobs are completed at the time C
(1)
max(η) + P (2, 2), and all Customer 3’s

jobs are completed at the time C
(1)
max(η)+P (2, 2)+P (2, 3) (see Figure 4.3). It is clear that

l1D + P (1, 1) + P (1, 2) + P (2, 2) ≤ C
(2)
max(opt), l1D + P (1, 2) + P (2, 2) ≤ Cmax(J (2)), and

l1D + P (1, 3) + P (2, 3) ≤ Cmax(J (2)).

η: P (1, 1) P (1, 2) P (1, 3) P (2, 2) P (2, 3)

l1D C
(1)
max(opt) C

(1)
max(η) C

(2)
max(η)

Figure 4.3. The Modified Jobs Processing in The Interval (l1D,C
(2)
max(η)]

If the delivery in the interval (C
(1)
max(opt), C

(1)
max(η)] is for Customer 3’s jobs, then Cus-

tomer 3’s jobs processed in the time period P (2, 3) are released later than l1D+D. Then,

l1D +D + P (2, 3) ≤ Cmax(J (2)).

dC
(2)
max(η)

D
eD + l1D

≤ C(2)
max(η) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (2, 2) + l1D +D + P (2, 3) + P (1, 3)

≤ 2C(2)
max(opt) + P (1, 3).

(4.19)
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Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D + P (1, 3)−

2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.20)

If the delivery in the interval (C
(1)
max(opt), C

(1)
max(η)] is for Customer 2’s jobs, then Cus-

tomer 2’s jobs processed in the time period P (2, 2) are released later than l1D+D. Then,

l1D +D + P (2, 2) ≤ Cmax(J (2)).

dC
(2)
max(η)

D
eD + l1D

≤ C(2)
max(η) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3) + l1D +D

= l1D + P (1, 3) + P (2, 3) + l1D +D + P (2, 2) + P (1, 1) + P (1, 2)

≤ 2C(2)
max(opt) + P (1, 1) + P (1, 2).

(4.21)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D + P (1, 1) + P (1, 2)−

2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.22)

Case 1.1.3: s = 2. There must be a delivery in the interval (C
(1)
max(opt), C

(1)
max(η)]

for for Customer 2’s jobs, so Customer 2’s jobs processed in the time period P (2, 2) are

released later than l1D + D which implies C
(2)
max(opt) > l1D + D + P (2, 2). Similarly,
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C
(2)
max(opt) > l1D +D + P (2, 3).

Case 1.1.3.1: C
(2)
max(η) ≤ l1D + 2D. In this case, dC

(2)
max(η)
D
eD + l1D = 2l1D + 2D <

2C
(2)
max(opt).

As

Z(opt) = C(1)
max(opt) + C(2)

max(opt) + C(3)
max(opt) + 3D

> l1D +
1

3
D + l1D +D + l1D +D + 3D ≥ 16

3
D,

(4.23)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 7D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D +D−

2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt) +
1

3
D ≤ (2 +

1

16
)Z(opt).

(4.24)

Case 1.1.3.2: C
(2)
max(η) > l1D + 2D.

l1D + 3P (1, 1) + P (2, 2) + P (2, 3)

≥ l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3)

= C(2)
max(η) > l1D + 2D

⇒ P (2, 2) + P (2, 3) ≥ 2D − 3P (1, 1)

(4.25)

Meanwhile, C
(2)
max(opt) ≥ l1D +D + 1

2
(P (2, 2) + P (2, 3)) ≥ l1D + 2D − 3

2
P (1, 1).

Therefore,

Z(opt) = C(1)
max(opt) + C(2)

max(opt) + C(3)
max(opt) + 3D

≥ l1D + P (1, 1) + l1D + 2D − 3

2
P (1, 1) + l1D + 2D + 3D

≥ 7D − 1

2
P (1, 1),

(4.26)
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In addition, from

dC
(2)
max(η)

D
eD + l1D +D

≤ C(2)
max(η) + l1D + 2D

= l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3) + l1D + 2D

= l1D +D + P (2, 2) + l1D +D + P (2, 3) + P (1, 1) + P (1, 2) + P (1, 3)

≤ 2C(1)
max(opt) + 3P (1, 1).

(4.27)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 7D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D + 3P (1, 1)−

2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt) + P (1, 1).

(4.28)

and

dC
(2)
max(η)

D
eD + l1D +D

≤ C(2)
max(η) + l1D + 2D

= l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3) + l1D + 2D

= l1D + P (1, 1) + P (1, 2) + P (2, 2) + l1D +D + P (2, 3) +D + P (1, 3)

≤ 2C(1)
max(opt) +D + P (1, 3).

(4.29)
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Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 7D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D +D + P (1, 3)−

2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt) +D − P (1, 1).

(4.30)

so

Z(η)

Z(opt)
≤ 2 +min{ P (1, 1)

7D − 1
2
P (1, 1)

,
D − P (1, 1)

7D − 1
2
P (1, 1)

}. (4.31)

where P (1, 1) ∈ [1
3
D,D). When P (1, 1) = 1

2
D, the right term will achieve the maximum

value 2 + 2
27

.

Case 1.2 C
(1)
max(opt) ≥ l1D +D.

Case 1.2.1: s = 0. Similar to case 1.1.1, Z(η) ≤ 2Z(opt).

Case 1.2.2: s = 1.

Case 1.2.2.1: there is a delivery in the interval (C
(1)
max(opt), C

(1)
max(η)] for Customer

2’s jobs. In this case, the delivery point bC
(1)
max(opt)
D

cD needs to be considered. If there

is no more than one batch at the delivery point bC
(1)
max(opt)
D

cD, then the result will be

similar to the case s = 0 which implies Z(η) ≤ 2Z(opt). Therefore, the case that there

are two batches at bC
(1)
max(opt)
D

cD should be explored. Modify the jobs processing in the

intervals (bC
(1)
max(opt)
D

cD,C(1)
max(η)] and (C

(1)
max(η), C

(2)
max(η)] in a similar way as case 1.1.2 (see

Figure 4.4).
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η: P ′(1, 1) P ′(1, 2) P ′(1, 3) P ′(2, 2) P ′(2, 3)

bC
(1)
max(opt)
D

cD C
(1)
max(opt) C

(1)
max(η) C

(2)
max(η)

Figure 4.4. The Modified Jobs Processing in The Interval (bC
(1)
max(opt)

D cD,C(2)
max(η)]

If the two batches are for Customer 1 and Customer 2 at bC
(1)
max(opt)
D

cD, then bC
(1)
max(opt)
D

cD+

P ′(1, 1) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 2) ≤ C
(1)
max(opt), dC

(1)
max(opt)
D

eD + P ′(2, 2) ≤

C
(2)
max(opt) and l1D + P ′(1, 3) + P ′(2, 3) ≤ C

(2)
max(opt).

dC
(2)
max(η)

D
eD + l1D

≤ C(2)
max(η) + l1D +D

= bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3) + P ′(2, 2) + P ′(2, 3) + l1D +D

= l1D + P ′(1, 3) + P ′(2, 3) + bC
(1)
max(opt)

D
cD +D + P ′(2, 2) + P ′(1, 1) + P ′(1, 2)

≤ 2C(2)
max(opt) + P ′(1, 1) + P ′(1, 2)

(4.32)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D + P ′(1, 1) + P ′(1, 2)−

2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.33)

If the two batches are for Customer 2 and Customer 3 at bC
(1)
max(opt)
D

cD, then bC
(1)
max(opt)
D

cD+

P ′(1, 2) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 3) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 3) +
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P ′(2, 3) ≤ C
(2)
max(opt) and dC

(1)
max(opt)
D

eD + P ′(2, 2) ≤ C
(2)
max(opt).

dC
(2)
max(η)

D
eD + l1D

≤ C(2)
max(η) + l1D +D

= bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3) + P ′(2, 2)+

P ′(2, 3) + l1D +D

= bC
(1)
max(opt)

D
cD + P ′(1, 3) + P ′(2, 3) + l1D + P ′(1, 1)+

P ′(2, 2) +D + P ′(1, 2)

≤ C(2)
max(opt) + C(1)

max(opt) + P ′(2, 2) +D + P ′(1, 2)

= C(2)
max(opt) + dC

(1)
max(opt)

D
eD + P ′(2, 2) + P ′(1, 2)+

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) + P ′(1, 2) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

(4.34)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D + P ′(1, 2)+

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)− 2(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.35)

If the two batches are for Customer 1 and Customer 3 at bC
(1)
max(opt)
D

cD, then bC
(1)
max(opt)
D

cD+

P ′(1, 1) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 3) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 3) +
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P ′(2, 3) ≤ C
(2)
max(opt) and dC

(1)
max(opt)
D

eD + P ′(2, 2) ≤ C
(2)
max(opt).

dC
(2)
max(η)

D
eD + l1D ≤ C(2)

max(η) + l1D +D

= bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3) + P ′(2, 2)+

P ′(2, 3) + l1D +D

= bC
(1)
max(opt)

D
cD + P ′(1, 3) + P ′(2, 3) + l1D + P ′(1, 2)+

P ′(2, 2) +D + P ′(1, 1)

≤ C(2)
max(opt) + C(1)

max(opt) + P ′(2, 2) +D + P ′(1, 1)

= C(2)
max(opt) + dC

(1)
max(opt)

D
eD + P ′(2, 2) + P ′(1, 1)+

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) + P ′(1, 1) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

(4.36)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

+ dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D + P ′(1, 1)+

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)− 2(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.37)

Case 1.2.2.2: there is a delivery in the interval (C
(1)
max(opt), C

(1)
max(η)] for Customer 3’s

jobs.
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dC
(2)
max(η)

D
eD + l1D ≤ C(2)

max(η) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (2, 2) + l1D +D + P (2, 3) + P (1, 3)

≤ C(2)
max(opt) + dC

(1)
max(opt)

D
eD + P (2, 3) + l1D +D + P (1, 3)− dC

(1)
max(opt)

D
eD

≤ 2C(2)
max(opt) + l1D + P (1, 3)− bC

(1)
max(opt)

D
cD

≤ 2C(2)
max(opt) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

(4.38)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D−

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.39)

Case 1.2.3: s = 2. Then, dC
(1)
max(opt)
D

eD + P ′(2, 2) ≤ C
(2)
max(opt) and dC

(1)
max(opt)
D

eD +

P ′(2, 3) ≤ C
(2)
max(opt).

Case 1.2.3.1: There is no batch at the delivery point bC
(1)
max(opt)
D

cD. This is similar to

the case s = 0, which implies Z(η) ≤ 2Z(opt).

Case 1.2.3.2: There is one batch at the delivery point bC
(1)
max(opt)
D

cD.
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dC
(2)
max(η)

D
eD + l1D ≤ C(2)

max(η) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (1, 3) + P (2, 2) + P (2, 3) + l1D +D

= l1D + P (1, 1) + P (1, 2) + P (2, 2) + l1D + P (1, 3) +D + P (2, 3)

≤ C(2)
max(opt) + C(1)

max(opt) +D + P (2, 3)

= C(2)
max(opt) + dC

(1)
max(opt)

D
eD + P (2, 3) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

(4.40)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 6D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D−

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt).

(4.41)

Case 1.2.3.3: There is two batches at the delivery point bC
(1)
max(opt)
D

cD.

If the two batches are for Customer 1 and Customer 2 at bC
(1)
max(opt)
D

cD, then bC
(1)
max(opt)
D

cD+

P ′(1, 1) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 2) ≤ C
(1)
max(opt).
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dC
(2)
max(η)

D
eD + l1D +D ≤ C(2)

max(η) + l1D + 2D

= l1D + 2D + bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3)+

P ′(2, 2) + P ′(2, 3)

= l1D + P ′(1, 3) + P ′(2, 3) +D + bC
(1)
max(opt)

D
cD + P ′(2, 2) +D+

P ′(1, 1) + P ′(1, 2) +D

≤ C(1)
max(opt) + P ′(2, 3) +D + dC

(1)
max(opt)

D
eD + P ′(2, 2) + P ′(1, 1) + P ′(1, 2)

≤ dC
(1)
max(opt)

D
eD + P ′(2, 3) + dC

(1)
max(opt)

D
eD + P ′(2, 2) + P ′(1, 1) + P ′(1, 2)

+ (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) + 3(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD).

(4.42)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 7D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D+

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt) + (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD).

(4.43)
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Meanwhile,

dC
(2)
max(η)

D
eD + l1D +D ≤ C(2)

max(η) + l1D + 2D

= l1D + 2D + bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3)+

P ′(2, 2) + P ′(2, 3)

= l1D + P ′(1, 3) + P ′(2, 3) +D + bC
(1)
max(opt)

D
cD+

P ′(1, 1) + P ′(1, 2) + P ′(2, 2) +D

≤ C(1)
max(opt) + P ′(2, 3) +D + C(2)

max(opt) +D

≤ dC
(1)
max(opt)

D
eD + P ′(2, 3) + C(2)

max(opt) +D + (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) +D + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD).

(4.44)

Z(η) ≤ 2C(1)
max(opt) + 2C(3)

max(η) + l1D − 2(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

dC
(2)
max(η)

D
eD + 7D

≤ 2C(1)
max(opt) + 2C(2)

max(opt) + 2C(3)
max(opt) + 6D +D−

(C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2Z(opt) +D − (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD).

(4.45)

As

Z(opt) = C(1)
max(opt) + C(2)

max(opt) + C(3)
max(opt) + 3D

≥ bC
(1)
max(opt)

D
cD + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)+

dC
(1)
max(opt)

D
eD + dC

(1)
max(opt)

D
eD + 3D

≥ l1D +D + (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)+

lD + 2D + l1D + 2D + 3D

≥ 8D + (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD).

(4.46)
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Therefore,

Z(η)

Z(opt)
≤ 2 +min{

(C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)

8D + (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)
,

D − (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)

8D + (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)
}.

(4.47)

where C
(1)
max(opt)−bC

(1)
max(opt)
D

cD ∈ [0, D). When C
(1)
max(opt)−bC

(1)
max(opt)
D

cD = 1
2
D, the right

term achieves the maximum value 2 + 1
17

.

If the two batches are for Customer 1 and Customer 3 at bC
(1)
max(opt)
D

cD, then bC
(1)
max(opt)
D

cD+

P ′(1, 1) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 3) ≤ C
(1)
max(opt).

dC
(2)
max(η)

D
eD + l1D +D ≤ C(2)

max(η) + l1D + 2D

= l1D + 2D + bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3)+

P ′(2, 2) + P ′(2, 3)

= l1D + P ′(1, 2) + P ′(2, 2) +D + bC
(1)
max(opt)

D
cD + P ′(2, 3) +D+

P ′(1, 1) + P ′(1, 3) +D

≤ C(1)
max(opt) + P ′(2, 2) +D + dC

(1)
max(opt)

D
eD + P ′(2, 3) + P ′(1, 1) + P ′(1, 3)

≤ dC
(1)
max(opt)

D
eD + P ′(2, 2) + dC

(1)
max(opt)

D
eD + P ′(2, 3) + P ′(1, 1) + P ′(1, 3)

+ (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) + 3(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD).

(4.48)

Z(η) ≤ 2Z(opt) + (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD). (4.49)
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Meanwhile,

dC
(2)
max(η)

D
eD + l1D +D ≤ C(2)

max(η) + l1D + 2D

= l1D + 2D + bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3)+

P ′(2, 2) + P ′(2, 3)

= l1D + P ′(1, 1) + P ′(1, 2) + P ′(2, 2) +D + bC
(1)
max(opt)

D
cD+

P ′(1, 3) + P ′(2, 3) +D

≤ C(2)
max(opt) +D + C(1)

max(opt) + P ′(2, 3) +D

≤ C(2)
max(opt) +D + dC

(1)
max(opt)

D
eD + P ′(2, 3) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) +D + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD).

(4.50)

Z(η) ≤ 2Z(opt) +D − (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD). (4.51)

Therefore,

Z(η)

Z(opt)
≤ 2 +min{

(C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)

8D + (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)
,

D − (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)

8D + (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)
}

≤ 2 +
1

17
.

(4.52)

If the two batches are for Customer 2 and Customer 3 at bC
(1)
max(opt)
D

cD, then bC
(1)
max(opt)
D

cD+

P ′(1, 2) ≤ C
(1)
max(opt), bC

(1)
max(opt)
D

cD + P ′(1, 2) ≤ C
(1)
max(opt).
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dC
(2)
max(η)

D
eD + l1D +D ≤ C(2)

max(η) + l1D + 2D

= l1D + 2D + bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3)+

P ′(2, 2) + P ′(2, 3)

= l1D + P ′(1, 1) + P ′(2, 2) +D + bC
(1)
max(opt)

D
cD + P ′(2, 3) +D+

P ′(1, 2) + P ′(1, 3) +D

≤ C(1)
max(opt) + P ′(2, 2) +D + dC

(1)
max(opt)

D
eD + P ′(2, 3) + P ′(1, 2) + P ′(1, 3)

≤ dC
(1)
max(opt)

D
eD + P ′(2, 2) + dC

(1)
max(opt)

D
eD + P ′(2, 3) + P ′(1, 2) + P ′(1, 3)

+ (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) + 3(C(1)

max(opt)− b
C

(1)
max(opt)

D
cD).

(4.53)

Z(η) ≤ 2Z(opt) + (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD). (4.54)

Meanwhile,

dC
(2)
max(η)

D
eD + l1D +D ≤ C(2)

max(η) + l1D + 2D

= l1D + 2D + bC
(1)
max(opt)

D
cD + P ′(1, 1) + P ′(1, 2) + P ′(1, 3)+

P ′(2, 2) + P ′(2, 3)

= l1D + P ′(1, 1) + P ′(1, 2) + P ′(2, 2) +D + bC
(1)
max(opt)

D
cD+

P ′(1, 3) + P ′(2, 3) +D

≤ C(2)
max(opt) +D + C(1)

max(opt) + P ′(2, 3) +D

≤ C(2)
max(opt) +D + dC

(1)
max(opt)

D
eD + P ′(2, 3) + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD)

≤ 2C(2)
max(opt) +D + (C(1)

max(opt)− b
C

(1)
max(opt)

D
cD).

(4.55)

Z(η) ≤ 2Z(opt) +D − (C(1)
max(opt)− b

C
(1)
max(opt)

D
cD). (4.56)
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Therefore,

Z(η)

Z(opt)
≤ 2 +min{

(C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)

8D + (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)
,

D − (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)

8D + (C
(1)
max(opt)− bC

(1)
max(opt)
D

cD)
}

≤ 2 +
1

17
.

(4.57)

As such, this lemma is proved. �

Lemma 4.5. If there is no idle delivery point between C
(1)
max(η) and C

(2)
max(η) and (i1, i2, i3) 6=

(1, 2, 3), the algorithm is 2 + 1
16

competitive.

Proof of Lemma 4.5: As (i1, i2, i3) 6= (1, 2, 3), there must be i2 = 3.

Case 1: C
(i2)
max(opt) ≤ C

(1)
max(η). Figure 4.5 shows the jobs processing in η under this

situation.

η:

0 l1D Cmax(J (1)) C
(i2)
max(opt) C

(1)
max(η) C

(2)
max(η) C

(3)
max(η) ρ

(3)
max(η)

Figure 4.5. The Jobs Processing in η (3)

In the interval (0, l1D], there are at most three batches for every delivery point, so the

deliver cost will not be more than 3l1D.

In the interval (l1D,Cmax(J (1))], there are at most two batches for every delivery

point, so the deliver cost will not be more than 2(bCmax(J (1))
D

c − l1)D.

In the interval (Cmax(J (1)), C
(i2)
max(opt)], all the jobs of Customer 1 are released, so the

jobs of Customer 2 and Customer 3 processed in this interval must be released before
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Cmax(J (1)), which implies that there are at most two batches in total for these two cus-

tomers. Suppose that the delivery cost in this interval is sD, where s is a non-negative

integer not greater than 2.

In the interval (C
(i2)
max(opt), ρ

(3)
max(η)], all the jobs are known and there are at most three

batches, so the delivery cost will not be more than 3D.

TC(η) ≤ 3l1D + 2(bCmax(J
(1))

D
c − l1)D + sD + 3D

= l1D + bCmax(J
(1))

D
cD + (s+ 3)D.

(4.58)

Therefore,

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + dC

(3)
max(η)

D
eD + TC(η)

= 2Cmax(J (1)) + (s+ 3)D + dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + dC

(3)
max(η)

D
eD+

l1D − 2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + C(1)

max(η) + l1D + sD−

2(Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.59)

As all the jobs are known after C
(i2)
max(opt), the jobs processing in the interval (C

(i2)
max(opt), C

(1)
max(η)]

are continuous and all for Customer 1.

l1D + C(1)
max(η) ≤ l1D + C(i2)

max(opt) + Cmax(J (1))− l1D

= C(i2)
max(opt) + Cmax(J (1)) ≤ 2C(i2)

max(opt).

(4.60)

In addition, if s ≥ 1,it must be satisfied that C
(i2)
max(opt) ≥ dCmax(J (1))

D
eD ≥ l1D +D.

Case 1.1: s = 0.
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Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2C(i1)
max(opt) + 2C(i2)

max(opt) + 2C(i3)
max(opt) + 6D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt).

(4.61)

Case 1.2: s = 1.

l1D +D + C(1)
max(η)− 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

≤ C(i2)
max(opt) + Cmax(J (1)) +D − 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

= C(i2)
max(opt) + dCmax(J

(1))

D
eD − (Cmax(J (1))− bCmax(J

(1))

D
cD).

(4.62)

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D +D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2C(i1)
max(opt) + 2C(i2)

max(opt) + 2C(i3)
max(opt) + 6D−

(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt).

(4.63)

Case 1.3: s = 2.

Case 1.3.1: i1 = 2.

If the two batches in the interval (Cmax(J (1)), C
(i2)
max(opt)] are both delivered at the

time dCmax(J (1))
D

eD, there is dCmax(J (1))
D

eD ≤ Cmax(J (2)) and C
(1)
max(η) ≤ dCmax(J (1))

D
eD +

Cmax(J (1) − l1D.
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Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D+

dCmax(J
(1))

D
eD + Cmax(J (1))− 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

= 2C(3)
max(η) + 6D + dCmax(J

(1))

D
eD + Cmax(J (1)) + 2D + 2bCmax(J

(1))

D
cD

≤ 2C(3)
max(η) + 6D + 2Cmax(J (2) + 2dCmax(J

(1))

D
eD

≤ 2C(i3)
max(opt) + 6D + 2C(i1)

max(opt) + 2C(i2)
max(opt)

= 2Z(opt).

(4.64)

If at least one batch in the interval (Cmax(J (1)), C
(i2)
max(opt)] is delivered later than

dCmax(J (1))
D

eD, then C
(i2)
max(opt) ≥ dCmax(J (1))

D
eD+D and C

(1)
max(η) ≤ C

(i2)
max(opt)+Cmax(J (1)−

l1D.

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(i2)

max(opt)+

Cmax(J (1))− 2(Cmax(J (1))− bCmax(J
(1))

D
cD)

= 2Cmax(J (1)) + 2C(3)
max(η) + 6D + C(i2)

max(opt) + bCmax(J
(1))

D
cD+

2D − (Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt)−

(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2C(i1)
max(opt) + 2C(i3)

max(opt) + 6D + 2C(i2)
max(opt) = 2Z(opt).

(4.65)
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Case 1.3.2: i1 = 1.

If at least one batch in the interval (Cmax(J (1)), C
(i2)
max(opt)] is delivered later than

dCmax(J (1))
D

eD, it is similar to the above case and there is Z(η) ≤ 2Z(opt).

If the two batches in the interval (Cmax(J (1)), C
(i2)
max(opt)] are both delivered at the time

dCmax(J (1))
D

eD, the batches at the delivery point bCmax(J (1))
D

cD need to be investigated.

Case 1.3.2.1: Cmax(J (1)) > l1D + D. In this case, we have C
(i2)
max(opt) ≥ l1D + 2D. If

there is at most one batch at the delivery point bCmax(J (1))
D

cD, it is similar to the cases

s = 0 and s = 1, and we have Z(η) ≤ Z(opt). Next, the case that there are two batches

at the delivery point bCmax(J (1))
D

cD is explored.

Suppose that the two batches are for Customer 1 and Customer 2, or for Customer 1

and Customer 3.

C(1)
max(η) + l1D + 2D ≤ C(i2)

max(opt) + Cmax(J (1))− bCmax(J
(1))

D
cD + l1D + 2D

≤ 2C(i2)
max(opt) + (Cmax(J (1))− bCmax(J

(1))

D
cD).

(4.66)

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt)+

(Cmax(J (1))− bCmax(J
(1))

D
cD)

− 2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2C(i1)
max(opt) + 2C(i3)

max(opt) + 6D + 2C(i2)
max(opt)

= 2Z(opt).

(4.67)

93



Suppose that the two batches are for Customer 2 and Customer 3.

C(1)
max(η) + l1D + 2D

≤ bCmax(J
(1))

D
cD + 2(Cmax(J (1))− bCmax(J

(1))

D
cD)+

Cmax(J (1))− l1D + l1D + 2D

≤ dCmax(J
(1))

D
eD + Cmax(J (1)) + 2(Cmax(J (1))− bCmax(J

(1))

D
cD) +D

≤ 2dCmax(J
(1))

D
eD + 3(Cmax(J (1))− bCmax(J

(1))

D
cD)

≤ 2C(i2)
max(opt) + 3(Cmax(J (1))− bCmax(J

(1))

D
cD)

(4.68)

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt) + 3(Cmax(J (1))−

bCmax(J
(1))

D
cD)− 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

= 2C(i1)
max(opt) + 2C(i3)

max(opt) + 6D + 2C(i2)
max(opt)+

(Cmax(J (1))− bCmax(J
(1))

D
cD)

= 2Z(opt) + (Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.69)

Meanwhile,

C(1)
max(η) + l1D + 2D

≤ C(i2)
max(opt) + Cmax(J (1))− l1D + l1D + 2D

= C(i2)
max(opt) + Cmax(J (1)) +D +D

= C(i2)
max(opt) + dCmax(J

(1))

D
eD + (Cmax(J (1))− bCmax(J

(1))

D
cD) +D

≤ 2C(i2)
max(opt) +D + (Cmax(J (1))− bCmax(J

(1))

D
cD)

(4.70)
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Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(1)

max(η) + l1D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt) +D+

(Cmax(J (1))− bCmax(J
(1))

D
cD)− 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

= 2C(i1)
max(opt) + 2C(i3)

max(opt) + 6D + 2C(i2)
max(opt) +D−

(Cmax(J (1))− bCmax(J
(1))

D
cD)

= 2Z(opt) +D − (Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.71)

As C
(i1)
max(opt) = Cmax(J (1)) ≥ l1D + D + (Cmax(J (1)) − bCmax(J (1))

D
cD) and C

(i3)
max(opt) ≥

C
(i2)
max(opt) ≥ l1D + 2D, there is Z(opt) = C

(i1)
max(opt) + C

(i2)
max(opt) + C

(i3)
max(opt) + 3D ≥

8D + (Cmax(J (1))− bCmax(J (1))
D

cD).

Therefore,

Z(η)

Z(opt)
≤ 2 +min{

(Cmax(J (1))− bCmax(J (1))
D

cD)

8D + (Cmax(J (1))− bCmax(J (1))
D

cD)
,

D − (Cmax(J (1))− bCmax(J (1))
D

cD)

8D + (Cmax(J (1))− bCmax(J (1))
D

cD)
}

≤ 2 +
1

17
.

(4.72)

Case 1.3.2.2: Cmax(J (1)) ≤ l1D+D. As there are batches in the interval (Cmax(J (1)),

C
(i2)
max(opt)], C

(i2)
max(opt) ≥ l1D + D and C

(1)
max(η) ≥ l1D + D. Then, Z(opt) = C

(i1)
max(opt) +

C
(i2)
max(opt) + C

(i3)
max(opt) + 3D ≥ 5D + (Cmax(J (1))− bCmax(J (1))

D
cD)

If C
(1)
max(η) ≤ l1D+2D, dCmax(J (1))

D
eD = l1D+2D. As C

(1)
max(η) ≥ l1D+D, Cmax(J (1))−

bCmax(J (1))
D

cD ≥ 1
3
D

dC
(1)
max(η)

D
eD + l1D +D = 2l1D + 3D ≤ 2C(i2)

max(opt) +D. (4.73)
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Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D +D + dC

(1)
max(η)

D
eD+

l1D − 2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt)+

D − 2(Cmax(J (1))− bCmax(J
(1))

D
cD)

= 2Z(opt) +D − 2(Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.74)

Therefore,

Z(η)

Z(opt)
≤ 2 +

D − 2(Cmax(J (1))− bCmax(J (1))
D

cD)

5D + (Cmax(J (1))− bCmax(J (1))
D

cD)

≤ 2 +
1

16
.

(4.75)

If C
(1)
max(η) > l1D + 2D, Cmax(J (1))− bCmax(J (1))

D
cD ≥ 2

3
D.

C(1)
max(η) + l1D + 2D

≤ dCmax(J
(1))

D
eD + Cmax(J (1))− l1D + l1D + 2D

≤ dCmax(J
(1))

D
eD + Cmax(J (1)) + 2D

≤ 2dCmax(J
(1))

D
eD +D + (Cmax(J (1))− bCmax(J

(1))

D
cD)

≤ 2C(i2)
max(opt) +D + (Cmax(J (1))− bCmax(J

(1))

D
cD).

(4.76)

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + C(1)

max(η)+

l1D − 2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt) +D − (Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.77)

Therefore,

Z(η)

Z(opt)
≤ 2 +

D − (Cmax(J (1))− bCmax(J (1))
D

cD)

5D + (Cmax(J (1))− bCmax(J (1))
D

cD)

≤ 2 +
1

17
.

(4.78)
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Case 2: C
(i2)
max(opt) > C

(1)
max(η). Figure 4.6 shows the jobs processing in η under this

situation.

0 l1D Cmax(J (1)) C
(1)
max(η) C

(i2)
max(opt) C

(2)
max(η) C

(3)
max(η) ρ

(3)
max(η)

Figure 4.6. The Jobs Processing in η (4)

In the interval (0, l1D], there are at most three batches for every delivery point, so the

deliver cost will not be more than 3l1D.

In the interval (l1D,Cmax(J (1))], there are at most two batches for every delivery

point, so the deliver cost will not be more than 2(bCmax(J (1))
D

c − l1)D.

In the interval (Cmax(J (1)), C
(1)
max(η)], all the jobs of Customer 1 are released, so the

jobs of Customer 2 and Customer 3 processed in this interval must be released before

Cmax(J (1)), which implies that there are at most two batches in total for these two aid

sites. Suppose that the delivery cost in this interval is sD, where s is a non-negative

integer not greater than 2.

In the interval (C
(1)
max(η), C

(i2)
max(opt)], there is at most one batch for every delivery point,

and there is one batch in total for customer 1, so the delivery cost will not be more than

(bC
(i2)
max(opt)
D

c − bC
(1)
max(η)
D
c)D +D

In the interval (C
(i2)
max(opt), ρ

(3)
max(η)], all the jobs are known and there are at most two

batches, so the delivery cost will not be more than 2D.
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TC(η) ≤ 3l1D + 2(bCmax(J
(1))

D
c − l1)D + sD+

(bC
(i2)
max(opt)

D
c − bC

(1)
max(η)

D
c)D +D + 2D

= l1D + 2bCmax(J
(1))

D
cD + (s+ 3)D + (bC

(i2)
max(opt)

D
c − bC

(1)
max(η)

D
c)D.

(4.79)

Therefore,

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + dC

(3)
max(η)

D
eD + TC(η)

= 2Cmax(J (1)) + 2C(3)
max(η) + 6D + (s− 1)D + l1D + dC

(1)
max(η)

D
eD+

(bC
(i2)
max(opt)

D
c − bC

(1)
max(η)

D
c)D − 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + sD + l1D + bC

(i2)
max(opt)

D
cD−

2(Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.80)

Case 2.1: s = 0.

As l1D + bC
(i2)
max(opt)
D

cD ≤ 2C
(i2)
max(opt),

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + l1D + bC

(i2)
max(opt)

D
cD − 2(Cmax(J (1))−

bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt)−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt).

(4.81)

Case 2.2: s = 1. As there is one batch in the interval (Cmax(J (1)), C
(1)
max(η)], there is

C
(1)
max(η) ≥ l1D + D and C

(i2)
max(opt) ≥ l1D + D which implies l1D + D + bC

(i2)
max(opt)
D

cD ≤

2C
(i2)
max(opt).
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Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D +D + l1D+

bC
(i2)
max(opt)

D
cD − 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt)−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt).

(4.82)

Case 2.3: s = 2. Similarly, C
(i2)
max(opt) ≥ l1D +D.

Case 2.3.1: C
(i2)
max(opt) ≥ l1D+2D. In this case, l1D+2D+bC

(i2)
max(opt)
D

cD ≤ 2C
(i2)
max(opt).

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + l1D+

bC
(i2)
max(opt)

D
cD − 2(Cmax(J (1))− bCmax(J

(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt)−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt).

(4.83)

Case 2.3.2: C
(i2)
max(opt) < l1D+2D. As Cmax(J (1)) ≤ l1D+D and C

(1)
max(η) ≥ l1D+D,

there is (Cmax(J (1)) − bCmax(J (1))
D

cD) ≥ 1
3
D. Then, Z(opt) = C

(i1)
max(opt) + C

(i2)
max(opt) +

C
(i3)
max(opt) + 3D ≥ 5D + (Cmax(J (1))− bCmax(J (1))

D
cD).

As l1D +D + bC
(i2)
max(opt)
D

cD ≤ 2C
(i2)
max(opt),

Z(η) ≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2D + l1D + bC

(i2)
max(opt)

D
cD−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Cmax(J (1)) + 2C(3)
max(η) + 6D + 2C(i2)

max(opt) +D−

2(Cmax(J (1))− bCmax(J
(1))

D
cD)

≤ 2Z(opt) +D − 2(Cmax(J (1))− bCmax(J
(1))

D
cD).

(4.84)
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Z(η)

Z(opt)
≤ 2 +

D − 2(Cmax(J (1))− bCmax(J (1))
D

cD)

5D + (Cmax(J (1))− bCmax(J (1))
D

cD)

≤ 2 +
1

16
.

(4.85)

As such, this lemma is proved. �

Proof of Theorem 4.3: From the above three lemmas, one can conclude that the

competitive ratio of SMH2 is not greater than 2 + 2
27

for k = 3. At last, it only needs to

show that there is an instance such that the ratio of the algorithm result to the optimal

result can achieve 2 + 2
27

. The instance can be constructed as follows: for Customer 1,

there is one job J
(1)
1 = (0, 1

2
+ ε); for Customer 2, there are two jobs J

(2)
1 = (0, 1

2
) and

J
(2)
2 = (1, 1

4
+ ε); for Customer 3, there are three jobs J

(3)
1 = (0, 1

2
− ε), J

(3)
2 = (1, 1

4
),

and J
(3)
3 = (2 + ε, ε); the delivery cost D = 1 (ε is a very small positive number). The

algorithm will process the jobs in the order (J
(3)
1 , J

(2)
1 , J

(1)
1 , J

(3)
2 , J

(2)
2 , J

(3)
3 ), deliver J

(3)
1 and

J
(2)
1 in tow batches at time 1, deliver J

(1)
1 and J

(3)
2 in two batches at time 2 and deliver

J
(2)
2 and J

(3)
3 at time 3, so Z(η) = 2 + 3 + 3 + 6 = 14 (see Figure 4.7). However, the off-

line optimal schedule should process the jobs in the order (J
(1)
1 , J

(2)
1 , J

(2)
2 , J

(3)
1 , J

(3)
2 , J

(3)
3 ),

deliver three batches for the three customers respectively when their jobs are completed,

so Z(opt) = 1
2

+ ε + 5
4

+ 2ε + 2 + 2ε + 3 = 27
4

+ 5ε (see Figure 4.7). Therefore, the ratio

Z(η)
Z(opt)

= 14
27
4
+5ε

will tend to 14
27
4

= 2 + 2
27

as ε tends to 0.
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η: J
(3)
1 J

(2)
1 J

(1)
1 J

(3)
2 J

(2)
2 J

(3)
3

0 1
2
− ε 1− ε 3

2
7
4

2 + ε 2 + 2ε

opt: J
(1)
1 J

(2)
1 J

(2)
2 J

(3)
1 J

(3)
2 J

(3)
3

0 1
2

+ ε 1 + ε 5
4

+ 2ε 7
4

+ ε 2 + ε 2 + 2ε

Figure 4.7. The Jobs Processing for The Worst Instance

This completes the proof of Theorem 4.3. �

For the case that k is greater than 3, the performance of the algorithm will be shown in

the simulated experiment.

4.3 Algorithm for Problem SMP3

SMP3 has the following features: Jobs are released off-line and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough.

Similar to the induction in Section 4.1, it can be shown that SMP3 is equivalent to the

agent scheduling problem 1|rj|
∑
C

(i)
max. The assumption that T0i = 0 for all i and D = 0

can also be applied. As the preemption of job processing is forbidden, the intractability

of the problem has increased. Actually, SMP3 is NP-hard even k = 2 [Ding and Sun,

2010]. When k is a parameter, SMP3 is SNP-hard and can be proved by polynomially

transforming a SNPC problem to the decision version of SMP3.

Theorem 4.4. The problem SMP3 is SNP-hard when k is a parameter.
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Proof of Theorem 4.4: This statement is proved by showing that 3-Partition problem

(a famous SNPC problem [Garey and Johnson , 1975]) can be polynomially transformed

to the decision version of SMP3.

3-Partition. Given a set of 3t positive integers S = {b1, b2, · · · , b3t}, where
∑
bl = tB

and B
4
< bl <

B
2

, can S be partitioned in to t disjoint subsets S1, S2, · · · , St, which can

further cover S such that the sum of the numbers in each subset is equal?

Construct an instance of the decision version of SMP3 from 3-Partition problem as

follows. There are t+ 1 aid sites. For Customer i (i = 1, 2, · · · , t), there is a job released

at r
(i)
1 = iB + (i − 1)ε with processing time p

(i)
1 = ε where ε =

min
l 6=h
{|bl−bh|}

3t
. For the

(t + 1)th customer, he releases 3t jobs at r
(t+1)
j = 0 with processing time p

(t+1)
j = bj

(j = 1, 2, · · · , 3t), and the last job at r
(t+1)
3t+1 = tB+ tε with processing time p

(t+1)
3t+1 = ε. The

question is whether there is a feasible solution η such that Z(η) ≤ t(t+3)
2

(B + ε) + ε.

If 3-Partition problem has a solution, then the jobs of Customer i (i = 1, 2, · · · , t) can

be processed immediately after they are released, while the jobs of Customer t+ 1 can be

scheduled on the machine without idle time. Therefore, Z =
∑t

i=1 i(B+ε)+ t(B+ε)+ε =

t(t+3)
2

(B + ε) + ε.

If the instance of decision version of SMP3 has a feasible solution η such that Z(η) ≤

t(t+3)
2

(B+ε)+ε, then it needs to show that the jobs of Customer i (i = 1, 2, · · · , t) cannot be

delayed. As Cmax(J (i)) = iB+(i−1)ε+ε = i(B+ε) for i = 1, 2, · · · , t, and Cmax(J (t+1)) =

tB+tε+ε, Z(η) =
∑t+1

i=1 C
(i)
max(η) ≥

∑t
i=1 i(B+ε)+tB+tε+ε = t(t+3)

2
(B+ε)+ε. Therefore,

C
(i)
max(η) = i(B + ε) for i = 1, 2, · · · , t, and C

(t+1)
max (η) = tB + tε+ ε, which implies that the

jobs of Customer i (i = 1, 2, · · · , t) and the last job of Customer t+ 1 must be processed

immediately after they are released. Then, the first 3t jobs of Customer t + 1 need to be
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processed in the remaining t equal parts such that the last job is not delayed. Thus, the

3-Partition problem has a solution. �

For any schedule η of SMP3 with customers’ completion order
◦
η = (i1, i2, · · · , ik), a relax

schedule
◦
ηR can be constructed as follows. Schedule Customer i1’s jobs first, and then

Customer i2’s jobs, and so on. The rule is that the processing of every job is as early as

possible and do not delay the prepared of previous ones.

In order to develop an algorithm for SMP3, the relationship between SMP3 and the classic

scheduling problem 1|ri|
∑
Ci will be investigated. Actually, a problem P̄: 1|r̄i|

∑
C̄i can

be constructed from SMP3 through the following steps. For Customer i with job set J (i),

the corresponding job J̄i with release time r̄i = Cmax(J (i)) − P (i) and processing time

p̄i = P (i) is defined. Furthermore, for any schedule η of SMP3, the completion order
◦
η is

a schedule for P̄.

To clearly illustrate the relationship among η,
◦
η and

◦
ηR, an example is presented as follows.

An instance of SMP3 with two customers: for Customer 1, there are two jobs J
(1)
1 = (0, 1)

and J
(1)
2 = (19, 1), while for Customer 2 there are also two jobs J

(2)
1 = (0, 19) and J

(2)
2 =

(19, 19). Let η = (J
(1)
1 , J

(2)
1 , J

(1)
2 , J

(2)
2 ), there is C

(1)
max(η) = 21, C

(2)
max(η) = 40 and Z(η) = 61

(which is actually optimal). So, as C
(2)
max(η) > C

(1)
max(η), the completion order

◦
η is (1, 2).

Meanwhile, an corresponding instance of P̄ with two jobs can be constructed: J̄1 = (18, 2)

and J̄2 = (0, 38) (Cmax(J (1)) = 20, P (1) = 2, Cmax(J (2)) = 38 and P (2) = 38). Then,

◦
η is an schedule for this instance, which generates the result C̄1(

◦
η) = 20 and C̄2(

◦
η) =
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58. In this situation, the relax schedule
◦
ηR = (J

(1)
1 , J

(1)
2 , J

(2)
1 , J

(2)
2 ), and C

(1)
max(

◦
ηR) = 20,

C
(2)
max(

◦
ηR) = 58 and Z(

◦
ηR) = 78.

Based on the relationship constructed above, the following lemma holds.

Lemma 4.6. C
(i)
max(

◦
ηR) ≤ C̄i(

◦
η) ≤ 2C

(i)
max(η).

Proof of Lemma 4.6: Without loss of generality, assume that the customers’ completion

order in η is
◦
η = (1, 2, · · · , k). The left half of this lemma can be proved by the induction

on i. First, the statement of the lemma holds for the case i = 1: C
(1)
max(

◦
ηR) = Cmax(J (1)) =

C̄1(
◦
η). Suppose that the lemma is true for i ≤ s and consider the case i = s+ 1.

C(s+1)
max (

◦
ηR) ≤ max {C(s)

max(
◦
ηR) + P (s+1), Cmax(J (s+1))}

≤ max {C̄s(
◦
η) + p̄s+1, r̄s+1 + p̄s+1} = C̄s+1(

◦
η).

(4.86)

For the right half of the lemma,

C̄i(
◦
η) = max

j≤i
{r̄j +

i∑
h=j

p̄h}

= max
j≤i
{Cmax(J (j)) +

i∑
s=j+1

P (j)}

≤ max
j≤i

Cmax(J (j)) +
i∑

s=1

P (s) ≤ 2C(i)
max(η).

(4.87)

�

Note that the construction of the relax schedule only relates to the completion times, so

the lemma can also be applied when η is a solution for the preemption case. Next, an

algorithm for SMP3 is proposed.
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Algorithm SMH3

Solve the preemption case of SMP3 by SMH1 and obtain the optimal solution optP .

Construct the corresponding relax schedule
◦

optPR.

Theorem 4.5. A 2-approximate solution for SMP3 can be found by SMH3 in the time

O(nk2k + n2).

Proof of Theorem 4.5: As the optimal value of preemption case is the lower bound of

that of the non-preemption case,

k∑
i=1

C(i)
max(

◦
optPR) ≤ 2

k∑
i=1

C(i)
max(opt

P ) ≤ 2
k∑
i=1

C(i)
max(opt). (4.88)

From Theorem 4.1, the time of constructing optP is O(nk2k), while the time of constructing

the relax schedule is at most O(n2) as the schedule of every job is only restricted by the

previous ones. Then, the total time of the algorithm is O(nk2k +n2) which completes the

proof. �

Similarly, this algorithm is not polynomial to k. For large k, SA SMH1 can be directly

applied to solve the preemption case of SMP3 to generate the corresponding simulated

annealing algorithm SA SMH3 for SMP3.

Based on the relationship between SMP3 and P̄, the polynomial approximate algorithm

is also developed.

Algorithm PSMH3

Construct the corresponding P̄ of SMP3, solve it and obtain the completion order
◦
η.

Construct the corresponding relax schedule
◦
ηR.
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Theorem 4.6. If
◦
η is a ρ-approximate solution for P̄, then

◦
ηR is a 2ρ-approximate solution

for SMP3.

Proof of Theorem 4.6: Let opt be the optimal solution for SMP3, and
◦
opt is a feasible

solution for P̄.

k∑
i=1

C(i)
max(

◦
ηR) ≤

k∑
i=1

Ci(
◦
η) ≤ ρ

k∑
i=1

Ci(
◦
opt) ≤ 2ρ

k∑
i=1

C(i)
max(opt) (4.89)

�

The scheme that applying SPRT-rule for the preemption case of P̄ can generate a 2-

approximate solution for P̄, which means that there is a 4-approximate polynomial algo-

rithm for SMP3.

There is a better result for the special case that k = 2.

Algorithm K2SMH3

Construct the relax schedules η1 and η2 based on the orders (1, 2) and (2, 1), respec-

tively. Choose the better one from η1 and η2 as the final schedule η.

Theorem 4.7. The approximate ratio of the algorithm K2SMH3 for SMP3 with k = 2 is

4
3
.

Proof of Theorem 4.7: It is obvious that in η1, C
(1)
max(η1) = Cmax(J (1)). Meanwhile,

it can be assumed that C
(2)
max(η1) ≤ Cmax(J (1)) + P (2). If not, there is idle time after

Cmax(J (1)) which implies that the jobs processing after Cmax(J (1)) will not be affected

by the jobs processing before. Therefore, the jobs processing after Cmax(J (1)) is the

106



same for any schedule and C
(2)
max(η1) = Cmax(J (2)). In this case, Z(η1) ≤ Cmax(J (1)) +

Cmax(J (2)) ≤ Z(opt) which means η1 is optimal. Similarly, there is C
(2)
max(η2) = Cmax(J (2))

and C
(1)
max(η2) ≤ Cmax(J (2)) + P (1).

Without loss of generality, assume that C
(1)
max(opt) ≤ C

(2)
max(opt).

Case 1: Cmax(J (2)) ≤ C
(1)
max(opt).

Let C
(2)
max(opt) = C

(1)
max(opt) + ∆C, where ∆C ≥ 0. Then, before the time C

(1)
max(opt),

the machine at least spend P (2)−∆C time for Customer 2’s jobs, which means C
(1)
max(opt) ≥

P 1 +P 2−∆C. In addition, P (1) +P (2) is a obvious lower bound of C
(2)
max(opt). Therefore,

Z(η1) + Z(η2) = C(1)
max(η1) + C(2)

max(η1) + C(1)
max(η2) + C(2)

max(η2)

≤ 2Cmax(J (1)) + 2Cmax(J (2)) + P (1) + P (2)

≤ 2C(1)
max(opt) + 2C(1)

max(opt) + P (1) + P (2)

= 2C(1)
max(opt) + 2C(2)

max(opt) + P (1) + P (2) − 2∆C

(4.90)

Z(η1) + Z(η2)

Z(opt)
≤ 2 +

P (1) + P (2) − 2∆C

C
(1)
max(opt) + C

(2)
max(opt)

≤ 2 +
P (1) + P (2) − 2∆C

2P (1) + 2P (2) −∆C
≤ 2 +

1

2

(4.91)

Z(η) = min {Z(η1), Z(η2)} ≤
5

4
Z(opt) (4.92)

Case 2: Cmax(J (2)) > C
(1)
max(opt).

Assume that C
(1)
max(opt) = Cmax(J (1)) + ∆C1, Cmax(J (2)) = C

(1)
max(opt) + ∆C2, and

C
(2)
max(opt) = Cmax(J (2)) + ∆C3, where ∆C1, ∆C2, and ∆C3 are all nonnegative. Then,

before the time C
(1)
max(opt), the machine spends at least P (2)−∆C2−∆C3 time for Customer
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2’s jobs, which means C
(1)
max(opt) ≥ P 1 + P 2 −∆C2 −∆C3.

Z(η1) ≤ 2Cmax(J (1)) + P (2)

= C(1)
max(opt)−∆C1 + C(2)

max(opt)−∆C1 −∆C2 −∆C3 + P (2)

= Z(opt) + P (2) − 2∆C1 −∆C2 −∆C3

(4.93)

Z(η2) ≤ 2Cmax(J (2)) + P (1)

= C(1)
max(opt) + ∆C1 + C(2)

max(opt)−∆C3 + P (1)

= Z(opt) + P (1) + ∆C1 −∆C3

(4.94)

Z(opt) ≥ 2P (1) + 2P (2) −∆C2 −∆C3
(4.95)

Z(η)

Z(opt)
=
min {Z(η1), Z(η2)}

Z(opt)

≤ 1 +min { P
(2) − 2∆C1 −∆C2 −∆C3

2P (1) + 2P (2) −∆C2 −∆C3

,
P (1) + ∆C1 −∆C3

2P (1) + 2P (2) −∆C2 −∆C3

}
(4.96)

When ∆C2 = 1
2
(P (2) − P (1)) − ∆C1, the term of the right hand achieves the maximum

value.

Z(η)

Z(opt)
≤ 1 +

1
2
(P (1) + P (2))−∆C1 −∆C3

5
2
P (1) + 3

2
P (2) + ∆C1 −∆C3

≤ 1 +
1
2
(P (1) + P (2))

5
2
P (1) + 3

2
P (2)

≤ 1 +
1

3
=

4

3

(4.97)

Next, it needs to show that there is an instance such that the ratio can be achieved. For

Customer 1, there are two jobs J
(1)
1 = (0, ε) and J

(1)
2 = (20 − ε, ε), while for Customer 2

there are also two jobs J
(2)
1 = (0, 20 − ε) and J

(2)
2 = (20 − ε, 20 − ε), where ε is a very

small positive number. η1 will process these jobs in the order (J
(1)
1 , J

(1)
2 , J

(2)
1 , J

(2)
2 ) and

Z(η1) = 80 − 2ε. Similarly, η2 will process these jobs in the order (J
(2)
1 , J

(2)
2 , J

(1)
1 , J

(1)
2 )

and Z(η2) = 80− 2ε. However, the optimal solution should process the jobs in the order
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(J
(1)
1 , J

(2)
1 , J

(1)
2 , J

(2)
2 ) and Z(opt) = 60 + ε. Therefore, Z(η)

Z(opt)
= min {Z(η1),Z(η2)}

Z(opt)
= 80−2ε

60+ε
,

which will tend to 4
3

as ε tends to 0. This completes the proof. �

4.4 Algorithm for Problem SMP4

SMP4 has the following features: Jobs are released on-line and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough. Actually,

SMP4 is the on-line version of SMP3. The same lower bound can be applied to this

on-line problem (see Appendix).

Corollary 4.2. No on-line algorithm for SMP4 can have competitive ratio less than 2,

even all preparation times being 0.

As there is more than one customer and the preemption of jobs processing is not allowed,

processing every job may delay other customers’ completion time. Therefore, there should

be a period waiting time for long jobs. The ready job for single machine case is defined

as follows.

Definition 4.2. A job J
(i)
j is called ready at time t if it has arrives (r

(i)
j ≤ t), not completed

(C
(i)
j > t) and 1

2
p
(i)
j ≤ t.

By combining the concept of ready job with algorithm SMH2, an on-line algorithm for

SMP4 is proposed.

Algorithm SMH4

At the time t that a new job arrives, the customers are re-indexed in an increasing

order of Cmax(J (i)
≤t ) (If there is more than one customer with the same Cmax(J (i)

≤t ), their
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order is the original index order). When the machine is free, process ready jobs of the

customer with the highest on-line priority.

At the time of lD where l ≥ 1 and l is integer, if there is no uncompleted jobs for

Customer i, then there must be a batch to deliver all the completed job of Customer i;

otherwise, there is no operation for these jobs.

From the algorithm, the job J
(i)
j can only be processed after the time max{r(i)j , 12p

(i)
j }.

Theorem 4.8. The on-line algorithm SMH4 for SMP4 with k = 2 is 2 + 1
2
-competitive.

Proof of Theorem 4.8: Without loss of generality, suppose that Cmax(J (1)) ≤ Cmax(J (2)).

Let η be the algorithm solution, and l1D be the last idle delivery point before Cmax(J (1)).

Let (i1, i2) be the order of the customers’ completion times in the optimal solutions,

and the optimal result is Z(opt) = C
(i1)
max(opt) + C

(i2)
max(opt) + 2D. It is obvious that

Cmax(J (1)) ≤ C
(i1)
max(opt) and Cmax(J (1) ∪ J (2)) ≤ C

(i2)
max(opt). In addition, let J (2)

b be

the set of Customer 2’s jobs which are completed before C
(1)
max(η) in η, and T

(i)
d be the

end point of the last period of waiting time before C
(i)
max(η) (i = 1, 2). At the time of

Cmax(J (1)), all the jobs of Customer 1 are released and also satisfy the processing condi-

tion, so T
(1)
d ≤ Cmax(J (1)). Meanwhile, after Cmax(J (1)), the processing of Customer 1’s

jobs would be continuous until all are completed. Therefore, the jobs processing in the in-

terval (Cmax(J (1)), C
(1)
max(η)] should be a block of Customer 2’s jobs followed by a block of

Customer 1’s jobs (see Figure 4.8). Simply use P1 and P2 to represent P
(1)

(Cmax(J (1)),C
(1)
max(η)]

(η)

and P
(2)

(Cmax(J (1)),C
(1)
max(η)]

(η), respectively.
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η: P2 P1

0 Cmax(J (1)) C
(1)
max(η)

Figure 4.8. The Jobs Processing in The Interval (Cmax(J (1)), C
(1)
max(η)] (2)

Case 1: Cmax(J (2)
b ) < Cmax(J (1)). As Cmax(J (1)) ≤ Cmax(J (2)), there must be

J (2) \ J (2)
b 6= ∅, which implies that there are Customer 2’s jobs completed later than

C
(1)
max(η) and thus C

(2)
max(η) > C

(1)
max(η). Therefore, there is T

(1)
d ≤ T

(2)
d .

Case 1.1: T
(1)
d = T

(2)
d . The total waiting time in η will not be more than T

(1)
d , which

implies that C
(2)
max(η) ≤ T

(1)
d + Cmax(J (1) ∪ J (2)) − l1D ≤ T

(1)
d + C

(i2)
max(opt) − l1D (Here

assume T
(1)
d > l1D; otherwise the waiting will not affect the completion times of two

customers which will lead to a simpler case).

In the interval (0, l1D], there are at most two batches for every delivery point, so the

delivery cost will not be more than 2l1D.

In the interval (l1D,Cmax(J (1)) −min{P1, P2}], there is at most one batch for every

delivery point, so the delivery cost will not be more than bCmax(J (1))−min{P1,P2}
D

cD − l1D.

In the interval (Cmax(J (1))−min{P1, P2}, Cmax(J (1))], there are uncompleted jobs for

both customers, so there is no delivery.

In the interval (Cmax(J (1)), C
(1)
max(η)], there is at most one batch for Customer 2, so

the delivery cost will not be more than D.

In the interval (C
(1)
max(η), ρ

(2)
max(η)], there is at most one batch for Customer 2 for every

delivery point, and there is one batch in total for Customer 1, so the delivery cost will not
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be more than D + dC
(2)
max(η)
D
eD − bC

(1)
max(η)
D
cD.

TC(η) ≤ l1D + Cmax(J (1))−min{P1, P2}+ 2D + dC
(2)
max(η)

D
eD − bC

(1)
max(η)

D
cD (4.98)

Therefore,

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + TC(η) + 2T01 + 2T02

≤ l1D + Cmax(J (1))−min{P1, P2}+ 2C(2)
max(η) + 5D + 2T01 + 2T02

≤ l1D + Cmax(J (1))−min{P1, P2}+ 2T
(1)
d +

2C(i2)
max(opt)− 2l1D + 2T01 + 2T02

≤ 3Cmax(J (1)) + 2C(i2)
max(opt) + 5D + 2T01 + 2T02

≤ 2(C(i1)
max(opt) + C(i2)

max(opt) + 2D + 2T01 + 2T02) + Cmax(J (1)) +D

≤ (2 +
1

2
)Z(opt).

(4.99)

Case 1.2: T
(1)
d < T

(2)
d . If there is no idle time after T

(2)
d , C

(2)
max(η) ≤ T

(2)
d + P (J (2) \

J (2)
b ) ≤ T

(2)
d +Cmax(J (2))− l1D; otherwise, C

(2)
max(η) = Cmax(J (2)) ≤ T

(2)
d +Cmax(J (2))−

l1D. In particular, there is at least one job of Customer 2 with processing time no less

than 2T
(2)
d which has been released before T

(2)
d but processed after T

(2)
d . Meanwhile,

C
(2)
max(η) ≤ T

(1)
d + Cmax(J (2)

b ) + Cmax(J (1)) ≤ 3Cmax(J (1)).

In the interval (0, l1D], there are at most two batches for every delivery point, so the

delivery cost will not be more than 2l1D.

In the interval (l1D,T
(2)
d ], there is at most one batch for every delivery point, so the

delivery cost will not be more than bT
(2)
d

D
cD − l1D.

In the interval (T
(2)
d , ρ

(2)
max(η)], there is at most one batch for Customer 1 (only when

bT
(2)
d

D
cD < C

(1)
max(η)), and there is at most one batch for every delivery point after 3T

(2)
d
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for Customer 2, so the delivery cost will not be more than D + dC
(2)
max(η)
D
eD − b3T

(2)
d

D
cD.

TC(η) ≤ l1D + T
(2)
d +D + dC

(2)
max(η)

D
eD − 3T

(2)
d +D

≤ l1D + C(2)
max(η)− 2T

(2)
d + 3D.

(4.100)

Therefore,

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + TC(η) + 2T01 + 2T02

≤ C(1)
max(η) + 2C(2)

max(η) + l1D − 2T
(2)
d + 5D + 2T01 + 2T02

≤ 3Cmax(J (1)) + 2T
(2)
d + 2Cmax(J (2))− 2l1D + l1D−

2T
(2)
d + 5D + 2T01 + 2T02

≤ 3Cmax(J (1)) + 2C(i2)
max(opt) + 5D + 2T01 + 2T02

≤ (2 +
1

2
)Z(opt).

(4.101)

Case 2: Cmax(J (2)
b ) ≥ Cmax(J (1)). Let J

(2)
h be the last Customer 2’s job which is

completed before C
(1)
max(η), and s

(2)
h be its start time. For Customer 1’s jobs completed

after Cmax(J (1)), the shortest release time will not be more than the time Cmax(J (1))−P1

and the longest processing time will not be more than P1, so at least one of them can be

processed at the time max{Cmax(J (1))− P1,
1
2
P1}. As J

(2)
h cannot have a higher priority

than these jobs, it must be processed when none of them is ready, s
(2)
h ≤ max{Cmax(J (1))−

P1,
1
2
P1}, which also implies that p

(2)
h ≤ 2max{Cmax(J (1)) − P1,

1
2
P1}. Furthermore, the

jobs pprocessing after s
(2)
h is continuous, so T

(1)
d ≤ s

(2)
h .

Case 2.1: C
(2)
max(η) > C

(1)
max(η). In this case, there should be T

(1)
d ≤ T

(2)
d .

Case 2.1.1: T
(1)
d = T

(2)
d . Similar to the case 1.1, C

(2)
max(η) ≤ T

(1)
d + C

(i2)
max(opt)− l1D.

In the interval (0, l1D], there are at most two batches for every delivery point, so the

delivery cost will not be more than 2l1D.
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In the interval (l1D,Cmax(J (1))], there is at most one batch for every delivery point

before s
(2)
h , and one possible batch for Customer 1 at the delivery point next to s

(2)
h , so the

delivery cost will not be more than b s
(2)
h

D
cD− l1D+D if d s

(2)
h

D
eD < Cmax(J (1)), or b s

(2)
h

D
cD−

l1D otherwise. Both cases will lead to the delivery cost bounded by Cmax(J (1))− l1D.

In the interval (Cmax(J (1)), C
(1)
max(η)], there is at most one batch for Customer 2, so

the delivery cost will not be more than D.

In the interval (C
(1)
max(η), ρ

(2)
max(η)], there is at most one batch for Customer 2 for every

delivery point, and there is one batch in total for Customer 1, so the delivery cost will not

be more than D + dC
(2)
max(η)
D
eD − bC

(1)
max(η)
D
cD.

TC(η) ≤ l1D + Cmax(J (1)) + 2D + dC
(2)
max(η)

D
eD − bC

(1)
max(η)

D
cD (4.102)

Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + TC(η) + 2T01 + 2T02

≤ Cmax(J (1)) + 2C(2)
max(η) + 5D + l1D + 2T01 + 2T02

≤ Cmax(J (1)) + 2T
(1)
d + 2C(i2)

max(opt) + 5D − l1D + 2T01 + 2T02

≤ Cmax(J (1)) + 2s
(2)
h + 2C(i2)

max(opt) + 5D − l1D + 2T01 + 2T02

≤ 3Cmax(J (1)) + 2C(i2)
max(opt) + 5D + 2T01 + 2T02

≤ (2 +
1

2
)Z(opt).

(4.103)

Case 2.1.2: T
(1)
d < T

(2)
d . Similar to case 1.2, TC(η) ≤ l1D+C

(2)
max(η)− 2T

(2)
d + 3D and

C
(2)
max(η) ≤ T

(2)
d + Cmax(J (2))− l1D. The completion time of Customer 1 will satisfy that

C
(1)
max(η) = s

(2)
h + p

(2)
h + P1 ≤ max{3Cmax(J (1))− 2P1,

5
2
P1} ≤ 3Cmax(J (1)).
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Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + TC(η) + 2T01 + 2T02

≤ C(1)
max(η) + 2C(2)

max(η) + l1D − 2T
(2)
d + 5D + 2T01 + 2T02

≤ 3Cmax(J (1)) + 2C(i2)
max(opt) + 5D + 2T01 + 2T02

≤ (2 +
1

2
)Z(opt).

(4.104)

Case 2.2: C
(2)
max(η) < C

(1)
max(η). In this case, there is J (2)

b = J (2), C
(2)
max(η) = s

(2)
h + p

(2)
h ,

and C
(1)
max(η) = s

(2)
h + p

(2)
h + P1. As J

(2)
h is released after l1D, the preparation time should

satisfy p
(2)
h ≤ Cmax(J (2))− l1D.

In the interval (0, l1D], there are at most two batches for every delivery point, so the

delivery cost will not be more than 2l1D.

In the interval (l1D,Cmax(J (1))], there is at most one batch for every delivery point

before s
(2)
h , and one possible batch for Customer 1 at the delivery point next to s

(2)
h , so the

delivery cost will not be more than b s
(2)
h

D
cD− l1D+D if d s

(2)
h

D
eD < Cmax(J (1)), or b s

(2)
h

D
cD−

l1D otherwise. Both cases will lead to the delivery cost bounded by Cmax(J (1))− l1D.

In the interval (Cmax(J (1)), ρ
(1)
max(η)], there are in total two batches for two customers,

so the delivery cost will be 2D, which means TC(η) ≤ l1D + Cmax(J (1)) + 2D.
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Z(η) = dC
(1)
max(η)

D
eD + dC

(2)
max(η)

D
eD + TC(η) + 2T01 + 2T02

≤ s
(2)
h + p

(2)
h + s

(2)
h + p

(2)
h + P1 + l1D + Cmax(J (1)) + 4D + 2T01 + 2T02

≤ 2s
(2)
h + P1 + Cmax(J (1)) + 2Cmax(J (2)) + 5D − l1D + 2T01 + 2T02

≤ max{2Cmax(J (1))− P1, 2P1}+ Cmax(J (1)) + 2Cmax(J (2))+

5D + 2T01 + 2T02

≤ 3Cmax(J (1)) + 2C(i2)
max(opt) + 5D + 2T01 + 2T02

≤ (2 +
1

2
)Z(opt).

(4.105)

�

For the case that k is greater than 2, the performance of the algorithm will be shown in

a simulation to be presented later.

4.5 Algorithm for SMP Problems with Capacity Limited Vehicles

In this section, the above four SMP problems with capacity limited vehicles are considered.

For the case that the capacity of vehicles is constrained by a constant C, the four specific

problems can be represented as follows.

CSMP1: 1|rj, pmtn|V (∞, C), direct|k|
∑
D

(i)
max + TC

CSMP2: 1|rj, pmtn, on− line|V (∞, C), direct|k|
∑
D

(i)
max + TC

CSMP3: 1|rj|V (∞, C), direct|k|
∑
D

(i)
max + TC
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CSMP4: 1|rj, on− line|V (∞, C), direct|k|
∑
D

(i)
max + TC

For the off-line problems CSMP1 and CSMP3, all the jobs of the same customer should

be delivered in dni

C
e batches when they are all completed. Therefore, there are

∑k
i=1d

ni

C
e

batches in the optimal schedule and D
(i)
max(opt) = ρ

(i)
max(opt) + 2T0i = C

(i)
max(opt) + 2T0i for

i = 1, 2, · · · , k, which implies that Z(opt) =
∑k

i=1D
(i)
max(opt)+TC(opt) =

∑k
i=1C

(i)
max(opt)+

2
∑k

i=1 T0i +
∑k

i=1d
ni

C
eD. Then, it is equivalent with SMP1 and SMP3.

As the on-line problem for single-customer has a lower bound of max{1+
√
5

2
, 2− 1

C
} [Han,

2012], the lower bounds of the problems CSMP2 and CSMP4 are at leastmax{1+
√
5

2
, 2− 1

C
}.

Corollary 4.3. No on-line algorithm for CSMP2 and CSMP4 can have competitive ratio

less than max{1 + θ, 2− 1
C
}, even all processing times being 0.

For the on-line problems CSMP2 and CSMP4, on-line algorithms modified from SMH2

and SMH4 are proposed as follows.

Algorithm CSMH2

At the time t that a new job arrives, the customers are re-indexed in an increasing

order of Cmax(J (i)
≤t ) (If there is more than one customer with the same Cmax(J (i)

≤t ), their

order is the original index order). When a new job arrives or the machine is free, process

available jobs of the customer with the highest on-line priority.

At the time of lD where l ≥ 1 and l is integer, if there is no uncompleted job for

Customer i, then there are batches to deliver all the completed jobs for Customer i;
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otherwise there are full bathes to deliver as many completed jobs as possible.

Algorithm CSMH4

At the time t that a new job arrives, the customers are re-indexed in an increasing

order of Cmax(J (i)
≤t ) (If there is more than one customer with the same Cmax(J (i)

≤t ), their

order is the original index order). When the machine is free, process ready jobs of the

customer with the highest on-line priority.

At the time of lD where l ≥ 1 and l is integer, if there is no uncompleted job for

Customer i, then there are batches to deliver all the completed jobs for Customer i;

otherwise there are full bathes to deliver as many completed jobs as possible.

In the following, the competitive analysis of on-line algorithms CSMH2 and CSMH4 are

presented. Let η be the schedule of the algorithm CSMH2 (CSMH4) and opt be the

optimal schedule. Note that the processing part of CSMH2 (CSMH4) is the same as

SMH2 (SMH4), but SMH2 (SMH4) can deliver all the jobs of the same customer in one

batch when there is no uncompleted job. Let η∞ be the schedule of the algorithm SMH2

(SMH4) for and opt∞ be the corresponding optimal schedule.

Lemma 4.7. Z(η)
Z(opt)

≤ Z(η∞)
Z(opt∞)

Proof of Lemma 4.7: Let ai and bi be the number of unfull and full batches for Customer

i in η, respectively. From CSMH2 (CSMH4) and SMH2 (SMH4), at every delivery point,

if there is an unfull batch for Customer i in η, then there should be a batch for Customer

i in η∞, which implies that aiD ≤ TC(i)(η∞). Meanwhile, there is at least one batch for

Customer i in η∞, TC(i)(η∞) ≥ D. For some i, if ai = 0, then bi = dni

C
e = ni

C
, which
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implies that TC(i)(η) = biD = dni

C
eD ≤ TC(i)(η∞)+(dni

C
e−1)D; otherwise, bi ≤ dni

C
e−1,

and TC(i)(η) = (ai + bi)D ≤ TC(i)(η∞) + (dni

C
e − 1)D. In addition, the same processing

part and the same delivery points indicates that D
(i)
max(η) = D

(i)
max(η∞).

Z(η)

Z(opt)
=

∑k
i=1(D

(i)
max(η) + 2T0i + TC(i)(η))∑k

i=1(D
(i)
max(opt) + 2T0i + TC(i)(opt))

≤
∑k

i=1(D
(i)
max(η) + 2T0i + TC(i)(η∞) + (dni

C
e − 1)D)∑k

i=1(D
(i)
max(opt) + 2T0i + dni

C
eD)

=

∑k
i=1(D

(i)
max(η∞) + 2T0i + TC(i)(η∞) + (dni

C
e − 1)D)∑k

i=1(D
(i)
max(opt∞) + 2T0i +D + (dni

C
e − 1)D)

=
Z(η∞) +

∑k
i=1((d

ni

C
e − 1)D)

Z(opt∞) +
∑k

i=1((d
ni

C
e − 1)D)

≤ Z(η∞)

Z(opt∞)
.

(4.106)

�

From the above lemma, the competitive analysis of CSMH2 and CSMH4 is presented.

Corollary 4.4. The competitive ratio of on-line algorithm CSMH2 for CSMP2 with k = 2

is 2.

Corollary 4.5. The competitive ratio of on-line algorithm CSMH2 for CSMP2 with k = 3

is 2 + 2
27

.

Corollary 4.6. The on-line algorithm CSMH4 for the problem CSMP4 with k = 2 is

2 + 1
2
-competitive

4.6 Simulated Experiment for SMH without Routing

In this section, a simulated experiment or simulation for short is conducted to demon-

strate the run-time performance and the ratio (approximate ratio and competitive ratio)
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performance of the above algorithms (SMH1-SMH4, SA SMH1, SA SMH3, CSMH2 and

CSMH4) in normal scenarios and illustrate how the algorithms can be used in practice.

An instance was defined by prescribing a set of the foregoing parameters (ni, p
(i)
j and r

(i)
j

for j = 1, 2, · · · , ni, C and D). In order to make the discussion applicable to much more

general situations, the parameters for the instance were generated by a random engine

(uniform distribution and poisson distribution), and such a treatment is also found in the

work [Qi, 2005; Shirvani and Shadrokh, 2013]. The instances were generated by these

randomly generated parameters. The algorithm was implemented in the Matlab environ-

ment. The parameters are thus determined based on the following assumptions (similar

assumptions were applied to other simulation experiments in this thesis):

(1) The release of jobs for Customer i follows the poisson distribution with the parameter

λi, i.e., the number of jobs released at some time r: ni(r) ∼ P (λi) and the next

release time is r + r′, where r′ ∼ U(0, λi), λi is two times of the mean value of the

release intervals for Customer i, and λi ∼ U(0,Λi) (i = 1, 2, · · · , k).

(2) The job processing time for Customer i follows the uniform distribution in the inter-

val [0, bi], i.e., p
(i)
j ∼ U(0, bi) for j = 1, 2, · · · , ni, where bi is two times of the mean

value of the processing time for Customer i and bi ∼ U(0, Bi) (i = 1, 2, · · · , k).

(3) The number of jobs for Customer i follows the uniform distribution in the set

{1, 2, · · · , Ni}, i.e., Pr{ni = h} = 1
Ni

for h = 1, 2, · · · , Ni where Ni is two times

of the mean value of the number of jobs for Customer i (i = 1, 2, · · · , k).

(4) The delivery cost D is a constant.
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(5) The number of customers is of four cases: k = 2, k = 3, k = 8, k = 10, and k = 20.

By choosing different values for Λi, Bi, and Ni, instances are generated and scheduling is

then executed. In all cases, 100 instances are generated (the choice of 100 was mainly due

to the overhead running time; with 100 instances, the running hours were about 30 hours)

. Table 4.1 shows the result for the case k = 2. Each row in the table is the average of the

results of the 100 instances. The columns in the table are (1) the ratio of the algorithm

value to the benchmark value, (2) the run-time in seconds, respectively. Notice that the

result of SMH1 is applied as the benchmark for the case k = 2. As SMH1 solves the

problem SMP1 which is a lower bound for the problem SMP3, the ratio of the results

of SMH3 and SMH4 to the optimal result (the result of SMH1) should perform better.

Meanwhile, the run-time of SMH3 is the sum of the run-time of SMH4 and the time of

constructing relax schedules.

From Table 4.1, the ratio of SA SMH1 is 1, which reflects the optimality of this simulated

annealing algorithm. For the off-line algorithm SMH3, the ratio is very close to 1, which

means that this algorithm can construct a great solution for problem SMP3 if the optimal

solution of SMP1 is known. For the on-line algorithms SMH2 and SMH4 the ratio never

exceeds 2, which displays the robustness of the two algorithms, and is also consistent with

the results of the Theorem 4.2 and the Theorem 4.8. Actually, for most cases, the ratios

of the two algorithms are not greater than 1.6, which shows the excellent performance on

the normal instances. The run-time for SA SMH1 never exceeds 0.015 seconds and the

run-time of the analytical algorithms (SMH1, SMH2, SMH3, and SMH4) is much shorter,

so the efficiency of the algorithms is very high when k = 2.
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Table 4.1. Results of Algorithms SMH1-SMH4 with k = 2

SMH1 SA SMH1 SMH2

ratio time ratio time ratio time

1 0.00021 1 0.013 1.486 0.0014

1 0.00018 1 0.012 1.103 0.0013

1 0.00018 1 0.013 1.968 0.0013

1 0.00019 1 0.013 1.418 0.0015

1 0.00017 1 0.0075 1.577 0.00047

1 0.00018 1 0.016 1.075 0.0016

SMH3 SMH4

ratio time ratio time

1.017 0.00021+0.00066 1.454 0.0021

1.0162 0.00018+0.00059 1.103 0.0019

1.0002 0.00018+0.00067 1.968 0.0019

1.0104 0.00019+0.00081 1.398 0.0023

1.0000 0.00017+0.000090 1.577 0.0012

1.0137 0.00018+0.00071 1.075 0.0020

Table 4.2 and Table 4.3 give the results with k = 3 and k = 8, respectively. The perfor-

mance of the results support the foregoing conclusive discussions. However, as k increases,

the run-time of SMH1 increases rapidly, which is consistent with the result of the The-

orem 4.1 that the algorithm is exponential to k. In particular, from the perspective of
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run-time, SA SMH1 gradually outperforms SMH1 while the result out of SA SMH1 keeps

optimal. Furthermore, by examining the run-time results of SMH2 and SMH4 for k = 3

and k = 8, the algorithms tend to have a polynomial time complexity. This means that

the two algorithms can well be scaled to a much larger problem.

From the three tables, the algorithm SA SMH1 performs both the optimality and the

efficiency. Therefore, for larger k, the run-time of SMH1 becomes unacceptable, and

SA SMH1 can be applied alternatively. Table 4.4 and Table 4.5 give the results with

k = 10 and k = 20, respectively. In the two tables, the result of SA SMH1 is applied

as the benchmark value and the algorithm SA SMH3 replaces SMH3. Notice that the

run-time of SA SMH3 is the sum of the run-time of SA SMH1 and the time of construct-

ing relax schedules. The foregoing conclusive discussions about the performance are still

valid. The run-time of SMH2 and SMH4 are very short, and the run-time of SA SMH1

and SA SMH3 are both acceptable.
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Table 4.2. Results of Algorithms SMH1-SMH4 with k = 3

SMH1 SA SMH1 SMH2

ratio time ratio time ratio time

1 0.00074 1 0.057 1.407 0.0022

1 0.00076 1 0.060 1.105 0.0021

1 0.00071 1 0.059 1.965 0.0022

1 0.00071 1 0.061 1.344 0.0024

1 0.00063 1 0.029 1.552 0.00071

1 0.00074 1 0.079 1.095 0.0030

SMH3 SMH4

ratio time ratio time

1.020 0.00074+0.00075 1.351 0.0028

1.024 0.00076+0.00086 1.105 0.0028

1.001 0.00071+0.00089 1.965 0.0027

1.021 0.00071+0.0011 1.309 0.0031

1.000 0.00063+0.00014 1.552 0.0018

1.016 0.00074+0.0013 1.095 0.0036
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Table 4.3. Results of Algorithms SMH1-SMH4 with k = 8

SMH1 SA SMH1 SMH2

ratio time ratio time ratio time

1 5.06 1 1.70 1.294 0.0092

1 4.95 1 1.68 1.165 0.0090

1 4.60 1 1.55 1.936 0.0086

1 4.70 1 1.65 1.221 0.0094

1 3.97 1 0.76 1.518 0.0018

1 4.70 1 1.87 1.197 0.012

SMH3 SMH4

ratio time ratio time

1.016 5.06+0.0033 1.281 0.010

1.015 4.95+0.0036 1.169 0.0098

1.000 4.60+0.0030 1.936 0.0092

1.0168 4.70+0.0026 1.217 0.0091

1.000 3.97+0.00032 1.518 0.0044

1.018 4.70+0.0028 1.200 0.0087

Therefore, one can conclude that all the algorithms SMH1-SMH4 show robustness for the

worst cases and great performance for the normal cases. Meanwhile, the efficiency of the

algorithms SMH2 and SMH4 are excellent even for different values of k, which can well be

scaled to a realistic application. For the algorithms SMH1 and SMH3, they can deal with
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the small k cases in an acceptable time. When k gets larger, SA SMH1 and SA SMH3

can be applied instead as they possess the optimality and the acceptable run-time.

Table 4.4. Results of Algorithms SMH1-SMH4 with k = 10

SMH1 SA SMH1 SMH2

ratio time ratio time ratio time

– – 1 3.41 1.274 0.011

– – 1 3.48 1.222 0.012

– – 1 3.46 1.933 0.011

– – 1 3.65 1.234 0.014

– – 1 1.98 1.499 0.0026

– – 1 4.40 1.226 0.019

SA SMH3 SMH4

ratio time ratio time

1.014 3.41+0.0039 1.268 0.012

1.014 3.48+0.0035 1.225 0.012

1.000 3.46+0.0038 1.933 0.012

1.015 3.65+0.0041 1.233 0.013

1.000 1.98+0.00041 1.499 0.0065

1.014 4.40+0.0038 1.232 0.013
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Table 4.5. Results of Algorithms SMH1-SMH4 with k = 20

SMH1 SA SMH1 SMH2

ratio time ratio time ratio time

– – 1 35.21 1.319 0.027

– – 1 36.02 1.308 0.027

– – 1 36.19 1.897 0.027

– – 1 38.56 1.292 0.033

– – 1 22.09 1.473 0.0057

– – 1 44.26 1.263 0.055

SA SMH3 SMH4

ratio time ratio time

1.006 35.21+0.0062 1.320 0.026

1.004 36.02+0.0058 1.310 0.026

1.000 36.19+0.0062 1.897 0.026

1.005 38.56+0.0059 1.294 0.027

1.000 22.09+0.00086 1.473 0.013

1.005 44.26+0.0059 1.266 0.026

Next, a simulation of CSMH4 for CSMP4 is conducted to present the performance of the

algorithm. Besides the above five assumptions, the assumption of the constraint on vehicle

capacity is made.

(6) The capacity of vehicles is of three cases: C = 2, C = 5, and C = 8.
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Table 4.6 shows the result of CSMH4 for the case C = 2. Each row in the table is the

average of the results of the 100 instances. The algorithm columns of the table are (1)

the result of the optimal algorithm for the case that preemption is allowed, (2) the result

of the on-line algorithm CSMH4, (3) the ratio (2)/(1), and (4) the run-time of CSMH4

in seconds. The result in column (1) is derived by applying the algorithm SMH1, which

is the lower bound of the optimal result of CSMP4. Therefore, the ratio of the results of

CSMH4 to the optimal result is better.

From Table 4.6, it is evident that the ratio column of CSMH4 never exceed 1.23, which

displays the robustness (the worst case performance) of the algorithm and is also consis-

tent with the result of the Corollary 4.6. Actually, the ratios of the algorithm are much

better than the theoretical result, 2 + 1
2
, which shows the excellent performance on the

normal instances. The run-time for CSMH4 never exceeds 0.1 seconds for k = 20 and is

much shorter for smaller k, so the efficiency of the algorithms is very high. Furthermore,

by examining the run-time results of CSMH4 for the value of k from low to high, the al-

gorithms tend to have a polynomial time complexity, that is, as k increases, the run-time

of the algorithms increases as a polynomial of k. This means that the algorithm can well

be scaled to a much larger problem.

Table 4.7 and Table 4.8 show the results for C = 5 and C = 8, respectively, which support

the above conclusion from Table 4.6.
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Table 4.6. Results of Algorithm CSMH4 with C = 2

Z(optP ) Z(CSMH4) Ratio Run-time

185.16 202.55 1.10 0.0039

180.90 198.05 1.10 0.0016

k = 2 211.26 221.75 1.06 0.0015

402.86 408.35 1.02 0.0013

3445.89 3472.55 1.01 0.0011

458.36 500.95 1.09 0.011

462.83 506.85 1.10 0.0052

k = 5 678.90 724.40 1.07 0.0039

1091.67 1114.70 1.02 0.0029

13935.67 14031.35 1.01 0.0031

918.03 1001.00 1.09 0.030

919.12 1003.25 1.09 0.013

k = 10 1810.42 1926.70 1.07 0.0085

2402.39 2572.60 1.07 0.0060

41682.49 41899.45 1.01 0.0058

1784.30 1949.85 1.09 0.078

1797.00 1963.40 1.09 0.036

k = 20 5120.72 5437.05 1.07 0.019

6062.34 7310.55 1.20 0.014

157242.03 157842.25 1.00 0.014
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Table 4.7. Results of Algorithm CSMH4 with C = 5

Z(optP ) Z(CSMH4) Ratio Run-time

185.16 202.55 1.10 0.0039

180.90 198.05 1.10 0.0016

k = 2 211.26 221.75 1.06 0.0015

402.86 408.35 1.02 0.0013

3445.89 3472.55 1.01 0.0011

458.36 500.95 1.09 0.011

462.83 506.85 1.10 0.0052

k = 5 678.90 724.40 1.07 0.0039

1091.67 1114.70 1.02 0.0030

13935.67 14031.35 1.01 0.0031

544.95 667.05 1.23 0.026

547.78 674.65 1.23 0.013

k = 10 1310.17 1428.95 1.10 0.0092

2069.84 2223.70 1.07 0.0060

43187.34 43406.80 1.01 0.0056

1048.92 1282.30 1.22 0.076

1105.54 1358.50 1.23 0.038

k = 20 4378.26 4703.00 1.08 0.024

5412.55 6579.35 1.21 0.034

147629.56 148174.25 1.00 0.013
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Table 4.8. Results of Algorithm CSMH4 with C = 8

Z(optP ) Z(CSMH4) Ratio Run-time

85.29 110.95 1.31 0.0030

90.21 119.35 1.33 0.0019

k = 2 136.34 150.50 1.12 0.0015

330.83 337.35 1.02 0.0012

3357.10 3378.30 1.01 0.0011

223.76 291.95 1.31 0.011

223.35 294.90 1.32 0.0055

k = 5 450.89 492.85 1.11 0.0044

838.89 861.95 1.03 0.0031

13008.89 13111.75 1.01 0.0029

432.67 563.30 1.303 0.027

454.39 602.15 1.33 0.013

k = 10 1227.19 1343.85 1.10 0.0078

1931.73 2105.70 1.09 0.0057

43393.48 43587.00 1.00 0.0052

866.72 1131.05 1.31 0.077

918.00 1210.25 1.32 0.036

k = 20 4190.21 4516.20 1.08 0.019

5227.55 6394.80 1.22 0.015

147444.81 147989.50 1.00 0.013

131



4.7 Algorithm for Problem SMP5

SMP5 has the following features: Jobs are released off-line, processed in ”pmtn” pattern

and delivered in ”routing” pattern. The capacity of vehicles and the number of vehicles

are both enough.

When the number of customers k is a parameter, the delivery part is SNP-hard, which

implies the problem is at least SNP hard.

Corollary 4.7. SMP5 is a SNP-hard problem.

As SMP5 is in off-line environment and the preemption of jobs processing is allowed, a

lemma modified from Lemma 4.1 can be proposed.

Lemma 4.8. There exists an optimal schedule for SMP5 which is a priority schedule and

the priority of the customers is consistent with the order of the customers’ completion

time in the schedule.

Further, the following properties are proposed to reduce the complexity of a schedule.

Property 4.1. As there are sufficient vehicles and each vehicle can contain sufficient jobs,

all jobs of the same customer should be packed in one batch.

Property 4.2. The departure time of a batch is the maximum completion time of the

customers in it, that is, ρ
(i)
max = {C(l)

max|Customer l′s jobs are in the same batch with

Customer i′s jobs}.

To further reduce the complexity of schedule, the analytical property of this problem is

proposed as follows.
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Theorem 4.9. If the jobs of Customer i and Customer l are in the same batch in opt,

there must be Til ≤ D.

Proof of Theorem 4.9: This statement can be proved by contradiction. Suppose that

in opt there are two customers i and l, whose jobs are in the same batch, with Til > D.

Case 1: Customer i and Customer l are adjacent to each other in the routing path.

Without loss of generality, let the routing path of the batch be (0, 1, · · · , i, l, · · · ,m, 0).

Construct a new schedule opt′ as follows: the processing part and the delivery of other

batches are the same as opt, but the above batch is divided into two batches with routing

paths (0, 1, · · · , i, 0) and (0, l, · · · ,m, 0), respectively. Let k1 and k2 be the number of

customers in the two batches, and T1 be the transportation time of the path (0, 1, · · · , i)

and T2 be the transportation time of the path (l, · · · ,m, 0). It is obvious that T1 ≥ T0i

and T2 ≥ T0l. Meanwhile, the departure time of the two batches in opt′ will not be later

than that of the original one in opt. Therefore, the difference between opt and opt′ should

satisfy that

Z(opt′)− Z(opt) ≤ [k1(T1 + T0i) +D + k2(T0l + T2) +D]

− [(k1 + k2)(T1 + Til + T2) +D]

= k1T0i + k2T0l − k1T0l − k2T0i − (k1 + k2)Til +D

= (k1 − k2)(T0i − T0l)− (k1 + k2)Til +D

≤ |k1 − k2||T0i − T0l| − (k1 + k2)Til +D

(4.107)

As |k1 − k2| ≤ k1 + k2 − 2, |T0i − T0l| ≤ Til,

Z(opt′)− Z(opt) ≤ −2Til +D < 0. (4.108)

This contradicts with the optimality of opt.
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Case 2: Customer i and Customer l are not adjacent to each other in the routing path.

Without loss of generality, let the routing path of the batch be (0, 1, · · · , i, s, · · · , h, l, · · · ,

m, 0). Construct a new schedule opt′ as follows: the processing part and the delivery of

other batches are the same as opt, but the above batch is divided into three batches with

routing paths (0, 1, · · · , i, 0), (0, s, · · · , h, 0) and (0, l, · · · ,m, 0), respectively. Let k1, k2

and k3 be the number of customers in the three batches, and T1 be the transportation

time of the path (0, 1, · · · , i, 0), T2 be the transportation time of the path (s, · · · , h) and

T3 be the transportation time of the path (l, · · · ,m, 0), respectively. It is obvious that

T1 ≥ T0i, T3 ≥ T0l, T1 + Tis ≥ T0s, Thl + T3 ≥ T0l and Tis + T2 + Thl ≥ Til. Meanwhile, the

departure time of the three batches in opt′ will not be later than that of the original one

in opt. Therefore, the difference between opt and opt′ should satisfy that

Z(opt′)− Z(opt) ≤ [k1(T1 + T0i) +D + k2(T0s + T2 + T0h) +D] + k3[(T0l

+ T3) +D]− [(k1 + k2 + k3)(T1 + Tis + T2 + Thl + T3) +D]

= k1(T0i − T2 − T3 − Tis − Thl) + k2(T0s + T0h − T1−

T3 − Tis − Thl) + k3(T0l − T1 − T2 − Tis − Thl) + 2D

≤ k1(T0i − T0l − Til) + k3(T0l − T0i − Til) + 2D

= (k1 − k3)(T0i − T0l)− (k1 + k3)Til +D

≤ |k1 − k3||T0i − T0l| − (k1 + k3)Til + 2D

≤ −2Til + 2D < 0

(4.109)

This contradicts with the optimality of opt.

Therefore, the hypothesis is wrong which proves the statement of this theorem. �

Based on the first part of Theorem 4.9, a partition of the customer set can be defined as
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follows, where the jobs of any two customers in different subsets cannot be in the same

batch.

Definition 4.3 [Weak Partition]. If there is a partition WK1,WK2, · · · ,WKo of the

customer set K such that for any i ∈ WKp, l ∈ WKq there is Til >
D
2

, where p, q ∈

{1, 2, · · · , o} and p 6= q, then the partition is called a weak partition.

A weak partition can be constructed by the following steps,

Step 0. Set q = 1, H = ∅, and goto Step 1.

Step 1. Pick up an arbitrary index i from K, let K = K \ {i} and WKq = {i}, and

goto Step 2.

Step 2. If K 6= ∅, goto Step 3. If K = ∅ but H 6= ∅, K = H, H = ∅, q = q + 1 and

goto Step 1. If K = ∅ and H = ∅, finish.

Step 3. Pick up an arbitrary index i from K. If for all l ∈ WKq there is Til >
D
2

,

H = H∪{l} andK = K\{l}, goto Step 2 ; otherwise, WKq = WKq∪{i}, K = (K\{i})∪H

and H = ∅, goto Step 3.

Notice that the existence of the weak partition depend only on the objective function∑
D

(i)
max + TC, delivery characteristics and the routing matrix. Therefore, the analyti-

cal property can be extended to problems with different machine configurations and job

parameters. Meanwhile, the extendability requires that this property can be expressed

independently in the practical implementations.

A genetic algorithm (GA) combined with the above analytical property is proposed to

solve SMP5. Therefore, the genetic representation and the fitness function, the popula-
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tion initialization, and the genetic operators need to be discussed, respectively.

Algorithm SMH5

At first, the genetic representation of solution domain, i.e., the encoding of the indi-

viduals, is constructed. As a solution has three parts: the processing order of customers

on the machine, the customers in a batch, the routing path of a batch, the individual

encoding also composes three chromosomes.

(1) The processing order of aid sites can be represented by a permutation σp of {1, 2, · · · , k},

that is, jobs processing is generated from the order σp(1), σp(2), · · · , σp(k).

(2) Construct a map σb on the customer set: K
σb−→ K to represent the allocation of

customers to batches, that is, Customer i and Customer l are in the same batch if

σb(i) = σb(l).

(3) For all the aid sites, a permutation σr of K is applied to represent the routing paths

of all batches. Suppose that the customers i1, i2, · · · , is are in the same batch and

they satisfies σr(i1) < σr(i2) < · · · < σr(is), then the routing path of this batch will

be (0, i1, i2, · · · , is, 0).

As the problem is a minimization problem, E−(
∑
D

(i)
max+TC) is chosen as the fitness

function, where E is an upper bound of the values of all meaningful solutions (note that

the meaningful solution here means that there is no delay on jobs processing and delivery).

Applying analytical property: In the original GA, the population are initialized ran-

domly, that is, random permutation σp, random map σb and random permutation σr.

However, from the analytical property, there are more effective solutions. Therefore, based
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on the weak partition WK1,WK2, · · · ,WKo in Definition 4.3, the map can be improved

as WKq
σb−→ WKq for q = 1, 2, · · · , o, that is, the map on the subset WKq are randomly

initialized to WKq.

Genetic operators includes selection operator, crossover operator and mutation oper-

ator, which are crucial to the genetic algorithm. The three operators in the proposed

algorithm are discussed as follows.

The selection operator is to select a portion of the population to breed a new genera-

tion, which is determined by the fitness function. In the algorithm, the bigger the fitness

function value is, the more likely the individual is selected.

The crossover operator is to generate two new ’son’ individuals from two ’parent’

individuals. For different chromosomes, the crossover methods are different. There-

fore, the crossover operators for permutation and map are discussed respectively. (1)

Suppose that there are two processing order permutations (σ1
p(1), σ1

p(2), · · · , σ1
p(k)) and

(σ2
p(1), σ2

p(2), · · · , σ2
p(k)), and let k0 be the crossover position. Let (j1k0

, j1k0+1, · · · , j1k) be

the order of {σ1
p(k0), σ

1
p(k0 + 1), · · · , σ1

p(k)} in σ2
p, and (j2k0

, j2k0+1, · · · , j2k) be the order

of {σ2
p(k0), σ

2
p(k0 + 1), · · · , σ2

p(k)} in σ1
p. The two new permutations after crossover are

(σ1
p(1), σ1

p(2), · · · , σ1
p(k0−1), j1k0

, j1k0+1, · · · , j1k) and (σ2
p(1), σ2

p(2), · · · , σ2
p(k0−1), j2k0

, j2k0+1,

· · · , j2k). (2) Suppose that there are two batch allocation maps (σ1
b (1), σ1

b (2), · · · , σ1
b (k))

and (σ2
b (1), σ2

b (2), · · · , σ2
b (k)), and let k1 be the crossover position. The two new maps after

crossover are (σ1
b (1), σ1

b (2), · · · , σ1
b (k1− 1), σ2

b (k1), σ
2
b (k1 + 1), · · · , σ2

b (k) and (σ2
b (1), σ2

b (2),

· · · , σ2
b (k1 − 1), σ1

b (k1), σ
1
b (k1 + 1), · · · , σ1

b (k)). Notice that the two new maps will still be

a weak partition. (3) The crossover of the routing permutation will be similar with that

of the processing order permutation.
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The mutation operator is to generate a new individual by randomly changing several

genes, which also depends on the structure of chromosome. (1) Suppose that there is a

processing order permutations (σp(1), σp(2), · · · , σp(k)) and let k0 (k0 ≤ k − 1) be the

mutation position. The new permutation after mutation is (σp(1), · · · , σp(k0− 1), σp(k0 +

1), σp(k0), σp(k0 + 2), · · · , σp(k)). (2) Suppose that there is a batch allocation map (σb(1),

σb(2), · · · , σb(k)) and let k1 be the mutation position. If k1 ∈ WKq (q = 1, 2, · · · , o), ran-

domly pick up an index iq from WKq. The new map after mutation is (σb(1), · · · , σb(k1−

1), iq, σb(k1 + 1), · · · , σb(k)), which is a weak partition. (3) The mutation of the routing

permutation will be similar with that of the processing order permutation.

After encoding the solution domain, initializing the population and defining the genetic

operators, the framework of the genetic algorithm is complete. The combination of the

analytical property is reflected in the batch allocation chromosome: the map σb. For

different kinds of problems, the proposed genetic algorithm can be applied by adjusting

the processing order chromosome and batch routing chromosome. Furthermore, if more

properties of the processing part and the routing part are explored, they can be directly

applied to the corresponding chromosome, which implies the openness of the algorithm.

The performance of the algorithm will be presented in the simulated experiment.

4.8 Algorithm for Problem SMP6

SMP6 has the following features: Jobs are released on-line, processed in ”pmtn” pattern

and delivered in ”routing” pattern. The capacity of vehicles and the number of vehicles

are both enough. Actually, SMP6 is the on-line version of SMP5. The same lower bound
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can be applied to this on-line problem.

Corollary 4.8. No on-line algorithm for SMP6 can have competitive ratio less than 2,

even all processing times being 0.

Based on Theorem 4.9, especially the first half part, a strong partition of the customer set

can be defined as follows.

Definition 4.4 [Strong Partition]. If a partition SK1, SK2, · · · , SKo of the customer

set K satisfies that for any i, l ∈ SKq, Til ≤ D
2

and for any i ∈ SKp there exists a l ∈ SKp′

(p 6= p′) such that Til >
D
2

, then the partition is called a strong partition.

A strong partition can be constructed by the following steps:

Step 0. Set q = 1, H = ∅, and goto Step 1.

Step 1. Pick up an arbitrary index i from K, let K = K \ {i} and SKq = {i}, and

goto Step 2.

Step 2. If K 6= ∅, goto Step 3. If K = ∅ but H 6= ∅, K = H, H = ∅, q = q + 1 and

goto Step 1. If K = ∅ and H = ∅, finish.

Step 3. Pick up an arbitrary index i from K. If for all l ∈ SKq there is Til ≤ D
2

,

SKq = SKq∪{i} and K = K \{i} , goto Step 2 ; otherwise, H = H∪{i} and K = K \{i},

goto Step 2.

For the customers which are in the same subset of a strong partition, their jobs can possibly

be in the same delivery batch if they are delivered at the same time point. This is the

main behind idea of the algorithm for SMP6.
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Algorithm SMH6

At the time t that a new job arrives, the customers are re-indexed in an increasing

order of Cmax(J (i)
≤t ) (If there is more than one customer with the same Cmax(J (i)

≤t ), their

order is the original index order). When a new job arrives or the machine is free, process

jobs of the customer with the highest on-line priority.

Set lq = 0 for q = 1, 2, · · · , o. At every time of l
|SKq |D, where l ≥ 1 and l is integer, if

there are sq customers in SKq with completed jobs but no uncompleted job, and l − lq >

|SKq| − sq, deliver all their jobs in a batch, let lq = l; otherwise no operation.

The routing part in the on-line algorithm can be solved by simulated annealing algorithm.

In the following, it is assumed that the optimal routing path can always be obtained.

Next, the fact that on-line algorithm SMH6 for SMP6 with k = 2 can achieve a competitive

ratio of 2 is proved, which implies the on-line optimality of the algorithm in this special

situation. The proof has different cases for whether the two customers’ jobs are in the

same batch or not. The performance of the algorithm for different values of k will be

shown later.

Theorem 4.10. The competitive ratio of on-line algorithm SMH6 for SMP6 with k = 2

is 2, which is on-line optimal.

Proof of Theorem 4.10: If T12 >
1
2
D, from Theorem 4.9, both the problem and the

algorithm degenerate to be the case that routing is not allowed. From Theorem 4.2, the

competitive ratio of the on-line algorithm is 2. Therefore, in the following, it can be

assumed that T12 ≤ 1
2
D. From the definition of strong partition, SK1 = K = {1, 2}.
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Let η be the schedule obtained by the algorithm SMH6. Without loss of generality,

suppose Cmax(J (1)) ≤ Cmax(J (2)). In η, at the time of max{r(i)j |J
(i)
j ∈ J (i), i = 1, 2}, all

the jobs are released and there are uncompleted jobs for Customer 2. By the algorithm

SMH6, the jobs of Customer 1 will have the top priority at this moment. Therefore, the

jobs of Customer 1 are also completed earlier in η, that is, C
(1)
max(η) ≤ C

(2)
max(η), which

implies that ρ
(1)
max(η) ≤ ρ

(2)
max(η). Meanwhile, as there are no delay of jobs preparation,

C
(2)
max(η) = Cmax(J (1) ∪ J (2)).

Case 1: In η, the last batch is only for Customer 2. At the time ρ
(1)
max(η), there are

uncompleted jobs of Customer 2, so it should be satisfied that ρ
(1)
max(η) ≤ (dC

(2)
max(η)

1
2
D
e−1)1

2
D.

Meanwhile, the last batch will not wait more than 1
2
D, ρ

(2)
max(η) ≤ (dC

(2)
max(η)

1
2
D
e+ 1)1

2
D.

Case 1.1: In opt, the jobs of Customer 1 and Customer 2 are in the same batch. The

optimal schedule opt processes all the jobs without delay and delivery them in one batch,

so the optimal result Z(opt) = 2(Cmax(J (1) ∪ J (2)) + T01 + T12 + T02) +D.

In the interval (0, C
(2)
max(η)], there is at most one batch at every delivery point, so the

delivery cost will not be more than bC
(2)
max(η)

1
2
D
cD.

In the interval (C
(2)
max(η), ρ

(2)
max(η)], there is only one batch for Customer 2’s jobs, so

the delivery cost will not be more than D.

TC(η) ≤ bC
(2)
max(η)
1
2
D
cD +D ≤ 2C(2)

max(η) +D. (4.110)

141



Z(η)

Z(opt)
≤ ρ

(1)
max(η) + T01 + T12 + T02 + ρ

(2)
max(η) + 2T02 + TC(η)

2(Cmax(J (1) ∪ J (2)) + T01 + T12 + T02) +D

≤
2dC

(2)
max(η)

1
2
D
e1
2
D + 2C

(2)
max(η) +D + T01 + T12 + T02 + 2T02

2(Cmax(J (1) ∪ J (2)) + T01 + T12 + T02) +D

≤ 4C
(2)
max(η) + 2T01 + 2T12 + 2T02 + 2D

2Cmax(J (1) ∪ J (2)) + 2T01 + 2T12 + 2T02 +D
≤ 2.

(4.111)

Case 1.2: In opt, the jobs of Customer 1 and Customer 2 are not in the same batch.

The optimal schedule opt processes all the jobs without delay such that Customer 1 has

a higher priority, and deliver Customer i’s (i = 1, 2) jobs in a batch when all of them are

completed, so the optimal result Z(opt) = Cmax(J (1))+2T01+Cmax(J (1)∪J (2))+2T02+2D.

In the interval (0, Cmax(J (1))], there is at most one batch at every delivery point, so

the delivery cost will not be more than bCmax(J (1))
1
2
D

cD.

In the interval (Cmax(J (1)), C
(1)
max(η)], there is at most one batch for Customer 2’s jobs

which are released before Cmax(J (1)), so the delivery cost will not be more than D.

In the interval (C
(1)
max(η), ρ

(1)
max(η)], there is only one batch at the time ρ

(1)
max(η), so the

delivery cost will be D.

In the interval (ρ
(1)
max(η), ρ

(2)
max(η)], there is at most one batch every two delivery points,

so the delivery cost will not be more than ρ
(2)
max(η)−ρ

(1)
max(η)

1
2
D

1
2
D = ρ

(2)
max(η)− ρ(1)max(η).

TC(η) ≤ bCmax(J
(1))

1
2
D

cD + 2D + ρ(2)max(η)− ρ(1)max(η)

≤ 2Cmax(J (1)) + 2D + ρ(2)max(η)− ρ(1)max(η).

(4.112)
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Z(η)

Z(opt)
≤ ρ

(1)
max(η) + T01 + T12 + T02 + ρ

(2)
max(η) + 2T02 + TC(η)

Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D

≤ 2ρ
(2)
max(η) + T01 + T12 + T02 + 2T02 + 2Cmax(J (1)) + 2D

Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D

≤ 2Cmax(J (1)) + 2C
(2)
max(η) + 4D + 2T01 + 4T02

Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D
≤ 2.

(4.113)

Case 2: In η, the last batch is for both Customer 1 and Customer 2. Hence, ρ
(1)
max(η) =

ρ
(2)
max(η) ≤ dC

(2)
max(η)

1
2
D
e1
2
D ≤ C

(2)
max(η) + 1

2
D.

Case 2.1: In opt, the jobs of Customer 1 and Customer 2 are in the same batch. From

case 1.1, Z(opt) = 2(Cmax(J (1) ∪ J (2)) + T01 + T12 + T02) +D.

As there is at most one batch every delivery point, so TC(η) ≤ ρ
(2)
max(η)

1
2
D

D = 2ρ
(2)
max(η).

Z(η)

Z(opt)
≤ 2(ρ

(2)
max(η) + T01 + T12 + T02) + TC(η)

2(Cmax(J (1) ∪ J (2)) + T01 + T12 + T02) +D

≤ 4ρ
(2)
max(η) + 2T01 + 2T12 + 2T02

2(Cmax(J (1) ∪ J (2)) + T01 + T12 + T02) +D

≤ 4C
(2)
max(η) + 2T01 + 2T12 + 2T02 + 2D

2Cmax(J (1) ∪ J (2)) + 2T01 + 2T12 + 2T02 +D
≤ 2.

(4.114)

Case 2.2: In opt, the jobs of Customer 1 and Customer 2 are not in the same batch.

From case 1.2, Z(opt) = Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D.

In the interval (0, Cmax(J (1))], there is at most one batch at every delivery point, so

the delivery cost will not be more than bCmax(J (1))
1
2
D

cD.

In the interval (Cmax(J (1)), C
(1)
max(η)], there is at most one batch for Customer 2’s jobs

which are released before Cmax(J (1)), so the delivery cost will not be more than D.

In the interval (C
(1)
max(η), ρ

(2)
max(η)], there is one batch at the time ρ

(2)
max(η), so the delivery

cost will not be more than D.

TC(η) ≤ bCmax(J
(1))

1
2
D

cD + 2D ≤ 2Cmax(J (1)) + 2D (4.115)
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Z(η)

Z(opt)
≤ 2(ρ

(2)
max(η) + T01 + T12 + T02) + TC(η)

Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D

≤ 2ρ
(2)
max(η) + 2T01 + 2T12 + 2T02 + 2Cmax(J (1)) + 2D

Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D

≤ 2Cmax(J (1)) + 2C
(2)
max(η) + 2T01 + 2T12 + 2T02 + 3D

Cmax(J (1)) + 2T01 + Cmax(J (1) ∪ J (2)) + 2T02 + 2D
≤ 2.

(4.116)

From Corollary 4.8, there is no on-line algorithm with competitive ratio less than 2, which

completes the proof. �

4.9 Algorithm for Problem SMP7

SMP7 has the following features: Jobs are released off-line and delivered in ”routing”

pattern. The capacity of vehicles and the number of vehicles are both enough.

When the number of customers k is a parameter, both the preparation part and the

delivery part are strongly NP-hard, respectively, which implies SMP7 is at least strongly

NP hard.

Corollary 4.9. SMP7 is a SNP-hard problem.

Property 4.1 and 4.2 can still be applied for SMP7, and the jobs of any two aid sites in

different subsets of a weak partition cannot be in the same batch, which means that a GA

for SMP7 can be modified from SMH5.

Algorithm SMH7

At first, the genetic representation of solution domain, i.e., the encoding of the indi-

viduals, is constructed. As a solution has three parts: the processing order of jobs on the

processor, the aid sites in a batch, the routing path of a batch, the individual encoding

also composes three chromosomes.
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(1) Re-index all the jobs by the release time, and the processing order of jobs can be

represented by a permutation σp of {1, 2, · · · , n}, that is, jobs processing order is

σp(1), σp(2), · · · , σp(n).

(2) Construct a map σb on the customer set: K
σb−→ K to represent the allocation of

customers to batches, that is, Customer i and Customer l are in the same batch if

σb(i) = σb(l).

(3) For all the customers, a permutation σr of K is applied to represent the routing

paths of all batches. Suppose that the customers i1, i2, · · · , is are in the same batch

and they satisfies σr(i1) < σr(i2) < · · · < σr(is), then the routing path of this batch

will be (0, i1, i2, · · · , is, 0).

Similarly, E − (
∑
D

(i)
max + TC) is chosen as the fitness function, where E is an upper

bound of the values of all meaningful solutions.

Applying analytical property: Based on the weak partition WK1,WK2, · · · ,WKo in

Definition 4.1, the map σb can be improved as WKq
σb−→ WKq for q = 1, 2, · · · , o, that is,

the map on the subset WKq are randomly initialized to WKq.

The three operators in the proposed algorithm are discussed as follows.

The selection operator is to select a portion of the population to breed a new genera-

tion, which is determined by the fitness function. In the algorithm, the bigger the fitness

function value is, the more likely the individual is selected.

The crossover operator is to generate two new ’son’ individuals from two ’parent’

individuals. For different chromosomes, the crossover methods are different. There-

fore, the crossover operators for permutation and map are discussed respectively. (1)
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Suppose that there are two processing order permutations (σ1
p(1), σ1

p(2), · · · , σ1
p(n)) and

(σ2
p(1), σ2

p(2), · · · , σ2
p(n)), and let n0 be the crossover position. Let (j1n0

, j1n0+1, · · · , j1n) be

the order of {σ1
p(n0), σ

1
p(n0 + 1), · · · , σ1

p(n)} in σ2
p, and (j2n0

, j2n0+1, · · · , j2n) be the order

of {σ2
p(n0), σ

2
p(n0 + 1), · · · , σ2

p(n)} in σ1
p. The two new permutations after crossover are

(σ1
p(1), σ1

p(2), · · · , σ1
p(n0−1), j1n0

, j1n0+1, · · · , j1n) and (σ2
p(1), σ2

p(2), · · · , σ2
p(n0−1), j2n0

, j2n0+1,

· · · , j2n). (2) Suppose that there are two batch allocation maps (σ1
b (1), σ1

b (2), · · · , σ1
b (k))

and (σ2
b (1), σ2

b (2), · · · , σ2
b (k)), and let k0 be the crossover position. The two new maps after

crossover are (σ1
b (1), σ1

b (2), · · · , σ1
b (k0− 1), σ2

b (k0), σ
2
b (k0 + 1), · · · , σ2

b (k) and (σ2
b (1), σ2

b (2),

· · · , σ2
b (k0 − 1), σ1

b (k0), σ
1
b (k0 + 1), · · · , σ1

b (k)). Notice that the two new maps will still be

a weak partition. (3) The crossover of the routing permutation will be similar with that

of the preparation order permutation.

The mutation operator is to generate a new individual by randomly changing several

genes, which also depends on the structure of chromosome. (1) Suppose that there is a

processing order permutations (σp(1), σp(2), · · · , σp(n)) and let n0 (n0 ≤ n − 1) be the

mutation position. The new permutation after mutation is (σp(1), · · · , σp(n0− 1), σp(n0 +

1), σp(n0), σp(n0 +2), · · · , σp(n)). (2) Suppose that there is a batch allocation map (σb(1),

σb(2), · · · , σb(k)) and let k0 be the mutation position. If k0 ∈ WKq (q = 1, 2, · · · , o), ran-

domly pick up an index iq from WKq. The new map after mutation is (σb(1), · · · , σb(k0−

1), iq, σb(k0 + 1), · · · , σb(k)), which is a weak partition. (3) The mutation of the routing

permutation will be similar with that of the processing order permutation.

The performance of the algorithm will be presented in the simulated experiment.
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4.10 Algorithm for Problem SMP8

SMP8 has the following features: Jobs are released on-line and delivered in ”routing”

pattern. The capacity of vehicles and the number of vehicles are both enough. Actually,

SMP8 is the on-line version of SMP7. The same lower bound can be applied to this on-line

problem.

Corollary 4.10. No on-line algorithm for SMP8 can have competitive ratio less than 2,

even all processing times being 0.

Similarly with SMP6, for the customers which are in the same subset of a strong partition,

their jobs can possibly be in the same delivery batch if they are delivered at the same time

point.

Algorithm SMH8

At the time t that a new job arrives, the customers are re-indexed in an increasing

order of Cmax(J (i)
≤t ) (If there is more than one customer with the same Cmax(J (i)

≤t ), their

order is the original index order). When the machine is free, process ready jobs of the

customer with the highest on-line priority.

Set lq = 0 for q = 1, 2, · · · , o. At every time of l
|SKq |D, where l ≥ 1 and l is integer, if

there are sq customers in SKq with completed jobs but no uncompleted job, and l − lq >

|SKq| − sq, deliver all their jobs in a batch, let lq = l; otherwise no operation.

Next, the competitive analysis of SMH8 with k = 2 is proposed and the performance of

the algorithm is presented in the next section. As the preemption of jobs processing is not
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allowed, the proof is more complex and the completion times of the two customers need

to be considered.

Theorem 4.11. The on-line algorithm SMH8 for SMP8 with k = 2 is 2 + 1
2
-competitive.

Proof of Theorem 4.11: If T12 >
1
2
D, from Theorem 4.9, both the problem and the

algorithm degenerate to the case that routing is not allowed. From Theorem 4.8, the

on-line algorithm is 2 + 1
2
-competitive. Therefore, in the following, it is assumed that

T12 ≤ 1
2
D. From the definition of strong partition, SK1 = K = {1, 2}.

Without loss of generality, suppose that Cmax(J (1)) ≤ Cmax(J (2)). Let η be the

algorithm solution and l1
2
D be the last idle delivery point before Cmax(J (1)). Let (i1, i2)

be the order of the customers’ completion times in the optimal solutions. It is obvious that

Cmax(J (1)) ≤ C
(i1)
max(opt) and Cmax(J (1) ∪ J (2)) ≤ C

(i2)
max(opt). In addition, let T

(i)
d be the

end point of the last period of waiting time before C
(i)
max(η) (i = 1, 2) in η. Here assume

T
(1)
d > l1

2
D; otherwise the waiting will not affect the completion times of two customers

and will lead to a simpler case. The total waiting time will not be greater than half of the

longest processing time of all jobs. At the time of Cmax(J (1)), all the jobs of Customer 1 are

released and also satisfy the processing condition, so T
(1)
d ≤ Cmax(J (1)). Meanwhile, after

Cmax(J (1)), the processing of Customer 1’s jobs would be continuous until all of them are

completed. Therefore, the jobs processing in the interval (Cmax(J (1)), C
(1)
max(η)] should be a

block of Customer 2’s jobs followed by a block of Customer 1’s jobs (see Figure 4.9). Simply

use P1 and P2 to represent P
(1)

(Cmax(J (1)),C
(1)
max(η)]

(η) and P
(2)

(Cmax(J (1)),C
(1)
max(η)]

(η), respectively.
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η: P2 P1

0 Cmax(J (1)) C
(1)
max(η)

Figure 4.9. The Jobs Processing in The Interval (Cmax(J (1)), C
(1)
max(η)] (2)

If Cmax(J (1)∪J (2)) ≤ 1
4
D, the longest processing time will not be more than 1

4
D, and

the total waiting time will not be more than 1
8
D, which implies thatmax{C(1)

max(η), C
(2)
max(η)}

≤ 3
8
D. Further, the first delivery point is at the time 1

2
D, so there is only one batch for all

jobs in η at the time 1
2
D. As such, there is Z(η) = 2(1

2
D+T01+T12+T02)+D. As the opti-

mal result Z(opt) ≥ min{D+2(T01+T12+T02), 2D+2T01+2T02} ≥ D+2(T01+T12+T02),

Z(η)
Z(opt)

≤ 2D+2T01+2T12+2T02

D+2T01+2T12+2T02
≤ 2.

If Cmax(J (1) ∪ J (2)) ≤ 1
2
D and Cmax(J (1) ∪ J (2)) > 1

4
D, the longest processing

time will not be more than 1
2
D and the total waiting time will not be more than 1

4
D,

which implies that max{C(1)
max(η), C

(2)
max(η)} ≤ 3

4
D. All the jobs are known before 1

2
D,

so in η there is one batch for all jobs at the delivery point no later than D. Therefore,

Z(η) ≤ 2(D+T01+T12+T02)+D. As the optimal result Z(opt) ≥ min{2· 1
4
D+D+2(T01+

T12 +T02),
1
4
D+2D+2T01 +2T02}, Z(η)

Z(opt)
≤ max{ 3D+2T01+2T12+2T02

3
2
D+2T01+2T12+2T02

, 3D+2T01+2T12+2T02
1
4
D+2D+2T01+2T02

} ≤ 2.

It only needs to consider the case that Cmax(J (1) ∪ J (2)) > 1
2
D in the following.

Case 1: C
(1)
max(η) ≤ C

(2)
max(η). Therefore, T

(1)
d ≤ T

(2)
d and C

(2)
max(η) ≤ T

(2)
d +Cmax(J (1)∪

J (2))− l1
2
D

Case 1.1: In η, the last batch is only for Customer 2. In this case, ρ
(2)
max(η) ≤

(dC
(2)
max(η)

D
2

e+ 1)D
2
≤ C

(2)
max(η) +D.

In the interval (0, Cmax(J (1))], there is at most one batch for every delivery point
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before l1
2
D and there is at most one batch for every two delivery points after l1

2
D, so the

delivery cost will not be more than l1
2
D + bCmax(J (1))

D
2

cD
2

.

In the interval (Cmax(J (1)), C
(1)
max(η)], there is at most one batch only for jobs of

Customer 2, so the delivery cost will not be more than sD (s = 0 or s = 1).

In the interval (C
(1)
max(η), ρ

(1)
max(η)], there is only one batch at the time ρ

(1)
max(η), so the

delivery cost will is D.

In the interval (ρ
(1)
max(η), ρ

(2)
max(η)], there is at most one batch for every two delivery

points, so the delivery cost will not be more than ρ
(2)
max(η)−ρ

(1)
max(η)

1
2
D

1
2
D = ρ

(2)
max(η)− ρ(1)max(η).

Case 1.1.1: In opt, the jobs of Customer 1 and Customer 2 are in the same batch.

Then, Z(opt) = 2(C
(i2)
max(opt) + T01 + T12 + T02) +D.

If s = 0, TC(η) ≤ l1
2
D + Cmax(J (1)) +D + ρ

(2)
max(η)− ρ(1)max(η).

Z(η) ≤ ρ(1)max(η) + T01 + T12 + T02 + ρ(2)max(η) + 2T02 + TC(η)

≤ 2ρ(2)max(η) +
l1
2
D + Cmax(J (1)) +D + T01 + T12 + 3T02

≤ 2C(2)
max(η) + 2D +

l1
2
D + Cmax(J (1)) +D + T01 + T12 + 3T02

≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

3D + T01 + T12 + 3T02

≤ 2Cmax(J (1) ∪ J (2)) + 2T
(2)
d + Cmax(J (1)) + 3D + T01 + T12 + 3T02

≤ 4Cmax(J (1) ∪ J (2)) + 3D + T01 + T12 + 3T02.

(4.117)

Z(η)

Z(opt)
≤ 4Cmax(J (1) ∪ J (2)) + 3D + T01 + T12 + 3T02

2C
(i2)
max(opt) + 2T01 + 2T12 + 2T02 +D

≤ 2 +
1

2
. (4.118)

If s = 1 and the batch for Customer 2 in the interval (Cmax(J (1)), C
(1)
max(η)] is the

first batch in η, all Customer 2’s jobs completed after this batch are released after it.
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Meanwhile, this batch should not happen before the time D, so C
(i2)
max(opt) ≥ D and

TC(η) ≤ 2D + ρ
(2)
max(η)− ρ(1)max(η).

Z(η) ≤ ρ(1)max(η) + T01 + T12 + T02 + ρ(2)max(η) + 2T02 + TC(η)

≤ 2ρ(2)max(η) + 2D + T01 + T12 + 3T02

≤ 2C(2)
max(η) + 4D + T01 + T12 + 3T02

≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D) + 4D + T01 + T12 + 3T02

≤ 2Cmax(J (1) ∪ J (2)) + 2T
(2)
d + 4D + T01 + T12 + 3T02

≤ 3Cmax(J (1) ∪ J (2)) + 4D + T01 + T12 + 3T02.

(4.119)

Z(η)

Z(opt)
≤ 3Cmax(J (1) ∪ J (2)) + 4D + T01 + T12 + 3T02

2C
(i2)
max(opt) + 2T01 + 2T12 + 2T02 +D

≤ 2 +
2D − C(i2)

max(opt)

2C
(i2)
max(opt) + 2T01 + 2T12 + 2T02 +D

≤ 2 +
2D −D

2D + 2T01 + 2T12 + 2T02 +D
≤ 2 +

1

3
.

(4.120)

If s = 1 and the batch for Customer 2 in the interval (Cmax(J (1)), C
(1)
max(η)] is not

the first batch in η, all Customer 2’s jobs completed after this batch are released after it.

Meanwhile, this batch should not happen before the time 3
2
D, so C

(i2)
max(opt) ≥ 3

2
D and
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TC(η) ≤ l1
2
D + Cmax(J (1)) + 2D + ρ

(2)
max(η)− ρ(1)max(η).

Z(η) ≤ ρ(1)max(η) + T01 + T12 + T02 + ρ(2)max(η) + 2T02 + TC(η)

≤ 2ρ(2)max(η) +
l1
2
D + Cmax(J (1)) + 2D + T01 + T12 + 3T02

≤ 2C(2)
max(η) + 2D +

l1
2
D + Cmax(J (1)) + 2D + T01 + T12 + 3T02

≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

4D + T01 + T12 + 3T02

≤ 2Cmax(J (1) ∪ J (2)) + 2T
(2)
d + Cmax(J (1)) + 4D + T01 + T12 + 3T02

≤ 4Cmax(J (1) ∪ J (2)) + 4D + T01 + T12 + 3T02.

(4.121)

Z(η)

Z(opt)
≤ 4Cmax(J (1) ∪ J (2)) + 4D + T01 + T12 + 3T02

2C
(i2)
max(opt) + 2T01 + 2T12 + 2T02 +D

≤ 2 +
2D

2C
(i2)
max(opt) + 2T01 + 2T12 + 2T02 +D

≤ 2 +
2D

2 · 3
2
D + 2T01 + 2T12 + 2T02 +D

≤ 2 +
1

2
.

(4.122)

Case 1.1.2: In opt, the jobs of Customer 1 and Customer 2 are not in the same batch.

Then, Z(opt) = C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D.

If T
(1)
d = T

(2)
d , then T

(2)
d ≤ Cmax(J (1)).

Z(η) ≤ 2Cmax(J (1) ∪ J (2)) + 2T
(2)
d + Cmax(J (1)) + 4D + T01 + T12 + 3T02

≤ 2Cmax(J (1) ∪ J (2)) + 3Cmax(J (1)) + 4D + T01 + T12 + 3T02.

(4.123)

Z(η)

Z(opt)
≤ 2Cmax(J (1) ∪ J (2)) + 3Cmax(J (1)) + 4D + T01 + T12 + 3T02

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2 +
Cmax(J (1))

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2 +
1

2
.

(4.124)

If T
(1)
d < T

(2)
d and 2T

(2)
d ≤ ρ

(1)
max(η), there is T

(2)
d > C

(1)
max(η), as there is no free

machine time in the interval (Cmax(J (1)), C
(1)
max(η)]. From ρ

(1)
max(η) ≤ (dC

(1)
max(η)

D
2

e + 1)D
2
≤
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C
(1)
max(η) + D, we have T

(2)
d ≤ D. There is only one delivery point before C

(1)
max(η), which

means that there cannot be one batch only for Customer 2, so s = 0, i.e., TC(η) ≤

l1
2
D + Cmax(J (1)) +D + ρ

(2)
max(η)− ρ(1)max(η).

Z(η) ≤ 2ρ(2)max(η) +D +
l1
2
D + Cmax(J (1)) +D + T01 + T12 + 3T02

≤ 2C(2)
max(η) + 3D +

l1
2
D + Cmax(J (1)) +D + T01 + T12 + 3T02

≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D) + 3D +

l1
2
D + Cmax(J (1))+

T01 + T12 + 3T02

≤ 2Cmax(J (1) ∪ J (2)) + Cmax(J (1)) + 2T
(2)
d + 3D + T01 + T12 + 3T02

≤ 2Cmax(J (1) ∪ J (2)) + Cmax(J (1)) + 5D + T01 + T12 + 3T02.

(4.125)

Z(η)

Z(opt)
≤ 2Cmax(J (1) ∪ J (2)) + Cmax(J (1)) + 5D + T01 + T12 + 3T02

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2 +
1

2
. (4.126)

If T
(1)
d < T

(2)
d and 2T

(2)
d > ρ

(1)
max(η), there are no batches for Customer 2 in the interval

(T
(2)
d , 3T

(2)
d ] as the job (which is in waiting status before T

(2)
d ) cannot be completed before

3T
(2)
d . Therefore, in the interval (ρ

(1)
max(η), ρ

(2)
max(η)], the delivery cost will not be more than

ρ
(2)
max(η)− b3T

(2)
d
D
2

c1
2
D + 1

2
D ≤ ρ

(2)
max(η)− 3T

(2)
d +D.

TC(η) ≤ l1
2
D + Cmax(J (1)) + 2D + ρ(2)max(η)− 3T

(2)
d +D. (4.127)
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Z(η) ≤ ρ(1)max(η) + 2ρ(2)max(η)− 3T
(2)
d + 3D + Cmax(J (1)) +

l1
2
D+

T01 + T12 + 3T02

≤ 2C(2)
max(η)− T (2)

d + 5D + Cmax(J (1)) +
l1
2
D + T01 + T12 + 3T02

≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D)− T (2)

d + 5D + Cmax(J (1))+

l1
2
D + T01 + T12 + 3T02

≤ 5

2
Cmax(J (1) ∪ J (2)) + Cmax(J (1)) + 5D + T01 + T12 + 3T02.

(4.128)

Z(η)

Z(opt)
≤

5
2
Cmax(J (1) ∪ J (2)) + Cmax(J (1)) + 5D + T01 + T12 + 3T02

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2 +
1

2
. (4.129)

Case 1.2: In η, the last batch is for both Customer 1 and Customer 2. In this case,

ρ
(1)
max(η) = ρ

(2)
max(η) ≤ dC

(2)
max(η)

D
2

eD
2
≤ C

(2)
max(η) + 1

2
D.

In the interval (0, Cmax(J (1))], the delivery cost will not be more than l1
2
D+bCmax(J (1))

D
2

cD
2

.

In the interval (Cmax(J (1)), C
(1)
max(η)], there is at most one batch only for jobs of

Customer 2, so the delivery cost will not be more than sD (s = 0 or s = 1).

In the interval (C
(1)
max(η), ρ

(2)
max(η)], there is only one batch at the time ρ

(2)
max(η), so the

delivery cost will be D.

TC(η) ≤ l1
2
D + Cmax(J (1)) + (s+ 1)D. (4.130)

Case 1.2.1: In opt, the jobs of Customer 1 and Customer 2 are in the same batch.

Then, Z(opt) = 2(C
(i2)
max(opt) + T01 + T12 + T02) +D.
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Z(η) ≤ ρ(1)max(η) + T01 + T12 + T02 + ρ(2)max(η) + T01 + T12 + T02 + TC(η)

≤ 2C(2)
max(η) +

l1
2
D + Cmax(J (1)) + (s+ 2)D + 2(T01 + T12 + T02)

≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

(s+ 2)D + 2(T01 + T12 + T02)

≤ 4Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T12 + T02).

(4.131)

Z(η)

Z(opt)
≤ 4Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T12 + T02)

2(C
(i2)
max(opt) + T01 + T12 + T02) +D

≤ 2 +
1

2
. (4.132)

Case 1.2.2: In opt, the jobs of Customer 1 and Customer 2 are not in the same batch.

Then, Z(opt) = C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D.

If T
(1)
d = T

(2)
d , T

(2)
d ≤ Cmax(J (1)).

Z(η) ≤ 2(T
(2)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

(s+ 2)D + 2(T01 + T12 + T02)

≤ 3Cmax(J (1)) + 2Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T12 + T02).

(4.133)

Z(η)

Z(opt)
≤ 3Cmax(J (1)) + 2Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T12 + T02)

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2 +
1

2
.

(4.134)

If T
(1)
d < T

(2)
d , there is T

(2)
d > C

(1)
max(η) as there is no free machine time in the interval

(Cmax(J (1)), C
(1)
max(η)]. Meanwhile, ρ

(2)
max(η) ≤ (dC

(1)
max(η)

D
2

e+1)1
2
D ≤ C

(1)
max(η)+D ≤ T

(2)
d +D.

Z(η) ≤ 2T
(2)
d + 2D +

l1
2
D + Cmax(J (1)) + (s+ 1)D + 2(T01 + T12 + T02)

≤ 2Cmax(J (1)) + Cmax(J (1) ∪ J (2)) + 4D + 2(T01 + T12 + T02).

(4.135)

Z(η)

Z(opt)
≤ 2Cmax(J (1)) + Cmax(J (1) ∪ J (2)) + 4D + 2(T01 + T12 + T02)

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2. (4.136)
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Case 2: C
(1)
max(η) > C

(2)
max(η). As there is no free machine time in (Cmax(J (1)), C

(1)
max(η)],

there is T
(1)
d = T

(2)
d ≤ Cmax(J (1)) and C

(1)
max(η) ≤ T

(1)
d + Cmax(J (1) ∪ J (2))− l1

2
D.

Case 2.1: In η, the last batch is only for Customer 1. In this case, ρ
(2)
max(η) ≤

(dC
(2)
max(η)

D
2

e+ 1)D
2

and ρ
(1)
max(η) ≤ (dC

(1)
max(η)

D
2

e − 1)D
2

In the interval (0, Cmax(J (1))], the delivery cost will not be more than l1
2
D+bCmax(J (1))

D
2

cD
2

.

In the interval (Cmax(J (1)), ρ
(2)
max(η)], there is one batch at ρ

(2)
max(η) only for Customer

2, so the delivery cost will be D.

In the interval (ρ
(2)
max(η), ρ

(1)
max(η)], there is only one batch at the time ρ

(1)
max(η), so the

delivery cost will be D.

TC(η) ≤ l1
2
D + Cmax(J (1)) + 2D. (4.137)

Case 2.1.1: In opt, the jobs of Customer 1 and Customer 2 are in the same batch.

Then, Z(opt) = 2(C
(i2)
max(opt) + T01 + T12 + T02) +D.

Z(η) ≤ ρ(1)max(η) + 2T01 + ρ(2)max(η) + 2T02 + TC(η)

≤ 2C(1)
max(η) +D +

l1
2
D + Cmax(J (1)) + 2D + 2(T01 + T02)

≤ 2(T
(1)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

3D + 2(T01 + T02)

≤ 4Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T02)

(4.138)

Z(η)

Z(opt)
≤ 4Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T02)

2(C
(i2)
max(opt) + T01 + T12 + T02) +D

≤ 2 +
1

2
(4.139)

Case 2.1.2: In opt, the jobs of Customer 1 and Customer 2 are not in the same batch.
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Then, Z(opt) = C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D.

Z(η) ≤ ρ(1)max(η) + 2T01 + ρ(2)max(η) + 2T02 + TC(η)

≤ 2C(1)
max(η) +D +

l1
2
D + Cmax(J (1)) + 2D + 2(T01 + T02)

≤ 2(T
(1)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

3D + 2(T01 + T02)

≤ 3Cmax(J (1)) + 2Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T02).

(4.140)

Z(η)

Z(opt)
≤ 3Cmax(J (1)) + 2Cmax(J (1) ∪ J (2)) + 3D + 2(T01 + T02)

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2 +
1

2
. (4.141)

Case 2.2: In η, the last batch is for both Customer 1 and Customer 2. In this case,

ρ
(1)
max(η) = ρ

(2)
max(η) ≤ dC

(1)
max(η)

D
2

eD
2
≤ C

(1)
max(η) + 1

2
D.

In the interval (0, Cmax(J (1))], the delivery cost will not be more than l1
2
D+bCmax(J (1))

D
2

cD
2

.

In the interval (Cmax(J (1)), ρ
(1)
max(η)], as all the jobs are released before Cmax(J (1)),

there is only one batch at ρ
(1)
max(η) , so the delivery cost will be D.

TC(η) ≤ l1
2
D + Cmax(J (1)) +D (4.142)

Case 2.2.1: In opt, the jobs of Customer 1 and Customer 2 are in the same batch.

Then, Z(opt) = 2(C
(i2)
max(opt) + T01 + T12 + T02) +D.

Z(η) ≤ ρ(1)max(η) + T01 + T12 + T02 + ρ(2)max(η) + T01 + T12 + T02 + TC(η)

≤ 2C(1)
max(η) +D +

l1
2
D + Cmax(J (1)) +D + 2(T01 + T12 + T02)

≤ 2(T
(1)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1)) + 2D+

2(T01 + T12 + T02)

≤ 4Cmax(J (1) ∪ J (2)) + 2D + 2(T01 + T12 + T02).

(4.143)
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Z(η)

Z(opt)
≤ 4Cmax(J (1) ∪ J (2)) + 2D + 2(T01 + T02)

2(C
(i2)
max(opt) + T01 + T12 + T02) +D

≤ 2. (4.144)

Case 2.2.2: In opt, the jobs of Customer 1 and Customer 2 are not in the same batch.

Then, Z(opt) = C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D.

Z(η) ≤ ρ(1)max(η) + T01 + T12 + T02 + ρ(2)max(η) + T01 + T12 + T02 + TC(η)

≤ 2C(1)
max(η) +D +

l1
2
D + Cmax(J (1)) +D + 2(T01 + T12 + T02)

≤ 2(T
(1)
d + Cmax(J (1) ∪ J (2))− l1

2
D) +

l1
2
D + Cmax(J (1))+

2D + 2(T01 + T12 + T02)

≤ 3Cmax(J (1)) + 2Cmax(J (1) ∪ J (2)) + 2D + 2(T01 + T12 + T02).

(4.145)

Z(η)

Z(opt)
≤ 3Cmax(J (1)) + 2Cmax(J (1) ∪ J (2)) + 2D + 2(T01 + T12 + T02)

C
(i1)
max(opt) + C

(i2)
max(opt) + 2T01 + 2T02 + 2D

≤ 2. (4.146)

�

4.11 Simulated Experiment for SMH with Routing

In this section, a simulation is conducted to demonstrate the run-time and the perfor-

mance of the above algorithms (SMH5-SMH8) in normal scenarios and illustrate how the

algorithms are used in practice. An instance can be defined by prescribing a set of the

foregoing parameters (ni, p
(i)
j , and r

(i)
j , for j = 1, 2, · · · , ni, Til for i, l = 1, 2, · · · , k, C and

D). The instances were generated by these randomly generated parameters. The algo-

rithm was implemented in the Matlab environment. The parameters are thus determined

based on the following assumptions:

(1) The release of jobs for Customer i follows the poisson distribution with the parameter

λi, i.e., the number of jobs released at some time r: ni(r) ∼ P (λi) and the next

158



release time is r + r′, where r′ ∼ U(0, λi), λi is two times of the mean value of the

release intervals for Customer i, and λi ∼ U(0,Λi) (i = 1, 2, · · · , k).

(2) The job processing time for Customer i follows the uniform distribution in the inter-

val [0, bi], i.e., p
(i)
j ∼ U(0, bi) for j = 1, 2, · · · , ni, where bi is two times of the mean

value of the processing time for Customer i and bi ∼ U(0, Bi) (i = 1, 2, · · · , k).

(3) The number of jobs for Customer i follows the uniform distribution in the set

{1, 2, · · · , Ni}, i.e., Pr{ni = h} = 1
Ni

for h = 1, 2, · · · , Ni where Ni is two times

of the mean value of the number of jobs for Customer i (i = 1, 2, · · · , k).

(4) The positions of the manufacturer and the customers are randomly located in an

square area with side length L, and the transportation network can be directly

determined by the Euclidean distance.

(5) The delivery cost D is a constant.

(6) The number of customers is of four cases: k = 2, k = 5, k = 10, and k = 20.

By choosing different values for Λi, Bi, Ni, and L, instances are generated and scheduling

is then executed. First, the performance of the developed GAs for off-line problems with

the analytical property in comparison with that of original GAs without the analytical

property is demonstrated. SMH7 and the corresponding original GA are taken as an exam-

ple as SMH7 is similar with but more complex than SMH5. In the numerical simulation,

the two algorithms have the same initialized population, the same size of population, and

the same number of generations. The probabilities of crossover and mutation are chosen

as 0.75 and 0.2, respectively. Therefore, the differences in the results are attributed to
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the analytical property. To illustrate the results clearly, the discussion will be under the

following three cases.

Case 1. The values of processing part (r
(i)
j and p

(i)
j ) are small while the values of trans-

portation system (Til) and the unit delivery cost (D) are large. In this case, the delivery

part overwhelms the processing part, so it highlights the role of the analytical property.

Figures 4.10-4.12 show the results of SMH7 and original GA in this case for k = 5, k = 10

and k = 20, respectively. From the three figures, it can be seen that the convergence

values of SMH7 are much greater than those of original GA, and the convergence speeds

are almost the same, which implies that SMH7 can achieve a much better result than

original GA in the same running time.
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Figure 4.10. The Results of SMH7 and Original GA for Case 1 with k = 5
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Figure 4.11. The Results of SMH7 and Original GA for Case 1 with k = 10
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Figure 4.12. The Results of SMH7 and Original GA for Case 1 with k = 20

Case 2. The values of processing part (r
(i)
j and p

(i)
j ) and the unit delivery cost (D)

are small while the values of transportation system (Til) are large. As the delivery cost

does not take a major portion, scheduling with a large scale routing should be abandoned

and jobs of most customers should be delivered directly to their destinations. Only the

customers, who are close to each other, may share a batch. This is consistent with the

analytical property that every SKq (q = 1, 2, · · · , o) contains few customers when D is

small. Figures 4.16-4.18 show the results of SMH7 and original GA in this case for k = 5,

k = 10 and k = 20, respectively. It can tell from the three figures that SMH7 can have
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better initial values and converge to the final value more quickly. Therefore, SMH7 can

perform greater than original GA for this case.
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Figure 4.13. The Results of SMH7 and Original GA for Case 2 with k = 5
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Figure 4.14. The Results of SMH7 and Original GA for Case 2 with k = 10
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Figure 4.15. The Results of SMH7 and Original GA for Case 2 with k = 20

Case 3. The values of processing part (r
(i)
j and p

(i)
j ), the unit delivery cost (D), and

the values of transportation system (Til) are almost the same. In this case, the processing

part and the delivery part account for the similar proportion in the total objective value.

Figures show the results of SMH7 and original GA in this case for k = 5, k = 10 and

k = 20, respectively. From the three figures, the algorithm SMH7 achieves better results

than original GA in the same iterations. Especially, for larger k (k = 10 and k = 20), the

performance of SMH7 significantly exceeds that of original GA.
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Figure 4.16. The Results of SMH7 and Original GA for Case 3 with k = 5
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Figure 4.17. The Results of SMH7 and Original GA for Case 3 with k = 10
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Figure 4.18. The Results of SMH7 and Original GA for Case 3 with k = 20

From the above discussions, one can conclude that SMH7 performs much greater than

original GA for all different cases (notice that there is no consideration of the case that

the value of unit cost is large but the values of processing part and transportation system

is small, as the problem will degenerate to the classical scheduling problem). The reason

is that the analytical property has exclude solutions which are not good enough. The

solution domain will be reduced to be a smaller one, so the algorithm can perform more

efficiently. As mentioned in Chapter 2, although GA is global optimal in theory, it cannot

achieve the global optimal solution in application. However, the developed GAs with an-
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alytical property (SMH5 and SMH7) can outperform the original ones, which implies that

much greater local solutions can be found by these algorithms. In the following, these

local solutions will be assumed as the global optimal ones for the evaluation of on-line

algorithms SMH6 and SMH8.

The above three cases of parameter settings are still considered. In all cases, 100 instances

are generated. Table 4.9 shows the result for different values of k and three different

parameter setting cases. Each row in the table is the average of the results of the 100

instances. The columns in the table are (1) the ratio of the algorithm value to the bench-

mark value, (2) the run-time in seconds, respectively. Notice that the result of SMH5 is

applied as the benchmark value. As SMH5 solves the problem SMP5 which is the lower

bound for off-line version of the problem SMP8, the ratio of the results of SMH8 to the

optimal result (the result of SMH5) is better.
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Table 4.9. Results of Algorithms SMH5, SMH6 and SMH8

k Case SMH5 SMH6 SMH8

ratio time ratio time ratio time

Case 1 1 0.0183 1.34 0.0068 1.34 0.0081

2 Case 2 1 0.0165 1.34 0.0043 1.34 0.0052

Case 3 1 0.0167 1.12 0.0012 1.12 0.0016

Case 1 1 0.348 1.33 0.023 1.33 0.025

5 Case 2 1 0.379 1.36 0.023 1.36 0.025

Case 3 1 0.345 1.12 0.0051 1.13 0.0051

Case 1 1 5.45 1.30 0.086 1.30 0.088

10 Case 2 1 5.44 1.36 0.073 1.36 0.076

Case 3 1 5.31 1.21 0.017 1.21 0.012

Case 1 1 145.356 1.24 0.44 1.30 0.44

20 Case 2 1 112.367 1.36 0.28 1.36 0.27

Case 3 1 115.804 1.33 0.063 1.33 0.032

From Table 4.9, it is evident that the ratio columns of SMH6 and SMH8 for k = 2 never

exceed 1.37, which exhibits the robustness of the two algorithms and is also consistent with

the results of Theorem 4.10 and Theorem 4.11. Actually, the ratios of the two algorithms

perform much better than the theoretical result, 2 and 2 + 1
2
, respectively, which shows

the excellent performance on the normal instances. For the cases that the value of k is

greater than 2, the algorithms SMH6 and SMH8 still performs very well on the normal

171



instances. The run-time for SMH6 and SMH8 never exceeds 0.5 seconds for k = 20 and is

much shorter for smaller k, so the efficiency of the algorithms is very high. Furthermore,

by examining the run-time results of SMH6 and SMH8 for the value of k from low to

high, the algorithms tend to have a polynomial time complexity, that is, as k increases,

the run-time of the algorithms increases as a polynomial of k. This means that the two

algorithms can well be scaled to a much larger problem. Meanwhile, for algorithm SMH5,

the run-time increases much more rapidly. The reason is that although GA may have a

polynomial complexity, the power will be very high. However, the run-time of SMH5 is

short for small value of k (k=2,5, and 10) still acceptable for large value of k (k=20).

4.12 Concluding Remarks

In this chapter, eight problems (denoted by SMP1-SMP8) for single-machine and multi-

customers were proposed. These problems were of different release environment, process-

ing patterns and delivery patterns. Corresponding algorithms were developed for them.

A simulation study was conducted for all the algorithms. These algorithms are robust

and efficient in terms of the approximate ratio and the competitive ratio analysis. For

SMP1, the exact optimal algorithm (SMH1) can be applied for small k case while the

simulated annealing algorithm (SA SMH1) can deal with large k case. For SMP2, the

on-line algorithm (SMH2) has competitive ratio 2 for k = 2 (on-line optimal) and 2 + 2
27

for k = 3. For SMP3, approximate algorithms (SMH3 and K2SMH3) for both general

case and special case (k = 2) are provided. For SMP4, the on-line algorithm (SMH4) is

2 + 1
2
-competitive for k = 2 case. For SMP5 and SMP7, the GAs with analytical property

(SMH5 and SMH7) are provided. For SMP6, the on-line algorithm (SMH6) is optimal
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for k = 2 case. For SMP8, the on-line algorithm (SMH8) is 2 + 1
2
-competitive for k = 2

case. In addition, for the cases without routing, two on-line problems with limited vehicle

capacity (CSMP2 and CSMP4) are considered and the on-line algorithms (CSMH2 and

CSMH4) are 2-competitive and 2+ 1
2
-competitive, respectively. From the simulation study,

all algorithms perform robustness for worst instances and great for most normal instances,

and possess efficiency even for different values of k.
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CHAPTER 5

ALGORITHMS FOR MULTI-MACHINES AND SINGLE-CUSTOMER PROBLEMS

In this chapter, the problems for multi-machines and single-customer are considered and

corresponding algorithms are developed. As described in Section 3.3, five on-line problems

are defined in terms of different processing patterns, vehicles characteristics and delivery

patterns. For all these problems, the corresponding algorithms are developed and the

theoretical analysis is proposed. The simulation experiment for one algorithm is presented.

As there is only one customer, the notations J
(1)
j , r

(1)
j , p

(1)
j , J (1)

j , n1, C
(1)
j , C

(1)
max, ρ

(1)
j , ρ

(1)
max,

D
(1)
j , D

(1)
max and 2T01 are replaced by Jj, rj, pj, Jj, n, Cj, Cmax, ρj, ρmax, Dj, Dmax and

T for short (T is the round-trip transportation time between the medical center and the

customer).

5.1 Algorithm for Problem MSP1

MSP1 has the following features: Jobs are released on-line and delivered in ”direct” pat-

tern. The capacity of vehicles is enough but the number of vehicles is one. The lower

bound of MSP1 can be derived from single-machine case [Han, 2012].

Corollary 5.1. No on-line algorithm for MSP1 can have a competitive ratio less than

max{1 + θ, 1 +
√

D
T+D
}, even if all processing times are 0.
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Algorithm MSH1

Jobs are scheduled on the machines with the LPT-rule.

When T > (1 + θ)D, after time θ(T + D), if there is no uncompleted job and the

vehicle is available, then there is a batch to deliver all the completed jobs.

When T ≤ (1 + θ)D, at time l
√
D(T +D), where l ≥ 1 is an integer, if there is no

uncompleted job, then there is a batch to deliver all the jobs.

The on-line algorithm MSH1 for MSP1 is on-line optimal, which is analyzed as follows.

Theorem 5.1. The competitive ratio for the on-line algorithm MSH1 for MSP1 ismax{1+

θ, 1 +
√

D
T+D
}, which is on-line optimal.

Proof of Theorem 5.1: Let η be the schedule obtained by MSH1. As the algorithm has

two different cases, the proof also has two parts for the two cases, respectively.

Case 1: T > (1 + θ)D.

Case 1.1: there is only one batch in η. Z(opt) = Cmax(opt) + T + D and Z(η) =

max{θ(T +D), Cmax(η)}+ T +D. As Cmax(η) ≤ 3
2
Cmax(opt),

Z(η)
Z(opt)

≤ 1 + θ.

Case 1.2: there is more than one batch in η. The information of all the jobs is known

after Cmax(opt), so there is only one batch after Cmax(opt). Note that there is at least one

batch before Cmax(opt). Suppose that there are h+1 batches before Cmax(opt) and the last

delivery time is τ . Then τ ≥ θ(T +D)+hT and all the jobs completed after τ are released

after τ . Dmax(η) ≤ max{Cmax(η), τ + T} + T ≤ Cmax(η) + 2T and TC(η) = (h + 2)D.

Furthermore, Cmax(η)− τ ≤ 3
2
(Cmax(opt)− τ) [Chen and Vestjens, 1997].
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Z(η)

Z(opt)
≤ Cmax(η) + 2T + (h+ 2)D

Cmax(opt) + T +D

≤
3
2
Cmax(opt)− 1

2
τ + 2T + (h+ 2)D

Cmax(opt) + T +D

≤ 1 +
1
2
Cmax(opt)− 1

2
τ + T + (h+ 1)D

Cmax(opt) + T +D

(5.1)

If
− 1

2
τ+T+(h+1)D

T+D
< 1

2
, Z(η)
Z(opt)

≤ 1 + 1
2
; else,

Z(η)

Z(opt)
≤ 1 +

1
2
τ − 1

2
τ + T + (h+ 1)D

τ + T +D

≤ 1 +
T + (h+ 1)D

τ + T +D

≤ 1 +
T +D + hD

(1 + θ)(T +D) + hT
≤ 1 + θ.

(5.2)

Case 2: T ≤ (1 + θ)D. Suppose that there are h batches before Cmax(opt) and the last

delivery time is τ . Then τ ≥ h
√
D(T +D) and all the jobs completed after τ are released

after τ . Dmax(η) ≤ Cmax(η) +
√
D(T +D) + T and TC(η) = (h+ 1)D.

Z(η)

Z(opt)
≤
Cmax(η) +

√
D(T +D) + T + (h+ 1)D

Cmax(opt) + T +D

≤
3
2
Cmax(opt)− 1

2
τ +

√
D(T +D) + T + (h+ 1)D

Cmax(opt) + T +D

≤ 1 +
1
2
Cmax(opt)− 1

2
τ +

√
D(T +D) + hD

Cmax(opt) + T +D
.

(5.3)

If
− 1

2
τ+
√
D(T+D)+hD

T+D
< 1

2
, Z(η)
Z(opt)

≤ 1 + 1
2
; else,

Z(η)

Z(opt)
≤ 1 +

1
2
τ − 1

2
τ +

√
D(T +D) + hD

τ + T +D

≤ 1 +

√
D(T +D) + hD

τ + T +D

≤ 1 +
hD +

√
D(T +D)

h
√
D(T +D) + T +D

≤ 1 +

√
D

T +D
.

(5.4)

According to Corollary 5.1, the competitive ratio of MSH1 can not be less than

max{1 + θ, 1 +
√

D
T+D
}, which completes the proof. �
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5.2 Algorithm for Problem MSP2

MSP2 has the following features: Jobs are released on-line and delivered in ”direct” pat-

tern. The capacity of vehicles and the number of vehicles are both enough. The lower

bound of MSP2 can be derived from single-machine case [Han, 2012].

Corollary 5.2. No on-line algorithm for MSP2 can have a competitive ratio less than 2,

even if all processing times are 0.

Algorithm MSH2

Jobs are scheduled on the machines with the LPT rule. At time lD, where l ≥ 1 is an

integer, if there is no uncompleted job, then there is a batch to deliver all the jobs .

The on-line algorithm MSH2 for MSP2 is on-line optimal, which is analyzed as follows.

Theorem 5.2. The competitive ratio for the on-line algorithm MSH2 for MSP2 is 2, which

is on-line optimal.

Proof of Theorem 5.2: Let η be the schedule obtained by MSH2. Suppose that there are

h batches before Cmax(opt) and the last delivery time is τ . Then τ ≥ hD and all the jobs

completed after τ are released after τ . Dmax(η) ≤ Cmax(η)+D+T and TC(η) = (h+1)D.

Z(η)

Z(opt)
≤ Cmax(η) +D + T + (h+ 1)D

Cmax(opt) + T +D

≤
3
2
Cmax(opt)− 1

2
τ +D + T + (h+ 1)D

Cmax(opt) + T +D

≤ 1 +
1
2
Cmax(opt)− 1

2
τ +D + hD

Cmax(opt) + T +D
.

(5.5)
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If
− 1

2
τ+D+hD

T+D
< 1

2
, Z(η)
Z(opt)

≤ 1 + 1
2
; else,

Z(η)

Z(opt)
≤ 1 +

1
2
τ − 1

2
τ +D + hD

τ + T +D

≤ 1 +
D + hD

τ + T +D

≤ 1 +
hD +D

hD + T +D
≤ 2.

(5.6)

According to Corollary 5.2, the competitive ratio of MSH2 can not be less than 2,

which completes the proof. �

5.3 Algorithm for Problem MSP3

MSP3 has the following features: Jobs are released on-line, processed in ”pmtn” pattern

and delivered in ”direct” pattern. The capacity of vehicles is C and the number of vehicles

is one. The lower bound of MSP3 can be derived from single-machine case [Han, 2012].

Corollary 5.3. No on-line algorithm for MSP3 can have a competitive ratio less than

max{1 + θ, 1 +
√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

}, even if all processing times are 0.

Algorithm MSH3

When a new job is released, the McNaughton’s algorithm is applied to all the uncom-

pleted jobs.

When T > (1 + θ)D, at time lT , where l ≥ 1 is an integer, then there is a batch to

deliver as many completed jobs as possible.

When T ≤ (1 + θ)D, at time l
√
D(T +D), where l ≥ 1 is an integer, then there is a

batch to deliver as many completed jobs as possible.

The on-line algorithm MSH3 for MSP3 has competitive ratio 2, which is analyzed as

follows.
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Theorem 5.3. The competitive ratio for the on-line algorithm MSH3 for MSP3 is 2.

Proof of Theorem 5.3: Let η be the schedule obtained by algorithm MSH3. The

processing part can minimize the completion time which implies Cmax(η) = Cmax(opt).

The proof has two parts for the two different cases of the algorithm.

Case 1: T > (1 + θ)D. Suppose τ is the last delivery time before ρmax(η) when there

is an unfull batch. Note that if there is no such τ , let τ = 0. In this case, all the jobs

completed after τ are released after τ , which means τ < Cmax(opt). Meanwhile, for every

delivery time between τ and ρmax(η), there is either no batch or there is a full batch.

Let h be the number of full batches. At last, there will be a possible unfull batch at

ρmax(η). Therefore, there will be more than hC jobs released after τ . In opt, there are

at least h + 1 batches after τ , that is, Dmax(opt) ≥ max{τ + (h + 1)T,Cmax(opt) + T}

and TC(opt) ≥ (h + 1)D. For η, the worst case is that all these jobs are delivered

after Cmax(η): Dmax(η) ≤ max{τ + T,Cmax(η)} + (h + 1)T ≤ Cmax(η) + (h + 2)T and

TC(η) ≤ τ
T
D + (h+ 1)D.

Z(η)

Z(opt)
≤

Cmax(η) + (h+ 2)T + τ
T
D + (h+ 1)D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤ 1 +
(h+ 1)T + τ

T
D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D
≤ 2.

(5.7)

Case 2: T ≤ (1 + θ)D. The same τ and h with Case 1 are defined. As such, there

is Dmax(opt) ≥ max{τ + (h + 1)T,Cmax(opt) + T}, TC(opt) ≥ (h + 1)D, Dmax(η) ≤

Cmax(η) + (h+ 1)
√
D(T +D) + T and TC(η) ≤ τ√

D(T+D)
D + (h+ 1)D.

Z(η)

Z(opt)
≤
Cmax(η) + (h+ 1)

√
D(T +D) + T + τ√

D(T+D)
D + (h+ 1)D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤ 1 +
(h+ 1)

√
D(T +D) + τ√

D(T+D)
D

max{τ + (h+ 1)T,Cmax(opt) +D}+ (h+ 1)D
≤ 1 +

√
D

T +D
.

(5.8)
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At last, it needs to show the ratio of the algorithm can achieve 2 for the following instance.

At time 0, there is a job with NT preparation time released, and at time ε there are NC

jobs with 0 processing time released, where N is a sufficient large integer and ε is a very

small number. Z(η) = (2N + 1)T + (N + 1)D while Z(opt) = ε+ (N + 1)T + (N + 1)D.

As ε and D gets infinitely small but N gets infinitely large, the ratio Z(η)
Z(opt)

will tend to 2.

�

5.4 Algorithm for Problem MSP4

MSP4 has the following features: Jobs are released on-line and delivered in ”direct” pat-

tern. The capacity of vehicles is C and the number of vehicles is one. The same lower

bound of MSP3 can be applied directly.

Corollary 5.4. No on-line algorithm for MSP4 can have a competitive ratio less than

max{1 + θ, 1 +
√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

}, even if all processing times are 0.

Algorithm MSH4

Jobs are scheduled on the machines with the LPT-rule.

When T > (1 + θ)D, at time lT , where l > 1 is an integer, if the number of completed

jobs is not less than C or there is no uncompleted job, then there is a batch to deliver as

many completed jobs as possible.

When T ≤ (1 + θ)D, at the time of l
√
D(T +D), where l > 1 is an integer, if the

number of completed jobs is not less than C or there is no uncompleted job, then there is

a batch to deliver as many completed jobs as possible.

The on-line algorithm MSH4 for MSP4 max{3
2

+ θ, 3
2

+
√

B
T+B
}-competitive, which is
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analyzed as follows.

Theorem 5.4. The on-line algorithm MSH4 for MSP4 ismax{3
2
+θ, 3

2
+
√

D
T+D
}-competitive.

Proof of Theorem 5.4: Let η be the schedule obtained by algorithm MSH4. The proof

has two parts for the two different cases of the algorithm.

Case 1: T > (1 + θ)D. Suppose τ is the last delivery time before ρmax(η) when there

is an unfull batch. Note that if there is no such τ , let τ = 0. As such, all the jobs

completed after τ are released after τ , which means τ < Cmax(opt). Meanwhile, for every

deliver time between τ and ρmax(η), there is either no batch or there is a full batch. Let

h be the number of these full batches. At last, there will be a possible unfull batch at

ρmax(η). Therefore, there will be more than hC jobs released after τ . In opt, there are

at least h + 1 batches after τ , that is, Dmax(opt) ≥ max{τ + (h + 1)T,Cmax(opt) + T}

and TC(opt) ≥ (h + 1)D. For η, the worst case is that all these jobs are delivered

after Cmax(η): Dmax(η) ≤ max{τ + T,Cmax(η)} + (h + 1)T ≤ Cmax(η) + (h + 2)T and

TC(η) ≤ τ
T
D + (h+ 1)D.

Z(η)

Z(opt)
≤

Cmax(η) + (h+ 2)T + τ
T
D + (h+ 1)D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤
3
2
Cmax(opt)− 1

2
τ + (h+ 2)T + τ

T
D + (h+ 1)D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤ 1 +
1
2
Cmax(opt)− 1

2
τ + (h+ 1)T + τ

T
D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤ 3

2
+

(h+ 1)T + τ
T
D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D
≤ 3

2
+ θ.

(5.9)

Case 2: T ≤ (1 + θ)B. The same τ and h with Case 1 are defined. As such, there is

Dmax(opt) ≥ max{τ + (h + 1)T,Cmax + T}, TC(opt) ≥ (h + 1)D, Dmax(η) ≤ Cmax(η) +

181



(h+ 1)
√
D(T +D) + T and TC(η) ≤ τ√

B(T+B)
B + (h+ 1)B.

Z(η)

Z(opt)
≤
Cmax(η) + (h+ 1)

√
D(T +D) + T + τ√

D(T+D)
D + (h+ 1)D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤
3
2
Cmax(opt)− 1

2
τ + (h+ 1)

√
D(T +D) + T + τ√

D(T+D)
D + (h+ 1)D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤ 1 +

1
2
Cmax(opt)− 1

2
τ + (h+ 1)

√
D(T +D) + τ√

D(T+D)
D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D

≤ 3

2
+

(h+ 1)
√
D(T +D) + τ√

D(T+D)
D

max{τ + (h+ 1)T,Cmax(opt) + T}+ (h+ 1)D
≤ 3

2
+

√
D

T +D
.

(5.10)

�

5.5 Algorithm for Problem MSP5

MSP5 has the following features: Jobs are released on-line and delivered in ”direct” pat-

tern. The capacity of vehicles is C and the number of vehicles is enough. The lower bound

of MSP5 can be derived from single-machine case [Han, 2012].

Corollary 5.5. No on-line algorithm for MSP5 can have a competitive ratio less than

max{1 + θ, 2− 1
C
}, even if all processing times are 0.

Algorithm MSH5

Jobs are scheduled on the machines with the LPT-rule.

At time lD, where l ≥ 1 is an integer, if there is no uncompleted job, then there are

batches to deliver all completed jobs; otherwise there are only full bathes to deliver as

many completed jobs as possible.

The on-line algorithm MSH5 for MSP5 has a competitive ratio 2, which is analyzed as

follows.
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Theorem 5.5. The competitive ratio for the on-line algorithm MSH5 for MSP5 is 2.

Proof of Theorem 5.5: Let η be the schedule obtained by algorithm MSH5. Suppose

τ is the last delivery time before ρmax(η) when there is no batch or not all batches are

full. Note that if there is no such τ , let τ = 0. As such, all the jobs completed after τ

are released after τ , which means τ < Cmax(opt). Let h + 1 be the number of batches

for the delivery time after τ , where only one possible batch at ρmax(η) is unfull and the

other h batches are all full. Meanwhile, suppose that there are a full batches and b unfull

batches at the delivery time no later than τ . As at every delivery time, there is at most

one unfull batch, bD ≤ τ . Because the number of jobs is more than (a + h)C, there are

at least a+ h+ 1 batches in opt. Dmax(η) ≤ Cmax(η) +D+ T , TC(η) = (a+ b+ h+ 1)D,

Dmax(opt) = Cmax(opt) + T and TC(opt) ≥ (a+ h+ 1)D.

Z(η)

Z(opt)
≤ Cmax(η) +D + T + (a+ b+ h+ 1)D

Cmax(opt) + T + (a+ h+ 1)D

≤
3
2
Cmax(opt)− 1

2
τ +D + T + (a+ b+ h+ 1)D

Cmax(opt) + T + (a+ h+ 1)D

≤ 1 +
1
2
Cmax(opt)− 1

2
τ +D + bD

Cmax(opt) + T + (a+ h+ 1)D

≤ 1 +
1
2
Cmax(opt) + 1

2
τ +D

Cmax(opt) + T + (a+ h+ 1)D
≤ 2.

(5.11)

At last, it needs to show that the ratio of the algorithm can achieve 2 for the following

instance. At time 0, there is a job with 0 processing time released, and the ratio of the

result of MSH5 to that of opt will achieve 2 when T tends to 0. This completes the proof

�
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5.6 Simulated Experiment for MSH5

In this section, a simulation is conducted to demonstrate the run-time and the performance

of the algorithm MSH5 in normal scenarios and illustrate how the algorithm is used in

practice. An instance can be defined by prescribing a set of the foregoing parameters (n,

pj, and rj, for j = 1, 2, · · · , n, C and D). The instances were generated by these randomly

generated parameters. The algorithm was implemented in the Matlab environment. The

parameters are thus determined based on the following assumptions:

(1) The release of jobs follows the poisson distribution with the parameter λ, i.e., the

number of jobs released at some time r: n(r) ∼ P (λ) and the next release time is

r + r′, where r′ ∼ U(0, λ), λ is two times of the mean value of the release intervals

for the customer i, and λ ∼ U(0,Λ) .

(2) The job processing time follows the uniform distribution in the interval [0, b], i.e.,

pj ∼ U(0, b) for j = 1, 2, · · · , n, where b is two times of the mean value of the

processing time and b ∼ U(0, B).

(3) The number of jobs follows the uniform distribution in the set {1, 2, · · · , N}, i.e.,

Pr{n = h} = 1
N

for h = 1, 2, · · · , N where N is two times of the mean value of the

number of jobs .

(4) The delivery cost D is a constant.

(5) The number of machines is of three cases: m = 2, m = 5, and m = 8.

(6) The capacity of vehicles is of three cases: C = 2, C = 5, and C = 8.
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(7) The unit cost of delivery is of three cases: D = 5, D = 500, and D = 0.05.

By choosing different values for Λ, B, and N , instances are generated and scheduling is

then executed. In all cases, 100 instances are generated. Table 5.1 shows the results. Each

row of the table is the average of the results of the 100 instances. The columns in the table

are (1) the ratio of the algorithm value to the benchmark value, where benchmark value

is obtained by SA for off-line version of MSP5, (2) the run-time in seconds, respectively.

Table 5.1. Results of Algorithm MSH5

m D C MSH5 D C MSH5 D C MSH5

ratio time ratio time ratio time

5 2 1.12 0.00092 500 2 1.07 0.00027 0.05 2 1.0037 0.0029

2 5 5 1.13 0.00089 500 5 1.07 0.00025 0.05 5 1.0026 0.0023

5 8 1.13 0.00084 500 8 1.06 0.00027 0.05 8 1.0050 0.0028

5 2 1.25 0.00086 500 2 1.14 0.00028 0.05 2 1.0053 0.0029

5 5 5 1.27 0.00080 500 5 1.12 0.00026 0.05 5 1.0031 0.0023

5 8 1.26 0.00079 500 8 1.15 0.00028 0.05 8 1.0067 0.0028

5 2 1.31 0.00086 500 2 1.15 0.00031 0.05 2 1.0068 0.0032

8 5 5 1.31 0.00092 500 5 1.21 0.00027 0.05 5 1.0055 0.0028

5 8 1.30 0.00073 500 8 1.14 0.00034 0.05 8 1.0052 0.0031

From Table5.1, it is evident that the ratio columns of MSH5 never exceed 1.32 for all

different values of m, D and C, which exhibits the robustness of the algorithm and is also

consistent with the result of Theorem 5.5. Actually, the ratios of the algorithm are much
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better than the theoretical result, 2, which shows the excellent performance on the normal

instances. The run-time for MSH5 never exceeds 0.0035 seconds , so the efficiency of the

algorithms is very high. Furthermore, it can be inferred that the five algorithms MSH can

perform well for normal scenarios and are robust to the worst case owing to their similar

structure.

5.7 Concluding Remarks

In this chapter, five on-line problems (denoted by MSP1-MSP5) for multi-machines and

single-customer were proposed. The problems were of different processing patterns and

vehicles characteristics.Corresponding algorithms were developed for the problems and

a simulation for one of them was conducted. The algorithms are robust and efficient

according to competitive ratio analysis. In particular, the algorithms (MSH1 and MSH2)

for MSP1 and MSP2 can achieve optimal results in terms of the competitive ratio and

lower bound. For the other problems, the larger the parameter C, the better the result.

The simulation of MSH5 for MSP5 shows that the algorithm performs perform robustness

for worst instances and great for most normal instances, and possess efficiency even for

different values of m and C. Owing to the similar structure of problems and algorithms,

one can conclude the five developed algorithms can perform well for normal scenarios and

are robust to the worst case.

186



CHAPTER 6

ALGORITHMS FOR MULTI-MACHINES AND MULTI-CUSTOMERS PROBLEMS

In this chapter, the problems for multi-machines and multi-customers are considered and

corresponding algorithms are developed. As described in Section 3.3, eight problems

are defined in terms of different processing patterns, vehicles characteristics and delivery

patterns. For all these problems, the corresponding algorithms are developed and the

simulation experiment is presented.

6.1 Algorithm for Problem MMP1

MMP1 has the following features: Jobs are released off-line, processed in ”pmtn” pattern

and delivered in ”direct” pattern. The capacity of vehicles and the number of vehicles are

both enough.

Similar to the induction in subsection 4.1, it can be shown that MMP1 is equivalent with

the agent scheduling problem Pm|rj, pmtn|
∑
C

(i)
max. The assumption that T0i = 0 for all

i and D = 0 can also be applied.

When k is a parameter, the classical scheduling problem Pm|rj, pmtn|
∑
Cj is a special

case of MMP1. As Pm|rj, pmtn|
∑
Cj with fixed m is NP-hard [Du et al., 1990], MMP1

with fixed m is at least NP-hard. When both k and m are parameters, MMP1 is SNP-hard
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[Baptiste et al., 2007].

Corollary 6.1. When k is a parameter, MMP1 is a NP-hard problem. When both k and

m are parameters, MMP1 is a SNP-hard problem.

As there are multiple customers and multiple processors, jobs of each customer need to be

processed as soon as possible but the number of occupied machines is as few as possible.

For a jobs set U on m machines, if pmean(U) ≥ pmax(U), the minimum number of processors

is m; otherwise, it is d
∑
pj

pmax(U)
e. Based on this idea, the following algorithm is proposed.

Algorithm MMH1

The customers are re-indexed in an increasing order of Cmax(J (i),m, opt(i)), where

opt(i) is the optimal schedule for J (i) on m machines (If there is more than one customer

with the same Cmax(J (i),m, opt(i)), their order is the original index order). When a new

job arrives or a machine is free, all the machines are re-assigned to the customers in terms

of the priority such that the jobs of each customer occupy the minimum number of free

machines.

6.2 Algorithm for Problem MMP2

MMP2 has the following features: Jobs are released on-line, processed in ”pmtn” pattern

and delivered in ”direct” pattern. The capacity of vehicles and the number of vehicles are

both enough. Actually, MMP2 is the on-line version of MMP1. A lower bound of MMP2

can be derived directly from the lower bound of SMP2.

188



Corollary 6.2. No on-line algorithm for MMP2 can have competitive ratio less than 2,

even all processing times being 0.

Algorithm MMH2

At the time t that a new job arrives, the customers are re-indexed in the increasing

order of Cmax(J (i)
<t ,m, opt

(i)
<t), where opt

(i)
<t is the optimal schedule for J (i)

<t on m machines

(If there is more than one customer with the same Cmax(J (i)
<t ,m, opt

(i)
<t), their order is the

original index order). When a new job arrives or a machine is free, all the machines are

re-assigned to the customers in terms of the on-line priority such that the jobs of each

customer occupy the minimum number of free machines.

At the time of lD where l ≥ 1 and l is integer, if there is no uncompleted job for

Customer i, then there must be a batch to deliver all the completed jobs for Customer i,

otherwise there is no operation for these jobs.

6.3 Algorithm for Problem MMP3

MMP3 has the following features: Jobs are released off-line and delivered in ”direct”

pattern. The capacity of vehicles and the number of vehicles are both enough.

Similarly, MMP3 is equivalent with the agent scheduling problem Pm|rj|
∑
C

(i)
max. The

assumption that T0i = 0 for all i and D = 0 can also be applied. As the preemption of

jobs processing is not allowed, MMP3 is at least SNP-hard.

Corollary 6.3. MMP3 is a SNP-hard problem.

LPT-rule can generate a great approximate algorithm for single customer case. When

there is more than one customer, processing the longest job may delay other customers’
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completion time. Therefore, there should be a period waiting time for long jobs. The

ready job for multiple machines case is defined as follows.

Definition 6.1. A job J
(i)
j is called ready at time t if it has arrives (r

(i)
j ≤ t), not completed

(C
(i)
j > t) and 1

m+1
p
(i)
j ≤ t.

Algorithm MMH3

The customers are re-indexed in the increasing order of Cmax(J (i),m, η
(i)
L ), where η

(i)
L

is the schedule generated by LPT-rule for J (i) on m machines (If there is more than one

customer with the same Cmax(J (i),m, η
(i)
L ), their order is the original index order). When

a machine is free, prepare the longest ready job of the customer with the highest priority.

6.4 Algorithm for Problem MMP4

MMP4 has the following features: Jobs are released on-line, and delivered in ”direct”

pattern. The capacity of vehicles and the number of vehicles are both enough. Actually,

MMP4 is the on-line version of MMP3. The same lower bound can be applied directly.

Corollary 6.4. No on-line algorithm for MMP4 can have competitive ratio less than 2,

even all processing times being 0.

Algorithm MMH4

At the time t that a new job arrives, the customers are re-indexed in the increasing

order of Cmax(J (i)
<t ,m, η

(i)
<t,L), where η

(i)
<t,L is the schedule generated by LPT-rule for J (i)

<t

on m machines (If there is more than one customer with the same Cmax(J (i)
<t ,m, η

(i)
<t,L),

their order is the original index order). When a machine is free, process the longest ready

job of the customer with the highest on-line priority.
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At the time of lD where l ≥ 1 and l is integer, if there is no uncompleted job for

Customer i, then there must be a batch to deliver all the completed jobs for Customer i,

otherwise there is no operation for these jobs.

6.5 Simulated Experiment for MMH without Routing

In this subsection, a simulation is conducted to demonstrate the run-time and the per-

formance of the above algorithms (MMH1-MMH4) in normal scenarios and illustrate how

the algorithms are used in practice. An instance can be defined by prescribing a set of

the foregoing parameters (ni, p
(i)
j and r

(i)
j for j = 1, 2, · · · , ni, and D). The instances were

generated by stochastically choosing the parameters. The algorithm was implemented in

the Matlab environment. The parameters are thus determined based on the following

assumptions:

(1) The release of jobs for Customer i follows the poisson distribution with the parameter

λi, i.e., the number of jobs released at some time r: ni(r) ∼ P (λi) and the next

release time is r + r′, where r′ ∼ U(0, λi), λi is two times of the mean value of the

release intervals for Customer i, and λi ∼ U(0,Λi) (i = 1, 2, · · · , k).

(2) The job processing time for Customer i follows the uniform distribution in the inter-

val [0, bi], i.e., p
(i)
j ∼ U(0, bi) for j = 1, 2, · · · , ni, where bi is two times of the mean

value of the processing time for Customer i and bi ∼ U(0, Bi) (i = 1, 2, · · · , k).

(3) The number of jobs for Customer i follows the uniform distribution in the set

{1, 2, · · · , Ni}, i.e., Pr{ni = h} = 1
Ni

for h = 1, 2, · · · , Ni where Ni is two times

of the mean value of the number of jobs for Customer i (i = 1, 2, · · · , k).
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(4) The delivery cost D is a constant.

(5) The number of customers is of four cases: k = 2, k = 5, k = 10, and k = 20.

(6) The number of machines is of three cases: m = 2, m = 5, and m = 8.

By choosing different values for Λi, Bi, and Ni, instances are generated and scheduling is

then executed. In all cases, 100 instances are generated. Table 6.1 shows the result for the

case k = 2. Each row of the table is the average of the results of the 100 instances. The

algorithm columns of the table are (1) the ratio of the algorithm value to the benchmark

value (BV), (2) the run-time in seconds, respectively. The benchmark value is computed

as follows: For every instance I of MMP1, the corresponding instance Ī of SMP1 is

constructed, where p̄
(i)
j = 1

m
p
(i)
j and all the other parameters are the same. Notice that

the off-line optimal value of Ī is a lower bound of that of I. The benchmark value is the

result of SMH1 for Ī. As the benchmark value is the lower bound of the off-line optimal

value of MMP1-MMP4, the ratios of the results of MMH1-MMH4 to their corresponding

optimal result (which are not known) are better.

For the off-line algorithm MMH1 and MMH3, the ratio is very close to 1, which means

that the algorithms can construct a great solution. For the on-line algorithms MMH2 and

MMH4 the ratio never exceeds 2. Actually, for most cases, the ratios of the two algorithms

are not greater than 1.65, which shows the excellent performance on the normal instances.

The run-time for all the algorithms (MMH1-MMH4) are very short, so the efficiency of

the algorithms is very high when k = 2.
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Table 6.1. Results of Algorithms MMH1-MMH4 for k = 2

m BV MMH1 MMH2 MMH3 MMH4

ratio time ratio time ratio time ratio time

61.34 1.01 0.0025 1.39 0.011 1.01 0.0026 1.38 0.0071

63.36 1.01 0.0026 1.10 0.011 1.02 0.0025 1.10 0.0072

2 57.92 1.00 0.0024 1.99 0.0095 1.00 0.0024 1.99 0.0065

77.52 1.01 0.0022 1.26 0.0079 1.01 0.0027 1.26 0.0061

50.83 1.00 0.0032 1.80 0.015 1.00 0.0035 1.80 0.017

913.49 1.00 0.0012 1.01 0.0022 1.03 0.0029 1.04 0.0038

56.82 1.04 0.0035 1.52 0.015 1.01 0.0032 1.59 0.0094

54.27 1.04 0.0032 1.14 0.013 1.02 0.0029 1.13 0.0087

5 53.97 1.00 0.0030 1.99 0.013 1.00 0.0029 1.99 0.0089

65.38 1.03 0.0028 1.36 0.011 1.01 0.0031 1.40 0.0079

47.31 1.00 0.0032 1.79 0.015 1.00 0.0037 1.79 0.022

426.49 1.04 0.0012 1.06 0.0019 1.04 0.0028 1.06 0.0037

52.45 1.04 0.0033 1.52 0.014 1.02 0.0034 1.64 0.011

49.21 1.06 0.0030 1.16 0.011 1.02 0.0030 1.13 0.0090

8 54.45 1.00 0.0032 1.99 0.015 1.00 0.0033 1.99 0.011

57.51 1.05 0.0026 1.42 0.0096 1.01 0.0031 1.50 0.0081

51.10 1.00 0.0033 1.81 0.016 1.00 0.0046 1.81 0.030

298.40 1.07 0.0011 1.10 0.0018 1.01 0.0028 1.04 0.0038
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Table 6.2. Results of Algorithms MMH1-MMH4 for k = 5

m BV MMH1 MMH2 MMH3 MMH4

ratio time ratio time ratio time ratio time

245.82 1.02 0.0058 1.25 0.046 1.03 0.0059 1.23 0.027

249.00 1.02 0.0059 1.13 0.048 1.04 0.0060 1.14 0.027

2 257.20 1.00 0.0072 1.98 0.059 1.00 0.0073 1.98 0.034

385.58 1.01 0.0055 1.15 0.037 1.03 0.0067 1.15 0.025

126.35 1.00 0.0085 1.80 0.078 1.00 0.011 1.80 0.084

3510.95 1.00 0.0027 1.01 0.0076 1.02 0.0062 1.03 0.011

147.56 1.04 0.0080 1.40 0.055 1.04 0.0063 1.39 0.031

151.81 1.05 0.0086 1.16 0.059 1.04 0.0067 1.15 0.033

5 158.02 1.00 0.0098 1.99 0.072 1.00 0.0077 1.99 0.039

192.02 1.04 0.0078 1.31 0.045 1.04 0.0074 1.30 0.030

126.12 1.00 0.0086 1.81 0.079 1.00 0.012 1.81 0.12

1539.13 1.02 0.0032 1.05 0.0088 1.06 0.0074 1.08 0.014

139.77 1.05 0.0096 1.44 0.068 1.02 0.0073 1.50 0.040

153.41 1.06 0.012 1.15 0.088 1.03 0.0089 1.14 0.050

8 144.74 1.00 0.012 1.99 0.088 1.00 0.0087 1.99 0.049

165.27 1.06 0.0089 1.37 0.052 1.04 0.0079 1.36 0.034

129.53 1.00 0.0088 1.81 0.083 1.00 0.014 1.81 0.16

979.53 1.06 0.0033 1.09 0.0093 1.07 0.0078 1.10 0.014
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Table 6.3. Results of Algorithms MMH1-MMH4 for k = 10

m BV MMH1 MMH2 MMH3 MMH4

ratio time ratio time ratio time ratio time

720.73 1.08 0.012 1.23 0.14 1.09 0.015 1.23 0.097

719.86 1.07 0.011 1.16 0.12 1.08 0.013 1.17 0.084

2 765.35 1.00 0.0097 1.97 0.12 1.00 0.013 1.97 0.082

1300.70 1.03 0.0082 1.11 0.081 1.04 0.012 1.12 0.060

254.63 1.00 0.017 1.81 0.28 1.00 0.027 1.81 0.28

10441.31 1.00 0.0056 1.01 0.026 1.01 0.013 1.02 0.030

396.63 1.08 0.014 1.37 0.14 1.08 0.015 1.36 0.11

377.89 1.08 0.016 1.25 0.16 1.09 0.017 1.25 0.12

5 371.93 1.00 0.013 1.99 0.12 1.00 0.013 1.99 0.093

597.20 1.08 0.0099 1.28 0.083 1.09 0.013 1.28 0.074

250.61 1.00 0.017 1.80 0.27 1.00 0.029 1.80 0.38

4424.79 1.03 0.0057 1.05 0.025 1.05 0.013 1.07 0.032

309.57 1.05 0.019 1.41 0.17 1.04 0.016 1.40 0.13

308.10 1.06 0.019 1.20 0.17 1.04 0.016 1.19 0.13

8 310.21 1.00 0.017 1.99 0.16 1.00 0.015 1.99 0.12

423.24 1.08 0.012 1.35 0.099 1.08 0.014 1.35 0.084

251.29 1.00 0.019 1.82 0.30 1.00 0.034 1.82 0.56

3009.72 1.06 0.0068 1.09 0.029 1.07 0.015 1.09 0.039
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Table 6.4. Results of Algorithms MMH1-MMH4 for k = 20

m BV MMH1 MMH2 MMH3 MMH4

ratio time ratio time ratio time ratio time

2705.00 1.09 0.021 1.16 0.44 1.09 0.026 1.16 0.29

2705.00 1.09 0.021 1.14 0.45 1.10 0.026 1.14 0.29

2 2705.00 1.00 0.020 1.95 0.42 1.00 0.025 1.95 0.28

4142.52 1.04 0.022 1.09 0.41 1.05 0.033 1.09 0.29

499.76 1.00 0.039 1.81 1.1 1.00 0.081 1.81 1.0

38872.40 1.01 0.011 1.01 0.085 1.01 0.025 1.01 0.079

1169.60 1.18 0.024 1.36 0.43 1.18 0.028 1.35 0.35

1169.60 1.19 0.024 1.31 0.44 1.19 0.029 1.31 0.36

5 1169.60 1.00 0.028 1.98 0.49 1.00 0.032 1.98 0.40

1666.90 1.16 0.021 1.29 0.30 1.16 0.029 1.28 0.27

511.32 1.00 0.040 1.82 1.1 1.00 0.088 1.82 1.5

16047.53 1.03 0.013 1.05 0.095 1.04 0.029 1.05 0.10

800.21 1.11 0.031 1.39 0.47 1.11 0.032 1.38 0.45

800.21 1.13 0.032 1.30 0.49 1.13 0.034 1.30 0.47

8 800.21 1.00 0.042 1.98 0.63 1.00 0.043 1.98 0.62

1111.40 1.14 0.023 1.35 0.31 1.14 0.030 1.35 0.31

524.49 1.00 0.041 1.82 1.1 1.00 0.094 1.82 2.0

10214.94 1.07 0.015 1.10 0.11 1.08 0.031 1.10 0.12
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Tables 6.2-6.4 give the results with k = 5, k = 10 and k = 20, respectively. The perfor-

mance of the results support the foregoing conclusive discussions. For k = 10 and k = 20,

the benchmark value is computed by SA SMH1 for I ′. By examining the run-time results

of MMH1-MMH4, the algorithms tend to have a polynomial time complexity. This means

that the algorithms can well be scaled to a much larger problem.

6.6 Algorithm for Problem MMP5

MMP5 has the following features: Jobs are released off-line, processed in ”pmtn” pattern

and delivered in ”routing” pattern. The capacity of vehicles and the number of vehicles

are both enough.

When the number of aid sites k is a parameter, the delivery part is SNP-hard, which

implies the problem is at least SNP hard.

Corollary 6.5. SMP5 is a SNP-hard problem.

Property 4.1 and 4.2 can still be applied for MMP5, and the jobs of any two customers in

different subsets of a weak partition cannot be in the same batch. An algorithm combining

SMH5 and MMH1 is applied for this problem.

Algorithm MMH5

For every instance I of MMP5, the corresponding instance Ī of SMP5 is constructed,

where p̄
(i)
j = 1

m
p
(i)
j and all the other parameters are the same. Then the algorithm SMH5

is applied to Ī to generate the schedule η̄.

The customers are re-indexed in the increasing order of C
(i)
max(η̄) (If there is more than
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one customer with the same C
(i)
max(η̄), their order is the original index order). When a new

job arrives or a machine is free, all the machines are re-assigned to the machines in terms

of the priority such that the jobs of each customer occupy the minimum number of free

machines.

The batch delivery is the same with η̄.

6.7 Algorithm for Problem MMP6

SMP6 has the following features: Jobs are released on-line, processed in ”pmtn” pattern

and delivered in ”routing” pattern. The capacity of vehicles and the number of vehicles

are both enough. Actually, MMP6 is the on-line version of MMP5. The same lower bound

can be applied to this on-line problem.

Corollary 6.6. No on-line algorithm for MMP6 can have competitive ratio less than 2,

even all processing times being 0.

An algorithm combining SMH6 and MMH2 is applied for this problem.

Algorithm MMH6

At the time t that a new job arrives, the customers are re-indexed in the increasing

order of Cmax(J (i)
<t ,m, opt

(i)
<t), where opt

(i)
<t is the optimal schedule for J (i)

<t on m machines

(If there is more than one customer with the same J (i)
<t , their order is the original index

order). When a new job arrives or a machine is free, all the machines are re-assigned to

the customers in terms of the on-line priority such that the jobs of each customer occupy

the minimum number of free machines.

Set lq = 0 for q = 1, 2, · · · , o. At every time of l
|SKq |D, where l ≥ 1 and l is integer, if
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there are sq customers in SKq with completed jobs but no uncompleted job, and l − lq >

|SKq| − sq, deliver all their jobs in a batch, let lq = l; otherwise no operation.

6.8 Algorithm for Problem MMP7

MMP7 has the following features: Jobs are released off-line and delivered in ”routing”

pattern. The capacity of vehicles and the number of vehicles are both enough.

For MMP7, both the preparation part and the delivery part are strongly NP-hard, respec-

tively, which implies MMP7 is at least strongly NP hard.

Corollary 6.7. MMP7 is a SNP-hard problem.

Similar with MMP5, an algorithm combining SMH7 and MMH3 is applied for this problem.

Algorithm MMH7

For every instance I of MMP7, the corresponding instance Ī of SMP5 is constructed,

where p̄
(i)
j = 1

m
p
(i)
j and all the other parameters are the same. Then the algorithm SMH5

is applied to Ī to generate the schedule η̄.

The customers are re-indexed in the increasing order of C
(i)
max(η̄) (If there is more than

one customer with the same C
(i)
max(η̄), their order is the original index order). When a

machine free, process the longest ready job of the customer with the highest priority.

The batch delivery is the same with η̄.
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6.9 Algorithm for Problem MMP8

SMP6 has the following features: Jobs are released on-line and delivered in ”routing”

pattern. The capacity of vehicles and the number of vehicles are both enough. Actually,

MMP8 is the on-line version of MMP7. The same lower bound can be applied to this

on-line problem.

Corollary 6.8. No on-line algorithm for MMP6 can have competitive ratio less than 2,

even all processing times being 0.

An algorithm combining SMH8 and MMH4 is applied for this problem.

Algorithm MMH8

At the time t that a new job arrives, the customers are re-indexed in the increasing

order of Cmax(J (i)
<t ,m, σ

(i)
<t,L), where opt

(i)
<t,L is the schedule generated by LPT-rule for J (i)

<t

on m machines (If there is more than one customer with the same Cmax(J (i)
<t ,m, σ

(i)
<t,L),

their order is the original index order). When a machine is free, process the longest ready

job of the customer with the highest on-line priority.

Set lq = 0 for q = 1, 2, · · · , o. At every time of l
|SKq |D, where l ≥ 1 and l is integer, if

there are sq customers in SKq with completed jobs but no uncompleted job, and l − lq >

|SKq| − sq, deliver all their jobs in a batch, let lq = l; otherwise no operation.

6.10 Simulated Experiment for MMH with Routing

In this section, a simulation is conducted to demonstrate the run-time and the perfor-

mance of the above algorithms (MMH5-MMH8) in normal scenarios and illustrate how
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the algorithms are used in practice. An instance can be defined by prescribing a set of the

foregoing parameters (ni, p
(i)
j , and r

(i)
j , for j = 1, 2, · · · , ni, Til for i, l = 1, 2, · · · , k, and D).

The instances were generated by these randomly generated parameters. The algorithm

was implemented in the Matlab environment. The parameters are thus determined based

on the following assumptions:

(1) The release of jobs for Customer i follows the poisson distribution with the parameter

λi, i.e., the number of jobs released at some time r: ni(r) ∼ P (λi) and the next

release time is r + r′, where r′ ∼ U(0, λi), λi is two times of the mean value of the

release intervals for Customer i, and λi ∼ U(0,Λi) (i = 1, 2, · · · , k).

(2) The job processing time for Customer i follows the uniform distribution in the inter-

val [0, bi], i.e., p
(i)
j ∼ U(0, bi) for j = 1, 2, · · · , ni, where bi is two times of the mean

value of the processing time for Customer i and bi ∼ U(0, Bi) (i = 1, 2, · · · , k).

(3) The number of jobs for Customer i follows the uniform distribution in the set

{1, 2, · · · , Ni}, i.e., Pr{ni = h} = 1
Ni

for h = 1, 2, · · · , Ni where Ni is two times

of the mean value of the number of jobs for Customer i (i = 1, 2, · · · , k).

(4) The positions of the manufacturer and the customers are randomly located in an

square area with side length L, and the transportation network can be directly

determined by the Euclidean distance.

(5) The delivery cost D is a constant.

(6) The number of customers is of four cases: k = 2, k = 5, k = 10, and k = 20.

(7) The number of machines is of three cases: m = 2, m = 5, and m = 8.
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By choosing different values for Λi, Bi, Ni, and L, instances are generated and scheduling

is then executed. In all cases, 100 instances are generated. Table 6.5 shows the result for

the case k = 2. Each row of the table is the average of the results of the 100 instances. The

algorithm columns of the table are (1) the ratio of the algorithm value to the benchmark

value (BV), (2) the run-time in seconds, respectively. The benchmark value is computed

as follows: For every instance I of MMP5, the corresponding instance Ī of SMP5 is

constructed, where p̄
(i)
j = 1

m
p
(i)
j and all the other parameters are the same. Notice that

the off-line optimal value of Ī is a lower bound of that of I. The benchmark value is the

result of SMH5 for Ī. Although SMH5 may not find the global optimal solution for Ī, it

will be a good reference.

For the off-line algorithm MMH5 and MMH7, the ratio is very close to 1, which means

that the algorithms can construct a great solution. For the on-line algorithms MMH6 and

MMH8 the ratio never exceeds 2. Actually, for most cases, the ratios of the two algorithms

are not greater than 1.6, which shows the excellent performance on the normal instances.

The run-time for all the algorithms (MMH5-MMH8) are very short, so the efficiency of

the algorithms is very high when k = 2.
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Table 6.5. Results of Algorithms MMH5-MMH8 for k = 2

m BV MMH5 MMH6 MMH7 MMH8

ratio time ratio time ratio time ratio time

219.04 1.00 0.03 1.52 0.033 1.00 0.030 1.47 0.058

2 112.65 1.00 0.022 1.45 0.016 1.00 0.023 1.36 0.024

155.63 1.01 0.017 1.21 0.002 1.01 0.017 1.34 0.0018

127.13 1.00 0.022 1.14 0.017 1.00 0.023 1.38 0.04

5 116.98 1.00 0.032 1.57 0.029 1.00 0.033 1.48 0.048

128.50 1.00 0.022 1.19 0.0064 1.00 0.024 1.34 0.012

123.94 1.00 0.022 1.22 0.014 1.00 0.023 1.55 0.027

8 97.66 1.00 0.021 1.45 0.011 1.00 0.022 1.51 0.023

221.00 1.01 0.026 1.29 0.027 1.00 0.026 1.57 0.044

Tables 6.6-6.8 give the results with k = 5, k = 10 and k = 20, respectively. The per-

formance of the results support the foregoing conclusive discussions. By examining the

run-time of MMH6 and MMH8, the algorithms tend to have a polynomial time complexity.

This means that the algorithms can well be scaled to a much larger problem. For MMH5

and MMH7, the run-time increases much more rapidly as k gets larger. The reason is that

both the two algorithms have called GAs. However, the run-time for these two algorithms

are still acceptable even for k = 20.
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Table 6.6. Results of Algorithms MMH5-MMH8 for k = 5

m BV MMH5 MMH6 MMH7 MMH8

ratio time ratio time ratio time ratio time

412.45 1.00 0.56 1.30 0.100 1.00 0.56 1.30 0.13

2 244.43 1.00 0.28 1.33 0.037 1.00 0.28 1.32 0.046

723.22 1.00 0.37 1.09 0.032 1.00 0.37 1.13 0.027

376.35 1.00 0.38 1.31 0.064 1.00 0.39 1.34 0.11

5 312.85 1.00 0.46 1.45 0.082 1.00 0.46 1.38 0.14

421.43 1.02 0.33 1.09 0.029 1.00 0.33 1.28 0.034

459.11 1.00 0.35 1.15 0.055 1.00 0.35 1.35 0.14

8 292.36 1.00 0.49 1.40 0.084 1.00 0.49 1.39 0.17

377.35 1.03 0.46 1.34 0.052 1.03 0.45 1.44 0.07

204



Table 6.7. Results of Algorithms MMH5-MMH8 for k = 10

m BV MMH5 MMH6 MMH7 MMH8

ratio time ratio time ratio time ratio time

767.06 1.00 5.95 1.28 0.28 1.00 5.96 1.33 0.32

2 526.62 1.00 4.86 1.26 0.15 1.00 4.87 1.24 0.18

1676.16 1.00 6.27 1.09 0.11 1.01 6.28 1.14 0.072

776.52 1.00 4.34 1.13 0.16 1.00 4.35 1.21 0.29

5 657.52 1.00 7.16 1.40 0.38 1.00 7.18 1.35 0.57

1029.25 1.01 6.88 1.17 0.13 1.01 6.88 1.24 0.14

782.41 1.00 6.39 1.41 0.32 1.00 6.40 1.46 0.69

8 708.88 1.00 7.18 1.35 0.32 1.00 7.20 1.34 0.69

918.84 1.02 6.30 1.15 0.13 1.02 6.31 1.32 0.19
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Table 6.8. Results of Algorithms MMH5-MMH8 for k = 20

m BV MMH5 MMH6 MMH7 MMH8

ratio time ratio time ratio time ratio time

1681.43 1.00 108.27 1.24 1.15 1.00 108.31 1.27 1.17

2 929.37 1.00 136.07 1.41 1.32 1.00 136.12 1.41 1.25

4069.42 1.00 128.5 1.06 0.36 1.06 128.51 1.07 0.27

1514.7 1.00 136.4 1.22 1.42 1.00 136.46 1.33 1.99

5 1148.6 1.00 147.4 1.41 1.42 1.00 147.46 1.38 2.11

2409.18 1.01 82.86 1.08 0.20 1.08 82.87 1.12 0.23

1606.87 1.00 123.6 1.20 1.19 1.00 123.67 1.33 2.28

8 1311.11 1.00 175.77 1.40 1.85 1.00 175.84 1.39 3.22

2117.44 1.01 84.22 1.10 0.36 1.10 84.22 1.23 0.41

6.11 Concluding Remarks

In this chapter, eight problems (denoted by MMP1-MMP8) for multi-machines and multi-

customers were proposed. These problems were of different release environment, prepa-

ration patterns and delivery patterns. The algorithms (denoted by MMH1-MMH8) were

modified from corresponding SMH algorithms by combining techniques of parallel-machine

scheduling. A simulation study was conducted for all the algorithms. From the simulation

study, all algorithms perform robustness for worst instances and great for most normal

instances, and possess efficiency even for different values of m and k.
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CHAPTER 7

ROBUSTNESS AND RESILIENCE OF ALGORITHMS

7.1 Introduction

In this chapter, the robustness and the resilience of algorithms are discussed. In the

assessment of algorithms, the traditional approach is based on the complexity (off-line

problem) and competitive ratio (on-line problem). There are then two scenarios for al-

gorithms: normal and worst. Accordingly, there is the measure of the algorithm in the

normal scenario and worst scenario by the complexity (off-line problem) and competitive

ratio (on-line problem). Such traditional measures are found not enough to account for

some phenomena relevant to the performance of the algorithm, particularly (1) noises

on the parameters of the problems and (2) change in the structure of the parameters.

These two are called robustness and resilience, respectively, borrowed from the systems

theory [Zhang and Lin, 2010]. In this thesis, a qualitative definition of the robustness

and resilience for algorithms (scheduling algorithms in particular) is proposed. Then, the

validation of the proposed definition with the algorithms developed in the thesis, in the

previous chapters, is attempted. It is noted that validation is just at the qualitative level,

namely, the quantitative part of the measure is not in the scope of this thesis, though in

the last chapter, there is a discussion on the quantitative part of the measure of robustness
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and resilience for future work.

7.2 Definition of Robustness

There seems to be a gap in definition of the robustness between applications and theories

of algorithms in the context of production scheduling. The robustness of the scheduling

algorithm refers to the worst case performance of an algorithm, while in application sys-

tems or engineering systems, the robustness of a system refers to the sensitivity of the

system performance to disturbances or noises. The worst scenario performance does not

cover the sensitivity issue or robustness of an application system. In the following, the

robustness in engineering systems is extended for algorithms.

Let A be an algorithm for problem P . Given an instance I of P , let s(A, I) be the

solution of A and ob(s(A, I), I) be the corresponding objective value. When there are

disturbances, the information is uncertain and there is deviation of the parameter values

in I. Let Iu represents a corresponding instance of I under uncertainty. Therefore, the

objective value becomes ob(s(A, I), Iu), which is the solution s(A, I) for the instance Iu.

If A is implemented for the instance Iu, the objective value is ob(s(A, Iu), Iu). In this

sense, the robustness of algorithm A can be reflected by comparing ob(s(A, I), Iu) with

ob(s(A, Iu), Iu).

7.3 Definition of Resilience

In engineering systems, the resilience of a system refers to the persistence of the system

performance to disruptions. The persistence issue or resilience of an algorithm has never
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been considered in literature. In the following, the resilience in engineering systems is

extended for algorithms.

Let A be an algorithm for problem P . Given an instance I of P , let s(A, I) be the solution

of A and ob(s(A, I), I) be the corresponding objective value. When there are disruptions,

the structure of I may be totally changed or broken. Let ID be a corresponding instance

of I under disruptions. Unlike the robustness case, the original solution s(A, I) may not

be feasible and then the algorithm A needs to be re-implemented, which generates the

solution s(A, ID) and the objective value ob(s(A, ID), ID). In this sense, the resilience

of algorithm A can be reflected by comparing ob(s(A, ID), ID) with the original value

ob(s(A, I), I).

7.4 Robustness of Algorithms

In the following, a simulation is presented to show the sense of the robustness of algorithms

SMH4 and SMH8. The two algorithms are for on-line problems. The mechanism of

uncertainty can be constructed as follows: It assumes that at the release time r
(i)
j the

job J
(i)
j arrives but the information of the processing time p

(i)
j may not be true because of

uncertainty. Indeed, the true value p̄
(i)
j will not be known until the job is completed. In the

simulation, the uniform distribution is used to describe the uncertainty of the processing

time: p̄
(i)
j ∼ U [1

2
p
(i)
j ,

3
2
p
(i)
j ].

In the simulated experiment, the same assumptions and cases (Section 4.6 and 4.11) for

generating instances are applied. The running of the two on-line algorithms is like this:

at time t, the decisions are made based on the jobs information (r
(i)
j , p̄

(i)
j ) if C

(i)
j ≤ t and
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(r
(i)
j , p

(i)
j ) if r

(i)
j ≤ t but C

(i)
j > t.

Table 7.1 shows the results of SMH4 for different values of k. Each row of the table is

the average of the results of the 100 instances. The algorithm columns of the table are

(1) the ratio of the algorithm value to the benchmark value, (2) the run-time in seconds,

respectively. The benchmark value is the objective value of SMH1 (SA SMH1), which is

the case that all the true information is known beforehand.

Comparing with the results in Tables 4.1-4.5, one can conclude the algorithm SMH4

can still hold the same performance under the uncertainty, which implies the excellent

robustness of SMH4.

Table 7.2 shows the results of SMH8 for different values of k and different cases. Each row

of the table is the average of the results of the 100 instances. The algorithm columns of

the table are (1) the ratio of the algorithm value to the benchmark value, (2) the run-time

in seconds, respectively. The benchmark value is the objective value of SMH5, which is

the case that all the true information is known beforehand.
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Table 7.1. The Results of SMH4 under Uncertainty

k SMH4 k SMH4 k SMH4

ratio time ratio time ratio time

1.48 0.0030 1.31 0.0047 1.29 0.010

1.12 0.0029 1.11 0.0050 1.13 0.010

1.98 0.0029 1.97 0.0053 1.95 0.010

2 1.43 0.0034 3 1.31 0.0053 5 1.24 0.012

1.61 0.0023 1.57 0.0045 1.51 0.012

1.09 0.0033 1.10 0.0058 1.15 0.013

1.28 0.030 1.27 0.055 1.34 0.094

1.18 0.028 1.22 0.051 1.31 0.099

1.94 0.028 1.94 0.046 1.90 0.099

8 1.23 0.029 10 1.25 0.050 20 1.29 0.098

1.51 0.027 1.51 0.048 1.47 0.083

1.21 0.026 1.21 0.046 1.27 0.096

Comparing with the results in Table 4.9, the robustness of SMH8 under the uncertainty

can also be shown.
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Table 7.2. The Results of SMH8 under Uncertainty

k Case SMH8 k Case SMH8

ratio time ratio time

Case 1 1.37 0.0174 Case 1 1.33 0.056

2 Case 2 1.37 0.013 5 Case 2 1.37 0.053

Case 3 1.12 0.0096 Case 3 1.14 0.040

Case 1 1.30 0.23 Case 1 1.23 0.62

10 Case 2 1.37 0.17 20 Case 2 1.36 0.51

Case 3 1.20 0.14 Case 3 1.35 0.55

7.5 Resilience of Algorithms

In the following, a simulated experiment is conducted to illustrate the sense of the resilience

of algorithm SMH7 under disruptions. With respect to the transportation network T in

normal case, the broken transportation network TB in disruption case is constructed as

follows: If the road from the place ’i’ to the place ’l’ is broken, TBil = ∞; otherwise,

TBil = Til. For other parameters, the same assumptions (Section 4.11) for generating

instances hold to the experiment. The performance of SMH7 under T and TB is simulated

for the roads disruption case (no more than k pairs (i, l) are broken). Figures 7.1-7.3 show

the result of the algorithm for three values of k (k = 5, 10, 20) under the case that the

values of the processing part (r
(i)
j and p

(i)
j ), the unit delivery cost (D), and the values of

transportation system (Til) are almost the same.
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Figure 7.1. The results of SMH7 under normal and disruption case with k = 5
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Figure 7.2. The results of SMH7 under normal and disruption case with k = 10
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Figure 7.3. The results of SMH7 under normal and disruption case with k = 20

From the above three figures, one can conclude that although the initial value of the

disruption case is not good enough, the converged value has displayed a great improvement.

The reason is that the weak partition under the transportation matrix T is still valid for

TB. To prove this, construct a matrix M = (Mil)(k+1)×(k+1) such that Mil is the length

of the shortest path between i and l in TB. It is clear that the matrix M satisfies that

Mil ≤ Mih +Mhl and Mil ≥ Til. Therefore, replace T by M in the proof of Theorem 4.9,

which implies the validity of the property for TB. Hence, one can conclude that the

algorithm SMH7 is resilient for the roads disruption case.
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7.6 Concluding Remarks

In this chapter, the simulations were conducted to demonstrate the robustness and the

resilience of the algorithms. From the simulation, one can conclude that algorithms SMH4

and SMH8 are robust under the uncertainty while algorithm SMH7 is resilient under the

disruption. The conclusions are applicable to the other algorithms because of the similar

structure of the problems and algorithms in this thesis. Therefore, all the algorithms

developed in this thesis possess a good degree of the robustness and resilience. It is noted

that the quantitative part of the robustness and resilience for algorithms has not been

given in this chapter. In the last chapter of this thesis, the possible definition of the

quantitative part of the robustness and resilience will be given as a future work.
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CHAPTER 8

CASE STUDY: MEDICAL RESOURCES ALLOCATION

In this chapter, a case study is presented, which has the two purposes: (1) to illustrate how

the algorithms developed can be applied to real world problems and (2) to demonstrate the

effectiveness of the algorithms. The case is about applying medical resources allocation in

emergency management (EM). In the following, the concept of EM is first introduced along

with the related work in literature. Note that the problem of medical resources allocation

is in itself very important in emergency management and there are quite an amount of

studies on this topic from a perspective other than supply chain scheduling. Later, supply

chain scheduling is applied to model the medical resources allocation problem based on

several assumptions into a supply chain scheduling problem and the problem is then solved

by the algorithms as developed in thesis and described in the previous chapters.

8.1 Emergency Management

The emergency events can be disasters of nature or human, such as earthquake, fire, flood,

traffic accident and so on (see Figure 8.1). They may also be acute infectious diseases, such

as Severe Acute Respiratory Syndrome (SARS), influenza A (H1N1) virus, Ebola virus

disease (Ebola), and so on (see Figure 8.2). As it is impossible to completely eliminate

such emergency events, the focus is on how to help people and reduce losses after the
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occurrence of emergency events, which results in the research on EM.

For helping people in EM, the victims should be first evacuated from dangerous places

(affected area where an emergency event takes places) to safe places (temporary aid sites).

Further, the victims may be wounded or infected, which implies that medical resources

are required to cure them. However, the existing work in the field of EM only considered

the evacuation operations but little research is on the allocation of medical resources.

Figure 8.1. Great Disasters in Recent Years

(http://www.canadianbusiness.com/companies-and-industries/flooding/

http://www.boston.com/bigpicture/2010/11/shanghai apartment fire.html

http://www.dailymail.co.uk/news/article-1365546/Japan-earthquake-pictures-Devastation-rescue-

workers-fight-fires-search-survivors.html

http://o.canada.com/news/photos-50-80-car-accident-on-the-401/)
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After the wounded or infected victims have settled in temporary aid sites, they need the

medical resources which can be drugs, medical devices and medical staff. Although the

aid sites are safe, there are very limited medical resources to meet the demand. Therefore,

the nearby medical centers should supply the medical resources to them.

Figure 8.2. Infectious Diseases in Recent Years

(http://www.lib.utexas.edu/maps/sars.html

http://reliefweb.int/map/world/world-pandemic-h1n1-2009-countries

-territories-and-areas-lab-confirmed-cases-and-number-11

http://www.un.org/apps/news/story.asp?NewsID=48668#.VR7Sf nF z0)

In the view of medical centers, they need to know the information of requirements before
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supply. When large areas are affected by the disaster (earthquake, flood, or worldwide

infectious diseases) or the connection between aid sites and outside is limited, the related

data (the number of victims, the quantity and the type of drugs needed and so on) can-

not be obtained in a short time but collected gradually. Obviously, the medical centers

cannot wait for all requirements being known and then deliver all the needed resources.

Therefore, the on-line mechanism should be considered and on-line decisions should be

made accordingly.

After the information being known, there should be a period of time to prepare the re-

quired medical resources, e.g., to prescribe drugs, assemble medical devices and gather

medical staff. The preparation is managed on processors, which involves different proces-

sor configurations. When the medical resources are prepared, vehicles will deliver them

to the corresponding aid sites with different delivery patterns and characteristics of the

vehicle.

Two performance measures are concerned in the medical resources allocation: time and

cost. It is always desired that the whole process has short time and low cost. Similarly,

these two objectives conflict with each other.

As the preparation-delivery mechanism is similar with the production-delivery mechanism

of supply chain scheduling, this study will apply the supply chain scheduling model to

describe the problem of allocating medical resources.
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8.2 Evacuation Problems

In the existing work in EM, most researchers focus on evacuation problem but little about

medical resources allocation. However, the evacuation problem is close to the medical

resources allocation problem and there are some studies on the evacuation problem in

literature.

The models of evacuation problems can be divided into two classes: macroscopic and

microscopic models. The macroscopic model considers the victims as a homogeneous

group where individual differences are ignored [Fahy, 1991; Burkard et al., 1993; Lin et

al., 2008] while the microscopic model concerns the individual victims’ movement and

depends on simulation [Nagel and Schreckenberg, 1992; Lárraga et al., 2005; Lan et al.,

2010].

Initially, the evacuation problems are considered as min-max flow problems in a static

network. In a static network G, nodes are used to represent source places, sink places and

intermediate places while edges to represent the roads or paths connecting these places.

By graph theory, the whole network can be transformed to a node-edge incidence matrix

which is convenient for the algorithmic analysis. On source places, there are victims who

need to be evacuated; while on intermediate places and sink places, there is a capacity

limit for victims. Edges may also be characterized by the attributes such as flow capacity

and travel speed. Table 8.1 includes some evacuation problems in the static network.

However, the static network min-max models cannot describe the evacuation problems
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in reality because of ignoring the time factor. Thus, the dynamic network GT is brought

in to model the emergency operations over time, where GT is the time expanded version

of the static network G and flows in it. There are two classes of the dynamic network

models: discrete-time dynamic network and continuous-time dynamic network. In the

continuous time dynamic network flow problems, researchers focus on the special cases

with a constant travel time and flow capacity. Some examples of the dynamic network are

also shown in Table 8.1.

8.3 Problem Descriptions for The Medical Resources Allocation

In this section, the supply chain scheduling model is applied to the problem of medical

resources allocation based on several assumptions.

Suppose that a disaster takes place and victims have been settled to temporary aid sites.

There are demands of medical resources to cure wounded/infected victims in the aid sites.

However, the medical resources in these temporary aid sites are very limited and it is

necessary to appeal to the nearby medical centers. In particular, the case that there are

multiple medical centers is considered.

The aid sites need to inform medical centers of their demands of medical resources such

as drugs, medical devices and medical staff. In the following, the term ’job’ is used

to represent the demands of medical resources. The medical resources are continuously

required in the whole process of EM. When large areas are affected or the communication

is impeded, the information cannot be known beforehand but gradually known during

the process. Therefore, the on-line environments for scheduling in this case should be
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considered.

Table 8.1. Evacuation Problems for Different Network Models

Shortest path [Fahy, 1991; Lim et al., 2012]

Static network Minimum cost [Yamada, 1996]

Quickest path [Chen and Chin, 1990; Chen and Hung, 1993]

Shortest path [Hamacher et al., 2006; Bérubé et al., 2006]

Discrete-time Minimum cost maximum flow [Köhler and Skutella, 2006; Dressler et al., 2010]

dynamic network Quickest flow [Baumann and Köhler, 2007]

Universally quickest flow [Takizawa et al., 2012]

Lexicographically minimal cost [Hamacher and Tufekci, 1987]

Maximum flow with time dependent capacity

[Anderson et al., 1982; Philpott, 1990]

Continuous-time Universally maximum flow with zero travel time [Ogier, 1988; Fleischer, 2001b]

dynamic network Quickest flow with constant capacity and travel time [Fleischer, 2001a]

Maximum flow, Quickest flow, Universally quickest flow,

Lexicographically maximum flow [Fleischer and Tardos, 1998]

After knowing the jobs, or the jobs being released, medical centers need time to prepare

the jobs, such as prescribe drugs, assemble medical devices, and gather medical staff. This

preparation needs to be executed by work resources called processors. After the jobs are

prepared, the jobs are then delivered to aid sites by the vehicles through a transportation

network.
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If jobs preparation on processors is viewed as jobs processing on machines, the processing-

delivery in supply chain scheduling can be extended directly to medical resources alloca-

tion. Then, the same time-based objective and cost-based objective can be defined for

medical resources allocation. The following assumptions are made.

1. The relationship between aid sites and the medical center form an on-line environment.

Because of the well-developed technology of information and communication, the satellite

signal can cover almost everywhere in the world [Schiller, 2003]. In particular, the experi-

ment to transfer medical data from Mount Logan (Canada’s highest summit) through the

satellite was successfully conducted in in the late 90s [Otto and Pipe, 1997]. This implies

that the aid sites can connect with the medical center. Although there may be limitation

on the communication, it can still assume that the transmission of medical data is valid at

some moments in every time interval as the satellites move around the earth periodically.

Therefore, the on-line environment makes sense for this situation.

2. All jobs are homogenous.

This is similar with the assumption of the macroscopic model for the evacuation problem.

As most of the medical resources (drugs, medical devices and medical staff) are regular,

it is possible to consider that every job occupies the unit size of a vehicle in the delivery.

Furthermore, only the release time and preparation time of a job are considered in the

allocation process.
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3. The processor configurations are single-processor and multi-processor

In reality, the preparation of jobs can have different patterns. Furthermore, this case study

focuses on applying supply chain scheduling model for medical resources allocation prob-

lem. To capture the nature of the problem, the basic pattern of preparation is explored.

Therefore, particular configurations of single-processor and parallel-processor are consid-

ered in this case study. For problems with other preparation patterns, the results of this

case study can be meaningful and extendable. In the two configurations, the processors

and the jobs are exclusive: one job is prepared by one processor in the center at a time

and one processor prepares one job at a time.

Based on the above assumptions, the supply chain scheduling model can be applied to the

medical resources allocation problem. The problem can be described as follows.

Suppose there are ni jobs J
(i)
1 , · · · , J (i)

ni with the preparation time p
(i)
1 , · · · , p

(i)
ni , released

at the time r
(i)
1 , · · · , r

(i)
ni from the ith aid site (i = 1, 2, · · · , k), respectively, to s medica

centers. The k aid sites and the s medical centers are located at different places and

form a transportation network. Every medical center has processors to prepare the jobs

without preemption. The job release is in an on-line environment, which means that the

information of future jobs is not known until their release time. After jobs are prepared

in the same medical center, they are divided into batches or shipments and then trans-

ported to the aid sites by vehicles. There is a delivery cost for delivering a batch. Jobs of

different aid sites can be contained into one batch. The objective is to minimize the total

makespans and the total delivery cost.
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When there are multiple medical centers, the schedule needs to decide in which medical

center that a job should be prepared besides jobs preparation on processors and batch

delivery. Therefore, a policy that assign jobs to a certain medical center is implemented.

When a job J
(i)
j is assigned to a medical center, J

(i)
j needs to be prepared in this medical

center and then delivered to Aid Site i. Thus, the original problem is decomposed into sev-

eral sub-problems with single medical center and the algorithms developed in the previous

chapter regarding the single manufacturer and multiple customers can then be applied.

In the following sections, details of the policy are presented and a simulated experiment

is proposed to demonstrate the performance of the policy along with algorithms.

8.4 Policy to Assign Aid Sites

In this section, the policy to assign jobs to the corresponding medical centers is presented.

The solution of the above problem is a schedule which should specify when a job is pre-

pared, in which medical center a job is prepared, to which batch a job is assigned, when

a batch is transported, and through which path a batch is transported. As there is more

than one medical center, it is required to assign a job to a certain medical center. To

deal with such a situation, a policy is proposed to complete the assignment. After that,

the problem is decomposed into several sub-problems, which are actually problems SMP8,

and SMH8 can be applied to solve them. Details of the policy are described as follows.

Policy AAS

Let MJz be the sets of all jobs assigned to the zth medical center and set MJz = ∅

(z = 1, 2, · · · , s). Let ASz be the sets of aid sites that release the jobs in MJz and set
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ASz = ∅ (z = 1, 2, · · · , s). Set Hz = 0 for z = 1, 2, · · · , s.

When a new job J
(i)
j is released, if i ∈ ASz, Hz = Cmax(MJz ∪ {J (i)

j }); if i 6∈ ASz and

ASz 6= ∅, Hz = Cmax(MJz∪{J (i)
j })+2Tis; if ASz = ∅, Hz = Cmax(MJz∪{J (i)

j })+2Tis+D.

Compute z0 = argmin{Hz|z = 1, 2, · · · , s}. Assign the job J
(i)
j to Medical Center z0 and

MJz0 = MJz0 ∪ {J
(i)
j }. If i 6∈ ASz0 , ASz0 = ASz0 ∪ {i}.

For the aid sites in ASz and jobs in MJz (z = 1, 2, · · · , s), a schedule to prepare and

deliver the jobs is constructed by SMH8. Then s schedule gives a solution of the original

problem. Next, a case is built to show the performance of AAS and SMH8.

8.5 Simulated Experiment for Case Study

In this section, a simulation is conducted to show the performance of AAS and SMH8. An

instance can be defined by prescribing a set of the foregoing parameters (ni, p
(i)
j , and r

(i)
j ,

for j = 1, 2, · · · , ni, Til for i, l = 1, 2, · · · , k, · · · , k+s, and D). The instances are generated

by these randomly generated parameters. The algorithm was implemented in the Matlab

environment. The parameters are thus determined based on the following assumptions:

(1) The release of jobs for Aid Site i follows the poisson distribution with the parameter

λi, i.e., the number of jobs released at some time r: ni(r) ∼ P (λi) and the next

release time is r + r′, where r′ ∼ U(0, λi), λi is two times of the mean value of the

release intervals for Aid Site i, and λi ∼ U(0,Λi) (i = 1, 2, · · · , k).

(2) The job preparation time for Aid Site i follows the uniform distribution in the interval

[0, bi], i.e., p
(i)
j ∼ U(0, bi) for j = 1, 2, · · · , ni, where bi is two times of the mean value

of the preparation time for Aid Site i and bi ∼ U(0, Bi) (i = 1, 2, · · · , k).
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(3) The number of jobs for Aid Site i follows the uniform distribution in the set {1, 2, · · · , Ni},

i.e., Pr{ni = h} = 1
Ni

for h = 1, 2, · · · , Ni where Ni is two times of the mean value

of the number of jobs for Aid Site i (i = 1, 2, · · · , k).

(4) The positions of the medical centers and the aid sites are randomly located in an

square area with the side length L, and the transportation network can be directly

determined by the Euclidean distance.

(5) The delivery cost D is a constant.

(6) The number of aid sites is of one case: k = 30.

(7) The number of medical centers is of one case: s = 5.

An instance with 30 aid sites and 5 medical centers is generated. The coordinates of

the locations of the aid sites and the medical centers are as follows (see Figure 8.3). In

Figure 8.3, x and y are length and width of the concerned area, which does not have

a physical dimension but an unit. To a real application area, this unit will need to be

multiplied by a ratio (e.g., inch per unit) to scale to a real length.

Aid Site 1: (81.47,82.35) Aid Site 2: (90.58,69.48) Aid Site 3: (12.70,31.71)

Aid Site 4: (91.34,95.02) Aid Site 5: (63.24,3.44) Aid Site 6: (9.75,43.87)

Aid Site 7: (27.8538.16) Aid Site 8: (54.69,76.55) Aid Site 9: (95.75,79.52)

Aid Site 10: (96.49,18.69) Aid Site 11: (15.76,48.98) Aid Site 12: (97.06,44.56)

Aid Site 13: (95.72,64.63) Aid Site 14: (48.54,70.94) Aid Site 15: (80.03,75.47)

Aid Site 16: (14.19,27.60) Aid Site 17: (42.18,67.97) Aid Site 18: (91.57,65.51)

Aid Site 19: (79.22,16.26) Aid Site 20: (95.95,11.90) Aid Site 21: (65.57,49.84)

228



Aid Site 22: (3.57,95.97) Aid Site 23: (84.91,34.04) Aid Site 24: (93.40,58.53)

Aid Site 25: (67.87,22.38) Aid Site 26: (75.77.75.13) Aid Site 27: (74.31,25.51)

Aid Site 28: (39.22,50.60) Aid Site 29: (65.55,69.91) Aid Site 30: (17.12,89.09)

Medical Center 1: (70.60,95.93) Medical Center 2: (31.83,54.72)

Medical Center 3: (27.69,13.86) Medical Center 4: (4.62,14.93)

Medical Center 5: (9.71,25.75)

The jobs information of every aid sites is as follows.

Aid Site 1 (13 jobs)

J
(1)
1 ( 0.86 , 4.60 ) J

(1)
2 ( 1.66 , 2.49 ) J

(1)
3 ( 4.47 , 6.26 ) J

(1)
4 ( 4.47 , 1.59 )

J
(1)
5 ( 8.76 , 5.77 ) J

(1)
6 ( 8.76 , 1.54 ) J

(1)
7 ( 8.76 , 3.10 ) J

(1)
8 ( 10.56 , 5.26 )

J
(1)
9 ( 12.12 , 6.56 ) J

(1)
10 ( 13.19 , 0.68 ) J

(1)
11 ( 13.19 , 7.81 ) J

(1)
12 ( 14.02 , 6.52 )

J
(1)
13 ( 15.40 , 4.09 )

Aid Site 2 (13 jobs)

J
(2)
1 ( 0.87 , 4.91 ) J

(2)
2 ( 1.89 , 5.79 ) J

(2)
3 ( 1.89 , 1.81 ) J

(2)
4 ( 3.18 , 0.96 )

J
(2)
5 ( 3.18 , 2.42 ) J

(2)
6 ( 3.88 , 2.60 ) J

(2)
7 ( 3.88 , 3.45 ) J

(2)
8 ( 5.12 , 4.14 )

J
(2)
9 ( 6.19 , 0.70 ) J

(2)
10 ( 7.72 , 2.14 ) J

(2)
11 ( 8.09 , 6.52 ) J

(2)
12 ( 8.09 , 0.24 )

J
(2)
13 ( 9.13 , 7.56 )
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Figure 8.3. The Locations of 30 Aid Sites and 5 Medical Centers

Aid Site 3 (18 jobs)

J
(3)
1 ( 1.46 , 2.23 ) J

(3)
2 ( 1.46 , 8.24 ) J

(3)
3 ( 2.38 , 0.27 ) J

(3)
4 ( 2.38 , 4.55 )

J
(3)
5 ( 4.09 , 1.56 ) J

(3)
6 ( 4.82 , 9.09 ) J

(3)
7 ( 6.59 , 6.62 ) J

(3)
8 ( 6.59 , 4.65 )

J
(3)
9 ( 11.23 , 4.38 ) J

(3)
10 ( 11.23 , 0.55 ) J

(3)
11 ( 11.23 , 6.34 ) J

(3)
12 ( 13.01 , 0.39 )

J
(3)
13 ( 13.01 , 0.66 ) J

(3)
14 ( 14.07 , 4.85 ) J

(3)
15 ( 14.07 , 0.90 ) J

(3)
16 ( 15.31 , 7.60 )

J
(3)
17 ( 15.31 , 7.60 ) J

(3)
18 ( 15.31 , 6.71 )

Aid Site 4 (13 jobs)
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J
(4)
1 ( 1.34 , 1.38 ) J

(4)
2 ( 1.34 , 1.31 ) J

(4)
3 ( 1.34 , 1.06 ) J

(4)
4 ( 2.20 , 1.37 )

J
(4)
5 ( 3.25 , 1.31 ) J

(4)
6 ( 3.25 , 0.35 ) J

(4)
7 ( 4.05 , 0.25 ) J

(4)
8 ( 5.36 , 1.96 )

J
(4)
9 ( 8.19 , 0.34 ) J

(4)
10 ( 11.82 , 0.06 ) J

(4)
11 ( 13.30 , 1.10 ) J

(4)
12 ( 14.39 , 1.73 )

J
(4)
13 ( 14.39 , 1.32 )

Aid Site 5 (24 jobs)

J
(5)
1 ( 1.30 , 4.28 ) J

(5)
2 ( 3.01 , 0.42 ) J

(5)
3 ( 3.01 , 1.57 ) J

(5)
4 ( 3.87 , 1.38 )

J
(5)
5 ( 5.82 , 4.11 ) J

(5)
6 ( 6.40 , 5.20 ) J

(5)
7 ( 8.05 , 2.12 ) J

(5)
8 ( 8.05 , 4.81 )

J
(5)
9 ( 8.05 , 4.16 ) J

(5)
10 ( 8.26 , 0.04 ) J

(5)
11 ( 9.90 , 3.71 ) J

(5)
12 ( 12.06 , 2.38 )

J
(5)
13 ( 12.06 , 5.64 ) J

(5)
14 ( 12.76 , 0.01 ) J

(5)
15 ( 13.58 , 2.85 ) J

(5)
16 ( 13.58 , 2.61 )

J
(5)
17 ( 13.58 , 2.84 ) J

(5)
18 ( 15.45 , 4.74 ) J

(5)
19 ( 15.45 , 1.99 ) J

(5)
20 ( 17.60 , 4.83 )

J
(5)
21 ( 17.60 , 2.90 ) J

(5)
22 ( 19.49 , 0.22 ) J

(5)
23 ( 19.49 , 1.08 ) J

(5)
24 ( 20.84 , 4.45 )

Aid Site 6 (42 jobs)

J
(6)
1 ( 1.63 , 2.36 ) J

(6)
2 ( 3.11 , 1.54 ) J

(6)
3 ( 3.64 , 2.93 ) J

(6)
4 ( 5.37 , 2.70 )

J
(6)
5 ( 5.37 , 0.59 ) J

(6)
6 ( 6.66 , 3.03 ) J

(6)
7 ( 6.66 , 3.48 ) J

(6)
8 ( 6.66 , 1.81 )

J
(6)
9 ( 7.08 , 3.11 ) J

(6)
10 ( 8.22 , 2.07 ) J

(6)
11 ( 9.76 , 0.54 ) J

(6)
12 ( 9.76 , 0.70 )

J
(6)
13 ( 11.44 , 1.43 ) J

(6)
14 ( 11.44 , 2.63 ) J

(6)
15 ( 12.61 , 2.90 ) J

(6)
16 ( 12.61 , 2.78 )

J
(6)
17 ( 15.12 , 1.12 ) J

(6)
18 ( 15.12 , 1.88 ) J

(6)
19 ( 15.12 , 0.32 ) J

(6)
20 ( 16.42 , 0.39 )

J
(6)
21 ( 16.42 , 0.48 ) J

(6)
22 ( 18.40 , 2.39 ) J

(6)
23 ( 19.43 , 1.74 ) J

(6)
24 ( 20.96 , 0.67 )

J
(6)
25 ( 20.96 , 1.74 ) J

(6)
26 ( 20.96 , 0.52 ) J

(6)
27 ( 20.96 , 0.19 ) J

(6)
28 ( 22.49 , 2.99 )

J
(6)
29 ( 22.49 , 1.97 ) J

(6)
30 ( 23.83 , 3.27 ) J

(6)
31 ( 23.83 , 2.45 ) J

(6)
32 ( 26.16 , 2.05 )

J
(6)
33 ( 27.54 , 2.87 ) J

(6)
34 ( 27.54 , 3.09 ) J

(6)
35 ( 28.91 , 3.48 ) J

(6)
36 ( 28.91 , 0.00 )

J
(6)
37 ( 31.75 , 3.04 ) J

(6)
38 ( 31.75 , 2.15 ) J

(6)
39 ( 33.29 , 3.48 ) J

(6)
40 ( 33.29 , 1.86 )
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J
(6)
41 ( 33.29 , 1.69 ) J

(6)
42 ( 33.72 , 2.82 )

Aid Site 7 (28 jobs)

J
(7)
1 ( 2.26 , 2.61 ) J

(7)
2 ( 2.26 , 0.32 ) J

(7)
3 ( 2.26 , 1.04 ) J

(7)
4 ( 2.26 , 3.88 )

J
(7)
5 ( 4.84 , 1.94 ) J

(7)
6 ( 4.84 , 5.26 ) J

(7)
7 ( 4.84 , 0.69 ) J

(7)
8 ( 4.84 , 5.78 )

J
(7)
9 ( 4.84 , 3.16 ) J

(7)
10 ( 6.70 , 4.14 ) J

(7)
11 ( 6.94 , 5.85 ) J

(7)
12 ( 8.63 , 1.68 )

J
(7)
13 ( 11.12 , 2.43 ) J

(7)
14 ( 14.68 , 2.72 ) J

(7)
15 ( 14.68 , 4.47 ) J

(7)
16 ( 16.63 , 4.79 )

J
(7)
17 ( 16.63 , 0.59 ) J

(7)
18 ( 17.76 , 1.04 ) J

(7)
19 ( 18.17 , 2.10 ) J

(7)
20 ( 21.73 , 0.33 )

J
(7)
21 ( 21.73 , 3.05 ) J

(7)
22 ( 23.45 , 1.97 ) J

(7)
23 ( 23.45 , 1.03 ) J

(7)
24 ( 23.45 , 1.22 )

J
(7)
25 ( 23.45 , 5.30 ) J

(7)
26 ( 23.45 , 3.95 ) J

(7)
27 ( 28.56 , 2.74 ) J

(7)
28 ( 28.56 , 5.34 )

Aid Site 8 (15 jobs)

J
(8)
1 ( 1.68 , 0.67 ) J

(8)
2 ( 8.10 , 0.81 ) J

(8)
3 ( 8.91 , 7.32 ) J

(8)
4 ( 11.12 , 8.65 )

J
(8)
5 ( 11.12 , 6.27 ) J

(8)
6 ( 13.09 , 1.21 ) J

(8)
7 ( 14.74 , 6.63 ) J

(8)
8 ( 17.54 , 1.01 )

J
(8)
9 ( 17.54 , 1.08 ) J

(8)
10 ( 19.10 , 5.88 ) J

(8)
11 ( 20.21 , 3.02 ) J

(8)
12 ( 21.77 , 6.00 )

J
(8)
13 ( 24.48 , 6.87 ) J

(8)
14 ( 24.48 , 5.35 ) J

(8)
15 ( 24.48 , 6.79 )

Aid Site 9 (38 jobs)

J
(9)
1 ( 0.47 , 6.13 ) J

(9)
2 ( 0.47 , 5.67 ) J

(9)
3 ( 1.38 , 0.91 ) J

(9)
4 ( 2.96 , 3.98 )

J
(9)
5 ( 5.93 , 2.47 ) J

(9)
6 ( 10.76 , 4.14 ) J

(9)
7 ( 10.76 , 3.02 ) J

(9)
8 ( 12.15 , 3.14 )

J
(9)
9 ( 12.15 , 1.37 ) J

(9)
10 ( 12.37 , 1.93 ) J

(9)
11 ( 12.90 , 0.16 ) J

(9)
12 ( 14.44 , 6.99 )

J
(9)
13 ( 15.38 , 4.95 ) J

(9)
14 ( 17.04 , 7.06 ) J

(9)
15 ( 18.63 , 1.24 ) J

(9)
16 ( 18.63 , 6.97 )

J
(9)
17 ( 21.97 , 6.02 ) J

(9)
18 ( 21.97 , 4.37 ) J

(9)
19 ( 22.49 , 3.33 ) J

(9)
20 ( 25.92 , 1.95 )

J
(9)
21 ( 28.08 , 5.69 ) J

(9)
22 ( 28.08 , 1.73 ) J

(9)
23 ( 31.60 , 0.49 ) J

(9)
24 ( 31.60 , 5.81 )

J
(9)
25 ( 33.85 , 5.08 ) J

(9)
26 ( 33.85 , 5.42 ) J

(9)
27 ( 34.76 , 4.86 ) J

(9)
28 ( 35.88 , 3.17 )
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J
(9)
29 ( 37.42 , 2.96 ) J

(9)
30 ( 37.42 , 6.18 ) J

(9)
31 ( 37.42 , 2.40 ) J

(9)
32 ( 37.90 , 6.17 )

J
(9)
33 ( 39.38 , 5.97 ) J

(9)
34 ( 40.74 , 6.45 ) J

(9)
35 ( 40.94 , 3.83 ) J

(9)
36 ( 43.06 , 4.81 )

J
(9)
37 ( 43.06 , 7.20 ) J

(9)
38 ( 44.96 , 3.36 )

Aid Site 10 (29 jobs)

J
(10)
1 ( 1.38 , 2.22 ) J

(10)
2 ( 1.38 , 1.95 ) J

(10)
3 ( 2.69 , 0.31 ) J

(10)
4 ( 5.27 , 2.74 )

J
(10)
5 ( 5.27 , 3.79 ) J

(10)
6 ( 8.32 , 1.35 ) J

(10)
7 ( 8.32 , 3.70 ) J

(10)
8 ( 11.13 , 1.32 )

J
(10)
9 ( 14.21 , 3.37 ) J

(10)
10 ( 14.21 , 1.73 ) J

(10)
11 ( 14.21 , 1.57 ) J

(10)
12 ( 14.21 , 0.83 )

J
(10)
13 ( 15.36 , 0.48 ) J

(10)
14 ( 16.31 , 1.18 ) J

(10)
15 ( 16.31 , 2.76 ) J

(10)
16 ( 18.99 , 2.98 )

J
(10)
17 ( 22.24 , 2.64 ) J

(10)
18 ( 22.24 , 0.04 ) J

(10)
19 ( 22.24 , 3.21 ) J

(10)
20 ( 22.24 , 3.51 )

J
(10)
21 ( 24.97 , 2.93 ) J

(10)
22 ( 26.94 , 0.16 ) J

(10)
23 ( 26.94 , 1.44 ) J

(10)
24 ( 26.94 , 2.68 )

J
(10)
25 ( 26.94 , 2.78 ) J

(10)
26 ( 26.94 , 0.85 ) J

(10)
27 ( 28.79 , 1.02 ) J

(10)
28 ( 29.99 , 2.56 )

J
(10)
29 ( 29.99 , 1.82 )

Aid Site 11 (3 jobs)

J
(11)
1 ( 1.60 , 0.30 ) J

(11)
2 ( 8.24 , 0.04 ) J

(11)
3 ( 9.94 , 0.38 )

Aid Site 12 (39 jobs)

J
(12)
1 ( 0.86 , 5.23 ) J

(12)
2 ( 0.86 , 3.80 ) J

(12)
3 ( 3.43 , 4.45 ) J

(12)
4 ( 3.43 , 2.30 )

J
(12)
5 ( 3.43 , 2.50 ) J

(12)
6 ( 4.12 , 2.98 ) J

(12)
7 ( 5.58 , 1.43 ) J

(12)
8 ( 5.58 , 3.98 )

J
(12)
9 ( 7.08 , 2.67 ) J

(12)
10 ( 7.08 , 3.43 ) J

(12)
11 ( 9.04 , 1.63 ) J

(12)
12 ( 9.04 , 0.74 )

J
(12)
13 ( 9.76 , 2.52 ) J

(12)
14 ( 10.74 , 1.92 ) J

(12)
15 ( 10.74 , 4.18 ) J

(12)
16 ( 12.42 , 4.14 )

J
(12)
17 ( 12.42 , 3.55 ) J

(12)
18 ( 13.13 , 0.71 ) J

(12)
19 ( 13.59 , 0.11 ) J

(12)
20 ( 14.78 , 2.97 )

J
(12)
21 ( 15.95 , 1.60 ) J

(12)
22 ( 16.52 , 4.99 ) J

(12)
23 ( 19.37 , 5.21 ) J

(12)
24 ( 20.38 , 1.52 )

J
(12)
25 ( 20.38 , 4.25 ) J

(12)
26 ( 21.27 , 4.76 ) J

(12)
27 ( 23.22 , 3.17 ) J

(12)
28 ( 24.39 , 4.69 )
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J
(12)
29 ( 25.63 , 5.01 ) J

(12)
30 ( 25.80 , 2.91 ) J

(12)
31 ( 27.57 , 3.87 ) J

(12)
32 ( 29.43 , 3.06 )

J
(12)
33 ( 30.12 , 0.14 ) J

(12)
34 ( 30.12 , 2.37 ) J

(12)
35 ( 31.49 , 3.43 ) J

(12)
36 ( 32.49 , 2.77 )

J
(12)
37 ( 34.24 , 1.98 ) J

(12)
38 ( 36.09 , 4.97 ) J

(12)
39 ( 36.09 , 4.40 )

Aid Site 13 (7 jobs)

J
(13)
1 ( 1.70 , 4.25 ) J

(13)
2 ( 1.70 , 2.30 ) J

(13)
3 ( 1.70 , 7.33 ) J

(13)
4 ( 5.16 , 8.25 )

J
(13)
5 ( 5.16 , 8.53 ) J

(13)
6 ( 5.16 , 5.21 ) J

(13)
7 ( 6.67 , 5.59 )

Aid Site 14 (24 jobs)

J
(14)
1 ( 0.30 , 3.49 ) J

(14)
2 ( 0.71 , 4.66 ) J

(14)
3 ( 0.71 , 5.04 ) J

(14)
4 ( 1.28 , 5.30 )

J
(14)
5 ( 2.08 , 1.09 ) J

(14)
6 ( 3.87 , 1.47 ) J

(14)
7 ( 3.87 , 5.11 ) J

(14)
8 ( 5.26 , 3.38 )

J
(14)
9 ( 5.26 , 2.87 ) J

(14)
10 ( 5.26 , 3.49 ) J

(14)
11 ( 6.17 , 4.66 ) J

(14)
12 ( 6.17 , 3.03 )

J
(14)
13 ( 6.17 , 1.15 ) J

(14)
14 ( 7.52 , 2.58 ) J

(14)
15 ( 7.75 , 2.43 ) J

(14)
16 ( 9.00 , 5.50 )

J
(14)
17 ( 10.82 , 3.53 ) J

(14)
18 ( 10.82 , 3.96 ) J

(14)
19 ( 10.82 , 4.10 ) J

(14)
20 ( 16.63 , 1.97 )

J
(14)
21 ( 16.63 , 2.94 ) J

(14)
22 ( 16.63 , 3.17 ) J

(14)
23 ( 16.63 , 0.89 ) J

(14)
24 ( 20.92 , 3.20 )

Aid Site 15 (17 jobs)

J
(15)
1 ( 1.39 , 0.01 ) J

(15)
2 ( 1.39 , 0.06 ) J

(15)
3 ( 1.39 , 0.07 ) J

(15)
4 ( 3.85 , 0.09 )

J
(15)
5 ( 3.85 , 0.01 ) J

(15)
6 ( 3.85 , 0.08 ) J

(15)
7 ( 5.42 , 0.06 ) J

(15)
8 ( 6.20 , 0.02 )

J
(15)
9 ( 11.03 , 0.11 ) J

(15)
10 ( 13.52 , 0.07 ) J

(15)
11 ( 15.33 , 0.05 ) J

(15)
12 ( 15.33 , 0.11 )

J
(15)
13 ( 15.33 , 0.08 ) J

(15)
14 ( 20.84 , 0.05 ) J

(15)
15 ( 20.84 , 0.10 ) J

(15)
16 ( 20.84 , 0.06 )

J
(15)
17 ( 20.84 , 0.07 )

Aid Site 16 (40 jobs)

J
(16)
1 ( 1.36 , 0.73 ) J

(16)
2 ( 2.52 , 0.92 ) J

(16)
3 ( 2.52 , 0.10 ) J

(16)
4 ( 4.21 , 0.80 )

J
(16)
5 ( 7.80 , 1.04 ) J

(16)
6 ( 13.59 , 0.36 ) J

(16)
7 ( 13.59 , 1.36 ) J

(16)
8 ( 14.34 , 1.57 )
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J
(16)
9 ( 16.74 , 1.37 ) J

(16)
10 ( 16.74 , 0.82 ) J

(16)
11 ( 16.74 , 0.45 ) J

(16)
12 ( 18.10 , 1.21 )

J
(16)
13 ( 18.10 , 0.38 ) J

(16)
14 ( 18.53 , 1.55 ) J

(16)
15 ( 19.27 , 1.01 ) J

(16)
16 ( 19.27 , 0.97 )

J
(16)
17 ( 19.91 , 0.28 ) J

(16)
18 ( 19.91 , 0.15 ) J

(16)
19 ( 21.09 , 0.41 ) J

(16)
20 ( 21.98 , 1.39 )

J
(16)
21 ( 23.04 , 1.48 ) J

(16)
22 ( 27.35 , 1.13 ) J

(16)
23 ( 27.35 , 1.18 ) J

(16)
24 ( 30.93 , 0.37 )

J
(16)
25 ( 30.93 , 0.93 ) J

(16)
26 ( 33.03 , 1.31 ) J

(16)
27 ( 33.03 , 0.65 ) J

(16)
28 ( 33.03 , 1.60 )

J
(16)
29 ( 35.61 , 0.15 ) J

(16)
30 ( 35.61 , 0.52 ) J

(16)
31 ( 36.19 , 0.83 ) J

(16)
32 ( 36.19 , 0.10 )

J
(16)
33 ( 37.91 , 1.18 ) J

(16)
34 ( 38.82 , 0.90 ) J

(16)
35 ( 40.25 , 0.86 ) J

(16)
36 ( 40.25 , 1.35 )

J
(16)
37 ( 41.53 , 1.39 ) J

(16)
38 ( 42.72 , 1.28 ) J

(16)
39 ( 44.97 , 0.52 ) J

(16)
40 ( 49.27 , 0.73 )

Aid Site 17 (27 jobs)

J
(17)
1 ( 2.77 , 1.26 ) J

(17)
2 ( 2.77 , 2.91 ) J

(17)
3 ( 3.36 , 1.49 ) J

(17)
4 ( 3.36 , 0.72 )

J
(17)
5 ( 5.54 , 1.23 ) J

(17)
6 ( 5.54 , 2.19 ) J

(17)
7 ( 10.91 , 1.74 ) J

(17)
8 ( 12.89 , 2.35 )

J
(17)
9 ( 15.00 , 3.10 ) J

(17)
10 ( 17.59 , 3.00 ) J

(17)
11 ( 19.01 , 1.67 ) J

(17)
12 ( 19.01 , 3.00 )

J
(17)
13 ( 22.13 , 0.36 ) J

(17)
14 ( 22.66 , 0.16 ) J

(17)
15 ( 22.66 , 0.95 ) J

(17)
16 ( 26.21 , 1.81 )

J
(17)
17 ( 26.21 , 1.65 ) J

(17)
18 ( 26.21 , 2.80 ) J

(17)
19 ( 27.83 , 1.68 ) J

(17)
20 ( 29.01 , 1.34 )

J
(17)
21 ( 29.87 , 1.69 ) J

(17)
22 ( 31.77 , 2.22 ) J

(17)
23 ( 31.77 , 0.05 ) J

(17)
24 ( 32.76 , 2.49 )

J
(17)
25 ( 32.76 , 0.44 ) J

(17)
26 ( 32.76 , 1.49 ) J

(17)
27 ( 32.76 , 0.80 )

Aid Site 18 (31 jobs)

J
(18)
1 ( 0.74 , 1.25 ) J

(19)
2 ( 3.45 , 0.57 ) J

(20)
3 ( 3.45 , 0.69 ) J

(21)
4 ( 5.38 , 0.26 )

J
(22)
5 ( 5.38 , 1.36 ) J

(23)
6 ( 5.38 , 1.04 ) J

(24)
7 ( 7.14 , 1.22 ) J

(25)
8 ( 7.14 , 1.33 )

J
(26)
9 ( 7.14 , 0.11 ) J

(27)
10 ( 7.14 , 1.57 ) J

(28)
11 ( 7.81 , 0.82 ) J

(29)
12 ( 7.81 , 1.25 )

J
(30)
13 ( 8.56 , 1.23 ) J

(31)
14 ( 8.56 , 1.38 ) J

(32)
15 ( 12.97 , 0.26 ) J

(33)
16 ( 16.81 , 0.76 )

J
(34)
17 ( 16.81 , 1.02 ) J

(35)
18 ( 16.81 , 1.54 ) J

(36)
19 ( 18.79 , 1.38 ) J

(37)
20 ( 20.07 , 1.48 )
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J
(38)
21 ( 21.50 , 0.96 ) J

(39)
22 ( 21.50 , 0.97 ) J

(40)
23 ( 23.55 , 1.42 ) J

(41)
24 ( 25.16 , 0.06 )

J
(42)
25 ( 25.16 , 1.47 ) J

(43)
26 ( 27.65 , 0.68 ) J

(44)
27 ( 27.65 , 0.06 ) J

(45)
28 ( 30.92 , 1.24 )

J
(46)
29 ( 32.31 , 0.26 ) J

(47)
30 ( 32.31 , 0.24 ) J

(48)
31 ( 33.68 , 1.00 )

Aid Site 19 (33 jobs)

J
(19)
1 ( 2.08 , 0.59 ) J

(19)
2 ( 3.11 , 0.82 ) J

(19)
3 ( 4.59 , 1.54 ) J

(19)
4 ( 4.59 , 2.18 )

J
(19)
5 ( 4.59 , 0.76 ) J

(19)
6 ( 5.86 , 1.06 ) J

(19)
7 ( 5.86 , 2.27 ) J

(19)
8 ( 6.38 , 1.62 )

J
(19)
9 ( 8.37 , 2.61 ) J

(19)
10 ( 8.37 , 0.54 ) J

(19)
11 ( 8.37 , 2.18 ) J

(19)
12 ( 10.94 , 1.78 )

J
(19)
13 ( 10.94 , 0.65 ) J

(19)
14 ( 10.94 , 1.25 ) J

(19)
15 ( 10.94 , 1.05 ) J

(19)
16 ( 13.51 , 1.58 )

J
(19)
17 ( 13.51 , 2.11 ) J

(19)
18 ( 15.17 , 0.28 ) J

(19)
19 ( 15.17 , 2.16 ) J

(19)
20 ( 15.17 , 2.21 )

J
(19)
21 ( 16.26 , 0.93 ) J

(19)
22 ( 17.86 , 1.13 ) J

(19)
23 ( 20.33 , 1.50 ) J

(19)
24 ( 20.33 , 1.84 )

J
(19)
25 ( 21.82 , 1.95 ) J

(19)
26 ( 28.50 , 1.99 ) J

(19)
27 ( 29.85 , 1.02 ) J

(19)
28 ( 29.85 , 1.13 )

J
(19)
29 ( 30.73 , 2.51 ) J

(19)
30 ( 31.95 , 1.51 ) J

(19)
31 ( 33.81 , 2.23 ) J

(19)
32 ( 33.81 , 0.73 )

J
(19)
33 ( 33.81 , 1.64 )

Aid Site 20 (38 jobs)

J
(20)
1 ( 1.18 , 1.51 ) J

(21)
2 ( 2.18 , 3.17 ) J

(22)
3 ( 3.99 , 6.61 ) J

(23)
4 ( 3.99 , 5.45 )

J
(24)
5 ( 3.99 , 3.11 ) J

(25)
6 ( 6.12 , 2.30 ) J

(26)
7 ( 7.40 , 0.41 ) J

(27)
8 ( 7.40 , 5.11 )

J
(28)
9 ( 7.88 , 3.49 ) J

(29)
10 ( 9.82 , 1.38 ) J

(30)
11 ( 9.82 , 2.94 ) J

(31)
12 ( 9.82 , 1.16 )

J
(32)
13 ( 9.82 , 5.18 ) J

(33)
14 ( 11.79 , 2.54 ) J

(34)
15 ( 11.79 , 6.49 ) J

(35)
16 ( 11.79 , 0.12 )

J
(36)
17 ( 11.79 , 5.71 ) J

(37)
18 ( 13.57 , 4.32 ) J

(38)
19 ( 15.55 , 3.71 ) J

(39)
20 ( 15.55 , 4.48 )

J
(40)
21 ( 15.55 , 5.01 ) J

(41)
22 ( 15.55 , 0.65 ) J

(42)
23 ( 15.55 , 6.05 ) J

(43)
24 ( 16.76 , 0.10 )

J
(44)
25 ( 16.76 , 2.03 ) J

(45)
26 ( 16.76 , 1.24 ) J

(46)
27 ( 17.28 , 6.38 ) J

(47)
28 ( 20.16 , 0.47 )

J
(48)
29 ( 20.84 , 4.00 ) J

(49)
30 ( 23.15 , 4.39 ) J

(50)
31 ( 23.15 , 4.49 ) J

(51)
32 ( 23.15 , 5.96 )
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J
(52)
33 ( 23.38 , 0.39 ) J

(53)
34 ( 23.38 , 5.63 ) J

(54)
35 ( 26.74 , 3.65 ) J

(55)
36 ( 26.74 , 4.79 )

J
(56)
37 ( 28.54 , 1.46 ) J

(57)
38 ( 30.15 , 3.74 )

Aid Site 21 (5 jobs)

J
(21)
1 ( 1.41 , 4.30 ) J

(21)
2 ( 1.41 , 0.33 ) J

(21)
3 ( 3.11 , 0.93 ) J

(21)
4 ( 3.11 , 3.49 )

J
(21)
5 ( 3.11 , 4.12 )

Aid Site 22 (46 jobs)

J
(22)
1 ( 1.57 , 0.25 ) J

(22)
2 ( 3.26 , 0.68 ) J

(22)
3 ( 3.26 , 0.91 ) J

(22)
4 ( 3.90 , 0.96 )

J
(22)
5 ( 3.90 , 0.71 ) J

(22)
6 ( 6.44 , 1.59 ) J

(22)
7 ( 6.44 , 0.21 ) J

(22)
8 ( 8.73 , 0.92 )

J
(22)
9 ( 8.73 , 0.68 ) J

(22)
10 ( 8.73 , 0.70 ) J

(22)
11 ( 12.24 , 0.24 ) J

(22)
12 ( 12.24 , 1.36 )

J
(22)
13 ( 12.24 , 0.65 ) J

(22)
14 ( 12.24 , 0.36 ) J

(22)
15 ( 12.80 , 0.00 ) J

(22)
16 ( 13.45 , 0.65 )

J
(22)
17 ( 16.57 , 1.26 ) J

(22)
18 ( 17.80 , 1.99 ) J

(22)
19 ( 17.80 , 0.10 ) J

(22)
20 ( 20.51 , 2.07 )

J
(22)
21 ( 20.51 , 0.30 ) J

(22)
22 ( 21.67 , 1.91 ) J

(22)
23 ( 23.14 , 1.83 ) J

(22)
24 ( 24.74 , 2.10 )

J
(22)
25 ( 27.14 , 0.31 ) J

(22)
26 ( 28.60 , 1.16 ) J

(22)
27 ( 28.60 , 0.93 ) J

(22)
28 ( 32.15 , 0.40 )

J
(22)
29 ( 33.09 , 1.32 ) J

(22)
30 ( 34.60 , 1.39 ) J

(22)
31 ( 34.60 , 0.49 ) J

(22)
32 ( 36.10 , 1.19 )

J
(22)
33 ( 36.10 , 2.27 ) J

(22)
34 ( 36.10 , 1.12 ) J

(22)
35 ( 36.10 , 1.59 ) J

(22)
36 ( 37.17 , 0.94 )

J
(22)
37 ( 37.67 , 0.08 ) J

(22)
38 ( 38.27 , 0.67 ) J

(22)
39 ( 39.54 , 1.84 ) J

(22)
40 ( 39.54 , 0.79 )

J
(22)
41 ( 41.13 , 0.19 ) J

(22)
42 ( 43.03 , 1.17 ) J

(22)
43 ( 43.03 , 0.84 ) J

(22)
44 ( 44.34 , 1.69 )

J
(22)
45 ( 44.34 , 1.20 ) J

(22)
46 ( 44.34 , 1.84 )

Aid Site 23 (42 jobs)

J
(23)
1 ( 1.88 , 0.43 ) J

(23)
2 ( 2.94 , 0.68 ) J

(23)
3 ( 4.47 , 0.90 ) J

(23)
4 ( 4.47 , 1.34 )

J
(23)
5 ( 5.93 , 0.71 ) J

(23)
6 ( 5.93 , 0.67 ) J

(23)
7 ( 7.85 , 1.14 ) J

(23)
8 ( 9.22 , 0.71 )

J
(23)
9 ( 9.22 , 1.31 ) J

(23)
10 ( 11.18 , 0.71 ) J

(23)
11 ( 11.18 , 0.76 ) J

(23)
12 ( 13.62 , 0.74 )
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J
(23)
13 ( 14.44 , 0.35 ) J

(23)
14 ( 18.61 , 0.13 ) J

(23)
15 ( 19.97 , 0.10 ) J

(23)
16 ( 19.97 , 1.35 )

J
(23)
17 ( 19.97 , 0.36 ) J

(23)
18 ( 23.65 , 1.31 ) J

(23)
19 ( 24.51 , 1.08 ) J

(23)
20 ( 24.87 , 1.33 )

J
(23)
21 ( 26.93 , 1.43 ) J

(23)
22 ( 28.62 , 0.21 ) J

(23)
23 ( 30.34 , 0.60 ) J

(23)
24 ( 32.96 , 1.49 )

J
(23)
25 ( 35.59 , 0.98 ) J

(23)
26 ( 37.43 , 1.37 ) J

(23)
27 ( 37.43 , 0.73 ) J

(23)
28 ( 37.79 , 0.02 )

J
(23)
29 ( 39.35 , 0.95 ) J

(23)
30 ( 39.35 , 0.35 ) J

(23)
31 ( 41.06 , 0.80 ) J

(23)
32 ( 41.06 , 1.10 )

J
(23)
33 ( 42.47 , 0.93 ) J

(23)
34 ( 44.24 , 0.90 ) J

(23)
35 ( 44.24 , 0.66 ) J

(23)
36 ( 44.24 , 0.37 )

J
(23)
37 ( 44.24 , 0.65 ) J

(23)
38 ( 46.70 , 0.02 ) J

(23)
39 ( 47.38 , 0.93 ) J

(23)
40 ( 49.37 , 1.46 )

J
(23)
41 ( 49.37 , 0.15 ) J

(23)
42 ( 50.27 , 0.05 )

Aid Site 24 (50 jobs)

J
(24)
1 ( 1.77 , 2.55 ) J

(24)
2 ( 5.87 , 4.50 ) J

(24)
3 ( 7.20 , 2.53 ) J

(24)
4 ( 7.20 , 2.23 )

J
(24)
5 ( 8.71 , 2.71 ) J

(24)
6 ( 14.04 , 0.68 ) J

(24)
7 ( 15.13 , 0.71 ) J

(24)
8 ( 16.74 , 4.69 )

J
(24)
9 ( 16.74 , 3.25 ) J

(24)
10 ( 16.74 , 1.43 ) J

(24)
11 ( 17.31 , 4.66 ) J

(24)
12 ( 19.25 , 0.31 )

J
(24)
13 ( 19.25 , 2.46 ) J

(24)
14 ( 19.77 , 3.89 ) J

(24)
15 ( 24.91 , 1.82 ) J

(24)
16 ( 24.91 , 2.16 )

J
(24)
17 ( 25.27 , 2.84 ) J

(24)
18 ( 27.25 , 4.81 ) J

(24)
19 ( 27.25 , 4.19 ) J

(24)
20 ( 27.69 , 0.37 )

J
(24)
21 ( 28.24 , 1.50 ) J

(24)
22 ( 33.16 , 2.04 ) J

(24)
23 ( 35.86 , 4.65 ) J

(24)
24 ( 35.86 , 2.26 )

J
(24)
25 ( 35.86 , 1.29 ) J

(24)
26 ( 35.86 , 3.22 ) J

(24)
27 ( 35.86 , 2.58 ) J

(24)
28 ( 38.30 , 4.84 )

J
(24)
29 ( 38.30 , 5.03 ) J

(24)
30 ( 39.66 , 4.40 ) J

(24)
31 ( 40.81 , 3.82 ) J

(24)
32 ( 40.81 , 4.00 )

J
(24)
33 ( 41.63 , 4.84 ) J

(24)
34 ( 43.61 , 0.35 ) J

(24)
35 ( 43.61 , 1.81 ) J

(24)
36 ( 43.61 , 0.02 )

J
(24)
37 ( 43.61 , 4.46 ) J

(24)
38 ( 43.61 , 2.73 ) J

(24)
39 ( 43.61 , 1.97 ) J

(24)
40 ( 43.61 , 1.22 )

J
(24)
41 ( 44.37 , 2.88 ) J

(24)
42 ( 45.34 , 1.56 ) J

(24)
43 ( 46.66 , 0.37 ) J

(24)
44 ( 49.50 , 0.46 )

J
(24)
45 ( 49.50 , 0.37 ) J

(24)
46 ( 50.59 , 2.21 ) J

(24)
47 ( 50.59 , 0.66 ) J

(24)
48 ( 50.59 , 2.38 )

J
(24)
49 ( 51.68 , 4.84 ) J

(24)
50 ( 53.40 , 1.90 )
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Aid Site 25 (23 jobs)

J
(25)
1 ( 1.99 , 0.77 ) J

(25)
2 ( 3.76 , 0.72 ) J

(25)
3 ( 3.76 , 0.44 ) J

(25)
4 ( 4.90 , 0.34 )

J
(25)
5 ( 4.90 , 0.26 ) J

(25)
6 ( 4.90 , 0.56 ) J

(25)
7 ( 4.90 , 0.01 ) J

(25)
8 ( 6.61 , 0.29 )

J
(25)
9 ( 7.91 , 0.72 ) J

(25)
10 ( 7.91 , 0.43 ) J

(25)
11 ( 8.89 , 0.37 ) J

(25)
12 ( 8.89 , 0.39 )

J
(25)
13 ( 10.49 , 0.24 ) J

(25)
14 ( 10.49 , 0.74 ) J

(25)
15 ( 12.02 , 0.77 ) J

(25)
16 ( 12.02 , 0.40 )

J
(25)
17 ( 13.01 , 0.78 ) J

(25)
18 ( 13.01 , 0.36 ) J

(25)
19 ( 13.97 , 0.33 ) J

(25)
20 ( 14.18 , 0.17 )

J
(25)
21 ( 16.18 , 0.15 ) J

(25)
22 ( 17.27 , 0.65 ) J

(25)
23 ( 17.27 , 0.57 )

Aid Site 26 (49 jobs)

J
(26)
1 ( 1.06 , 0.42 ) J

(26)
2 ( 1.06 , 0.74 ) J

(26)
3 ( 3.14 , 0.07 ) J

(26)
4 ( 3.95 , 0.80 )

J
(26)
5 ( 6.76 , 0.45 ) J

(26)
6 ( 6.76 , 0.87 ) J

(26)
7 ( 7.75 , 0.40 ) J

(26)
8 ( 9.41 , 0.34 )

J
(26)
9 ( 9.41 , 1.05 ) J

(26)
10 ( 10.17 , 0.77 ) J

(26)
11 ( 10.17 , 0.44 ) J

(26)
12 ( 12.58 , 0.11 )

J
(26)
13 ( 12.58 , 0.78 ) J

(26)
14 ( 13.95 , 0.68 ) J

(26)
15 ( 13.95 , 0.08 ) J

(26)
16 ( 14.45 , 0.13 )

J
(26)
17 ( 15.51 , 1.05 ) J

(26)
18 ( 15.51 , 0.53 ) J

(26)
19 ( 17.34 , 0.02 ) J

(26)
20 ( 19.15 , 0.06 )

J
(26)
21 ( 20.28 , 0.15 ) J

(26)
22 ( 20.28 , 0.95 ) J

(26)
23 ( 20.28 , 0.50 ) J

(26)
24 ( 23.12 , 0.60 )

J
(26)
25 ( 23.12 , 0.53 ) J

(26)
26 ( 23.12 , 0.07 ) J

(26)
27 ( 24.16 , 0.96 ) J

(26)
28 ( 24.16 , 0.31 )

J
(26)
29 ( 24.16 , 0.29 ) J

(26)
30 ( 25.64 , 0.63 ) J

(26)
31 ( 25.64 , 0.51 ) J

(26)
32 ( 29.30 , 0.39 )

J
(26)
33 ( 31.07 , 0.70 ) J

(26)
34 ( 31.07 , 1.00 ) J

(26)
35 ( 31.57 , 0.66 ) J

(26)
36 ( 32.94 , 0.30 )

J
(26)
37 ( 32.94 , 0.22 ) J

(26)
38 ( 32.94 , 0.47 ) J

(26)
39 ( 33.46 , 0.03 ) J

(26)
40 ( 33.46 , 0.93 )

J
(26)
41 ( 36.18 , 0.65 ) J

(26)
42 ( 36.18 , 0.22 ) J

(26)
43 ( 39.14 , 0.55 ) J

(26)
44 ( 39.14 , 0.06 )

J
(26)
45 ( 40.96 , 0.92 ) J

(26)
46 ( 40.96 , 0.47 ) J

(26)
47 ( 42.65 , 0.58 ) J

(26)
48 ( 42.65 , 0.60 )

J
(26)
49 ( 42.65 , 0.73 )

Aid Site 27 (39 jobs)
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J
(27)
1 ( 5.04 , 0.05 ) J

(27)
2 ( 5.04 , 0.02 ) J

(27)
3 ( 5.04 , 0.02 ) J

(27)
4 ( 5.56 , 0.01 )

J
(27)
5 ( 5.56 , 0.03 ) J

(27)
6 ( 8.26 , 0.03 ) J

(27)
7 ( 8.26 , 0.03 ) J

(27)
8 ( 10.64 , 0.01 )

J
(27)
9 ( 10.64 , 0.02 ) J

(27)
10 ( 11.44 , 0.01 ) J

(27)
11 ( 11.44 , 0.04 ) J

(27)
12 ( 12.96 , 0.02 )

J
(27)
13 ( 16.30 , 0.01 ) J

(27)
14 ( 16.30 , 0.00 ) J

(27)
15 ( 16.30 , 0.04 ) J

(27)
16 ( 19.26 , 0.02 )

J
(27)
17 ( 19.26 , 0.02 ) J

(27)
18 ( 19.92 , 0.04 ) J

(27)
19 ( 20.26 , 0.03 ) J

(27)
20 ( 22.60 , 0.03 )

J
(27)
21 ( 22.60 , 0.01 ) J

(27)
22 ( 22.60 , 0.03 ) J

(27)
23 ( 23.76 , 0.04 ) J

(27)
24 ( 25.45 , 0.03 )

J
(27)
25 ( 26.43 , 0.04 ) J

(27)
26 ( 26.86 , 0.05 ) J

(27)
27 ( 27.47 , 0.04 ) J

(27)
28 ( 27.47 , 0.01 )

J
(27)
29 ( 30.49 , 0.00 ) J

(27)
30 ( 31.87 , 0.02 ) J

(27)
31 ( 31.87 , 0.00 ) J

(27)
32 ( 33.70 , 0.02 )

J
(27)
33 ( 35.30 , 0.04 ) J

(27)
34 ( 35.30 , 0.01 ) J

(27)
35 ( 35.30 , 0.02 ) J

(27)
36 ( 36.72 , 0.02 )

J
(27)
37 ( 36.94 , 0.04 ) J

(27)
38 ( 38.65 , 0.04 ) J

(27)
39 ( 40.36 , 0.02 )

Aid Site 28 (44 jobs)

J
(28)
1 ( 0.76 , 0.60 ) J

(28)
2 ( 0.76 , 6.14 ) J

(28)
3 ( 0.76 , 6.79 ) J

(28)
4 ( 0.76 , 7.54 )

J
(28)
5 ( 2.34 , 2.67 ) J

(28)
6 ( 2.34 , 6.57 ) J

(28)
7 ( 3.82 , 4.40 ) J

(28)
8 ( 3.82 , 3.79 )

J
(28)
9 ( 6.75 , 6.71 ) J

(28)
10 ( 6.75 , 7.78 ) J

(28)
11 ( 6.75 , 0.62 ) J

(28)
12 ( 8.00 , 5.79 )

J
(28)
13 ( 9.15 , 1.92 ) J

(28)
14 ( 10.50 , 3.26 ) J

(28)
15 ( 12.87 , 2.19 ) J

(28)
16 ( 13.94 , 6.80 )

J
(28)
17 ( 14.98 , 8.14 ) J

(28)
18 ( 16.11 , 5.31 ) J

(28)
19 ( 19.59 , 5.75 ) J

(28)
20 ( 20.00 , 7.62 )

J
(28)
21 ( 21.90 , 5.62 ) J

(28)
22 ( 24.30 , 4.65 ) J

(28)
23 ( 24.30 , 3.11 ) J

(28)
24 ( 24.30 , 5.19 )

J
(28)
25 ( 24.30 , 2.97 ) J

(28)
26 ( 25.21 , 3.33 ) J

(28)
27 ( 26.85 , 3.01 ) J

(28)
28 ( 26.85 , 3.83 )

J
(28)
29 ( 28.22 , 4.11 ) J

(28)
30 ( 28.22 , 7.44 ) J

(28)
31 ( 28.22 , 1.69 ) J

(28)
32 ( 28.22 , 2.77 )

J
(28)
33 ( 28.22 , 4.69 ) J

(28)
34 ( 29.22 , 3.98 ) J

(28)
35 ( 32.25 , 2.14 ) J

(28)
36 ( 33.69 , 4.74 )

J
(28)
37 ( 33.69 , 7.18 ) J

(28)
38 ( 33.69 , 0.50 ) J

(28)
39 ( 34.85 , 3.60 ) J

(28)
40 ( 34.85 , 0.69 )

J
(28)
41 ( 34.85 , 4.60 ) J

(28)
42 ( 34.85 , 4.41 ) J

(28)
43 ( 36.51 , 6.28 ) J

(28)
44 ( 36.51 , 1.91 )
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Aid Site 29 (20 jobs)

J
(29)
1 ( 1.17 , 0.13 ) J

(29)
2 ( 1.17 , 0.08 ) J

(29)
3 ( 2.39 , 0.38 ) J

(29)
4 ( 4.19 , 0.56 )

J
(29)
5 ( 4.19 , 0.70 ) J

(29)
6 ( 4.94 , 0.67 ) J

(29)
7 ( 8.02 , 0.60 ) J

(29)
8 ( 8.02 , 0.40 )

J
(29)
9 ( 9.33 , 0.60 ) J

(29)
10 ( 9.33 , 0.81 ) J

(29)
11 ( 14.31 , 0.43 ) J

(29)
12 ( 14.31 , 0.26 )

J
(29)
13 ( 15.20 , 0.67 ) J

(29)
14 ( 16.92 , 0.20 ) J

(29)
15 ( 16.92 , 0.20 ) J

(29)
16 ( 16.92 , 0.39 )

J
(29)
17 ( 16.92 , 0.52 ) J

(29)
18 ( 18.97 , 0.52 ) J

(29)
19 ( 20.18 , 0.10 ) J

(29)
20 ( 22.37 , 0.10 )

Aid Site 30 (41 jobs)

J
(30)
1 ( 0.57 , 0.25 ) J

(30)
2 ( 2.23 , 1.00 ) J

(30)
3 ( 2.23 , 1.30 ) J

(30)
4 ( 3.37 , 1.48 )

J
(30)
5 ( 6.23 , 2.54 ) J

(30)
6 ( 6.23 , 1.28 ) J

(30)
7 ( 8.06 , 1.04 ) J

(30)
8 ( 9.85 , 2.59 )

J
(30)
9 ( 9.85 , 0.68 ) J

(30)
10 ( 9.85 , 1.73 ) J

(30)
11 ( 10.70 , 2.51 ) J

(30)
12 ( 12.40 , 1.74 )

J
(30)
13 ( 12.40 , 0.78 ) J

(30)
14 ( 13.69 , 1.38 ) J

(30)
15 ( 14.93 , 0.00 ) J

(30)
16 ( 17.47 , 2.30 )

J
(30)
17 ( 17.47 , 1.05 ) J

(30)
18 ( 19.03 , 0.78 ) J

(30)
19 ( 19.03 , 2.47 ) J

(30)
20 ( 19.03 , 1.20 )

J
(30)
21 ( 22.64 , 0.75 ) J

(30)
22 ( 22.64 , 0.22 ) J

(30)
23 ( 22.64 , 1.51 ) J

(30)
24 ( 23.87 , 0.40 )

J
(30)
25 ( 27.23 , 0.19 ) J

(30)
26 ( 27.23 , 1.51 ) J

(30)
27 ( 27.23 , 0.75 ) J

(30)
28 ( 27.23 , 0.94 )

J
(30)
29 ( 27.23 , 1.88 ) J

(30)
30 ( 33.30 , 2.23 ) J

(30)
31 ( 33.30 , 0.90 ) J

(30)
32 ( 34.73 , 2.50 )

J
(30)
33 ( 34.73 , 2.48 ) J

(30)
34 ( 34.73 , 0.54 ) J

(30)
35 ( 35.30 , 2.00 ) J

(30)
36 ( 36.31 , 1.60 )

J
(30)
37 ( 36.31 , 2.39 ) J

(30)
38 ( 37.77 , 1.57 ) J

(30)
39 ( 38.04 , 1.82 ) J

(30)
40 ( 38.87 , 1.93 )

J
(30)
41 ( 38.87 , 1.00 )

The unit delivery cost is set to be D = 5. After applying AAS to this instance, the

assignment of all jobs to 5 medical centers will be as follows.
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Medical Center 1

J
(14)
1 , J

(9)
1 , J

(9)
2 , J

(14)
2 , J

(14)
3 , J

(18)
1 , J

(1)
1 , J

(12)
1 , J

(12)
2 , J

(2)
1 , J

(26)
1 , J

(26)
2 , J

(29)
1 , J

(29)
2 ,

J
(14)
4 , J

(4)
1 , J

(4)
2 , J

(4)
3 , J

(9)
3 , J

(15)
1 , J

(15)
2 , J

(15)
3 , J

(1)
2 , J

(8)
1 , J

(13)
1 , J

(13)
2 , J

(13)
3 , J

(24)
1 ,

J
(2)
2 , J

(2)
3 , J

(14)
5 , J

(4)
4 , J

(29)
3 , J

(9)
4 , J

(26)
3 , J

(2)
4 , J

(2)
5 , J

(4)
5 , J

(4)
6 , J

(12)
3 , J

(12)
4 , J

(12)
5 ,

J
(18)
2 , J

(18)
3 , J

(15)
4 , J

(15)
5 , J

(15)
6 , J

(14)
6 , J

(14)
7 , J

(2)
6 , J

(2)
7 , J

(26)
4 , J

(4)
7 , J

(12)
6 , J

(29)
4 , J

(29)
5 ,

J
(1)
3 , J

(1)
4 , J

(29)
6 , J

(2)
8 , J

(13)
4 , J

(13)
5 , J

(13)
6 , J

(4)
8 , J

(18)
4 , J

(18)
5 , J

(18)
6 , J

(15)
7 , J

(12)
7 , J

(12)
8 ,

J
(24)
2 , J

(9)
5 , J

(2)
9 , J

(15)
8 , J

(13)
7 , J

(26)
5 , J

(26)
6 , J

(12)
9 , J

(12)
10 , J

(18)
7 , J

(18)
8 , J

(18)
9 , J

(18)
10 , J

(24)
3 ,

J
(24)
4 , J

(2)
10 , J

(26)
7 , J

(18)
11 , J

(18)
12 , J

(2)
11 , J

(2)
12 , J

(4)
9 , J

(18)
13 , J

(18)
14 , J

(24)
5 , J

(1)
5 , J

(1)
6 , J

(1)
7 ,

J
(12)
11 , J

(12)
12 , J

(2)
13 , J

(26)
8 , J

(26)
9 , J

(12)
13 , J

(1)
8 , J

(12)
14 , J

(12)
15 , J

(9)
6 , J

(9)
7 , J

(4)
10 , J

(1)
9 , J

(9)
8 ,

J
(9)
9 , J

(9)
10 , J

(9)
11 , J

(18)
15 , J

(1)
10 , J

(1)
11 , J

(4)
11 , J

(24)
6 , J

(4)
12 , J

(4)
13 , J

(9)
12 , J

(24)
7 , J

(9)
13 , J

(24)
8 ,

J
(24)
9 , J

(24)
10 , J

(18)
16 , J

(18)
17 , J

(18)
18 , J

(9)
14 , J

(24)
11 , J

(9)
15 , J

(9)
16 , J

(18)
19 , J

(18)
20 , J

(18)
21 , J

(18)
22 , J

(9)
17 ,

J
(9)
18 , J

(9)
19 , J

(18)
23 , J

(18)
24 , J

(18)
25 , J

(9)
20 , J

(18)
26 , J

(18)
27 , J

(9)
21 , J

(9)
22 , J

(18)
28 , J

(9)
23 , J

(9)
24 , J

(18)
29 ,

J
(18)
30 , J

(18)
31 , J

(9)
25 , J

(9)
26 , J

(9)
27 , J

(9)
28 , J

(9)
29 , J

(9)
30 , J

(9)
31 , J

(9)
32 , J

(9)
33 , J

(9)
34 , J

(9)
35 , J

(9)
36 ,

J
(9)
37 , J

(9)
38

Medical Center 2

J
(30)
1 , J

(28)
1 , J

(28)
2 , J

(28)
3 , J

(28)
4 , J

(22)
1 , J

(11)
1 , J

(6)
1 , J

(30)
2 , J

(30)
3 , J

(28)
5 , J

(28)
6 , J

(17)
1 , J

(17)
2 ,

J
(6)
2 , J

(22)
2 , J

(22)
3 , J

(17)
3 , J

(17)
4 , J

(30)
4 , J

(6)
3 , J

(28)
7 , J

(28)
8 , J

(22)
4 , J

(22)
5 , J

(6)
4 , J

(6)
5 , J

(17)
5 ,

J
(17)
6 , J

(30)
5 , J

(30)
6 , J

(22)
6 , J

(22)
7 , J

(6)
6 , J

(6)
7 , J

(6)
8 , J

(28)
9 , J

(28)
10 , J

(28)
11 , J

(28)
12 , J

(30)
7 , J

(11)
2 ,

J
(22)
8 , J

(22)
9 , J

(22)
10 , J

(28)
13 , J

(30)
8 , J

(30)
9 , J

(30)
10 , J

(11)
3 , J

(28)
14 , J

(30)
11 , J

(17)
7 , J

(22)
11 , J

(22)
12 , J

(22)
13 ,

J
(22)
14 , J

(30)
12 , J

(30)
13 , J

(22)
15 , J

(28)
15 , J

(17)
8 , J

(22)
16 , J

(30)
14 , J

(28)
16 , J

(30)
15 , J

(28)
17 , J

(17)
9 , J

(28)
18 , J

(22)
17 ,

J
(30)
16 , J

(30)
17 , J

(17)
10 , J

(22)
18 , J

(22)
19 , J

(17)
11 , J

(17)
12 , J

(30)
18 , J

(30)
19 , J

(30)
20 , J

(28)
19 , J

(28)
20 , J

(22)
20 , J

(22)
21 ,

J
(22)
22 , J

(28)
21 , J

(17)
13 , J

(30)
21 , J

(30)
22 , J

(30)
23 , J

(17)
14 , J

(17)
15 , J

(22)
23 , J

(30)
24 , J

(28)
22 , J

(28)
23 , J

(28)
24 , J

(28)
25 ,
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J
(22)
24 , J

(28)
26 , J

(17)
16 , J

(17)
17 , J

(17)
18 , J

(28)
27 , J

(28)
28 , J

(22)
25 , J

(30)
25 , J

(30)
26 , J

(30)
27 , J

(30)
28 , J

(30)
29 , J

(17)
19 ,

J
(28)
29 , J

(28)
30 , J

(28)
31 , J

(28)
32 , J

(28)
33 , J

(22)
26 , J

(22)
27 , J

(17)
20 , J

(28)
34 , J

(17)
21 , J

(17)
22 , J

(17)
23 , J

(22)
28 , J

(28)
35 ,

J
(17)
24 , J

(17)
25 , J

(17)
26 , J

(17)
27 , J

(22)
29 , J

(30)
30 , J

(30)
31 , J

(28)
36 , J

(28)
37 , J

(28)
38 , J

(22)
30 , J

(22)
31 , J

(30)
32 , J

(30)
33 ,

J
(30)
34 , J

(28)
39 , J

(28)
40 , J

(28)
41 , J

(28)
42 , J

(30)
35 , J

(22)
32 , J

(22)
33 , J

(22)
34 , J

(22)
35 , J

(30)
36 , J

(30)
37 , J

(28)
43 , J

(22)
36 ,

J
(22)
37 , J

(30)
38 , J

(30)
39 , J

(22)
38 , J

(30)
40 , J

(30)
41 , J

(22)
39 , J

(22)
40 , J

(22)
41 , J

(22)
42 , J

(22)
43 , J

(22)
44 , J

(22)
45 , J

(22)
46

Medical Center 3

J
(20)
1 , J

(5)
1 , J

(10)
1 , J

(10)
2 , J

(21)
1 , J

(21)
2 , J

(23)
1 , J

(25)
1 , J

(19)
1 , J

(20)
2 , J

(10)
3 , J

(23)
2 , J

(5)
2 , J

(5)
3 ,

J
(19)
2 , J

(21)
3 , J

(21)
4 , J

(21)
5 , J

(25)
2 , J

(25)
3 , J

(5)
4 , J

(20)
3 , J

(20)
4 , J

(20)
5 , J

(23)
3 , J

(23)
4 , J

(19)
3 , J

(19)
4 ,

J
(19)
5 , J

(25)
4 , J

(25)
5 , J

(25)
6 , J

(25)
7 , J

(10)
4 , J

(10)
5 , J

(5)
5 , J

(19)
6 , J

(19)
7 , J

(23)
5 , J

(23)
6 , J

(20)
6 , J

(19)
8 ,

J
(5)
6 , J

(25)
8 , J

(20)
7 , J

(20)
8 , J

(23)
7 , J

(20)
9 , J

(25)
9 , J

(25)
10 , J

(5)
7 , J

(5)
8 , J

(5)
9 , J

(5)
10 , J

(10)
6 , J

(10)
7 ,

J
(19)
9 , J

(19)
10 , J

(19)
11 , J

(25)
11 , J

(25)
12 , J

(23)
8 , J

(23)
9 , J

(20)
10 , J

(20)
11 , J

(20)
12 , J

(20)
13 , J

(5)
11 , J

(25)
13 , J

(25)
14 ,

J
(19)
12 , J

(19)
13 , J

(19)
14 , J

(19)
15 , J

(10)
8 , J

(23)
10 , J

(23)
11 , J

(20)
14 , J

(20)
15 , J

(20)
16 , J

(20)
17 , J

(25)
15 , J

(25)
16 , J

(5)
12 ,

J
(5)
13 , J

(5)
14 , J

(25)
17 , J

(25)
18 , J

(19)
16 , J

(19)
17 , J

(20)
18 , J

(5)
15 , J

(5)
16 , J

(5)
17 , J

(23)
12 , J

(25)
19 , J

(25)
20 , J

(10)
9 ,

J
(10)
10 , J

(10)
11 , J

(10)
12 , J

(23)
13 , J

(19)
18 , J

(19)
19 , J

(19)
20 , J

(10)
13 , J

(5)
18 , J

(5)
19 , J

(20)
19 , J

(20)
20 , J

(20)
21 , J

(20)
22 ,

J
(20)
23 , J

(25)
21 , J

(19)
21 , J

(10)
14 , J

(10)
15 , J

(20)
24 , J

(20)
25 , J

(20)
26 , J

(25)
22 , J

(25)
23 , J

(20)
27 , J

(5)
20 , J

(5)
21 , J

(19)
22 ,

J
(23)
14 , J

(10)
16 , J

(5)
22 , J

(5)
23 , J

(23)
15 , J

(23)
16 , J

(23)
17 , J

(20)
28 , J

(19)
23 , J

(19)
24 , J

(5)
24 , J

(20)
29 , J

(19)
25 , J

(10)
17 ,

J
(10)
18 , J

(10)
19 , J

(10)
20 , J

(20)
30 , J

(20)
31 , J

(20)
32 , J

(20)
33 , J

(20)
34 , J

(23)
18 , J

(23)
19 , J

(23)
20 , J

(10)
21 , J

(20)
35 , J

(20)
36 ,

J
(23)
21 , J

(10)
22 , J

(10)
23 , J

(10)
24 , J

(10)
25 , J

(10)
26 , J

(19)
26 , J

(20)
37 , J

(23)
22 , J

(10)
27 , J

(19)
27 , J

(19)
28 , J

(10)
28 , J

(10)
29 ,

J
(20)
38 , J

(23)
23 , J

(19)
29 , J

(19)
30 , J

(23)
24 , J

(19)
31 , J

(19)
32 , J

(19)
33 , J

(23)
25 , J

(23)
26 , J

(23)
27 , J

(23)
28 , J

(23)
29 , J

(23)
30 ,

J
(23)
31 , J

(23)
32 , J

(23)
33 , J

(23)
34 , J

(23)
35 , J

(23)
36 , J

(23)
37 , J

(23)
38 , J

(23)
39 , J

(23)
40 , J

(23)
41 , J

(23)
42

Medical Center 4

J
(27)
1 , J

(27)
2 , J

(27)
3 , J

(14)
8 , J

(14)
9 , J

(14)
10 , J

(27)
4 , J

(27)
5 , J

(14)
11 , J

(14)
12 , J

(14)
13 , J

(3)
8 , J

(6)
9 , J

(14)
14 ,
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J
(14)
15 , J

(16)
5 , J

(29)
7 , J

(29)
8 , J

(8)
2 , J

(6)
10 , J

(27)
6 , J

(27)
7 , J

(8)
3 , J

(14)
16 , J

(29)
9 , J

(29)
10 , J

(6)
11 , J

(6)
12 ,

J
(27)
8 , J

(27)
9 , J

(14)
17 , J

(14)
18 , J
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The next step is to implement SMH8 for the 5 medical centers, respectively, and the ob-

jective values are 2522.7, 1194.6, 1804.7, 1683.5 and 2015.4. Therefore, the total objective

value is 9220.9.

As the optimal result of the original value is unknown, a reference result is constructed

to evaluate the combination of AAS and SMH8. The reference result is constructed as

follows: It is assumed that there is a virtual medical center with 5 processors located at

the virtual center position of the original 5 medical centers (see Figure 8.4). Then MMH5

is implemented to solve a off-line problem with single-medical-center (the virtual one) and

multi-processors and multi-aid-sites.

It turns out that the reference value is 7495.9, which means the ratio of the above objective

value to the reference value is 1.23. Thus, the performance of the combination of AAS

and SMH8 for this instance is excellent as it exceed the average of SMH8 (see Table 4.9).
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Figure 8.4. The Locations of 30 Aid Sites and The Virtual Medical Center

The simulation is conducted for 100 instances generated randomly and the result is shown

in Figure 8.5. From the figure, the ratio of the above objective value to the reference value

dose not exceed 1.55. Actually, the average of the ratio is 1.29, which indicates that AAS

along with SMH8 can perform well for the normal cases.
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Figure 8.5. The Case Study Result for D = 5

Similar simulations are made for D = 25 and D = 50 (see Figures 8.6 and 8.7). It can

be seen that the averages of the ratios are 1.43 and 1.56, respectively. Although the ratio

gets larger as D increases, the result is still acceptable. The reason for the ratio getting

larger is that the increase of D result in bad cases for SMH8, which can achieve 2 (the

lower bound of SMP8) for the worst case. When D gets too large, the delivery part will

be the main part and the problem will degenerate to the single medical center case, which

can be solved by SMH8 without AAS. This means that AAS with SMH8 does not need

to deal with the problem with a large D.
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Figure 8.6. The Case Study Result for D = 25
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8.6 Concluding Remarks

In this chapter, a case study to apply the developed algorithms for a real world problem of

medical resources allocation was presented. The problem has a scale of practical situations.

A policy to assign jobs to medical centers was proposed and it can achieve an excellent

result by combining it with the on-line algorithm SMH8. It is noted that all the algorithms

developed in this thesis have a similar structure, and therefore, their scalability should be

similar to that of SMH8. Therefore, one can con conclude the work described in this thesis
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to the topic of supply chain scheduling can be applied not only to many manufacturing

problems in practice but also to many emergency management problems.
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CHAPTER 9

CONCLUSIONS

9.1 Overview and Contributions

Supply chain scheduling has gained a great popularity in the recent years as the globaliza-

tion of manufacturing develops rapidly. This thesis studied the supply chain scheduling

problem of Class 2, which considers that the manufacturers and the customers are not at

the same places. This model has two main parts: processing of jobs in the manufacturer’s

site and delivery of the completed jobs to customers, which are two subsequent activities.

This thesis aimed to define particular problems of this supply chain scheduling model and

solve them. After having discussed the background and literature in related research field,

three types of problems in terms of different configurations of machines and customers

were defined. Algorithms for these problems were then developed along with the analysis

and simulation-based verification of the algorithms.

The three configurations considered in this thesis are (1) single-machine multi-customers,

(2) multi-machines single-customer and (3) multi-machines multi-customers. For each type

of configuration, several specific problems characterized by different release environments,

processing patterns, vehicle characteristics and delivery patterns are defined. All these

problems integrate the foregoing two activities (processing and delivery) and minimize
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both the time-based objective and cost-based objective. The methodology to deal with

the problems is: (1) investigate the intractability of problems based on the complexity

analysis (off-line) and competitive analysis (on-line); (2) develop algorithms according to

different structures of problems; (3) examine the performance by the worst case analysis;

(4) verify the effectiveness and the efficiency of algorithms from the simulation; (5) dis-

cuss the robustness and the resilience of algorithms; (6) implement the algorithms for the

realistic situations in emergency management (EM).

There are several scientific merits with the study presented in this thesis. (1) in all the

problem models, the time associated with individual customers is optimized separately,

which hits the ultimate goal of manufacturing and service, namely customers satisfaction.

(2) the challenge of the supply chain scheduling problem with multiple customers (two

customers in particular) and limited capacity of delivery tools is tackled by proving the

presence of the optimal algorithm. (3) There is a finding of two new measures for schedul-

ing algorithms, namely robustness and resilience. They seem to be supplemental to the

traditional measure (which is essentially based on the performance of algorithms), as the

real world problem such as scheduling problem is never perfect and there are always some

structural and/or parameter uncertainties.

The study presented in this thesis has a very high potential value for applications. The

on-line scheduling problem appears in many occasions in manufacturing and service busi-

nesses. It also occurs in micro-systems (e.g., computing resources scheduling in embedded

systems) and macro-systems (e.g., service resources scheduling in network systems). The
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case study presented in Chapter 8 is an example of the applications in macro-systems.

The following conclusions can be drawn from the study presented in the thesis:

(1) All the algorithms developed in this thesis have high effectiveness and high efficiency

for both the worst scenarios and normal scenarios. Table 9.1 gives a summary of the

results of all the algorithms developed in this thesis.

(2) All the algorithms developed in this thesis have a good sense of robustness and

resilience, which are first defined in this thesis.

(3) The work can be extended to deal with the more realistic situations in practice.

Table 9.1. Results of Algorithms for All Problems

Problem Intractability Algorithm Analysis

SMP1 –
SMH1

SA SMH1

Exact Algorithm

SA

SMP2 lower bound: 2 SMH2
competitive ratio: 2 (k = 2)

competitive ratio: 2 + 2
27

(k = 3)

SMP3
NP-hard (k = 2)

SNP-hard (general k)

SMH3

SA SMH3

K2SMH3 (k = 2)

2-approximate

SA

approximation ratio: 4
3

SMP4 lower bound: 2 SMH4 2 + 1
2
-competitive (k = 2)

SMP5 SNP-hard SMH5 GA

SMP6 lower bound: 2 SMH6 competitive ratio: 2 (k = 2)

continued on next page

253



Table 9.1. Results of Algorithms for All Problems (continued)

Problem Intractability Algorithm Analysis

SMP7 SNP-hard SMH7 GA

SMP8 lower bound: 2 SMH8 2 + 1
2
-competitive (k = 2)

MSP1
lower bound: max{1+

θ, 1 +
√

D
T+D
}

MSH1
competitive ratio:

max{1 + θ, 1 +
√

D
T+D
}

MSP2 lower bound: 2 MSH2 competitive ratio: 2

MSP3
lower bound: max{1 + θ, 1+√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

}
MSH3 competitive ratio: 2

MSP4
lower bound: max{1 + θ, 1+√

D
T+D
−

√
D(T+D)

(C−1)
√
D(T+D)+T+D

}
MSH4

max{3
2

+ θ,

3
2

+
√

D
T+D
}-competitive

MSP5
lower bound:

max{1 + θ, 2− 1
C
}

MSH5 competitive ratio: 2

MMP1 NP-hard MMH1 –

MMP2 lower bound: 2 MMH2 –

MMP3 SNP-hard MMH3 –

MMP4 lower bound: 2 MMH4 –

MMP5 SNP-hard MMH5 –

MMP6 lower bound: 2 MMH6 –

MMP7 SNP-hard MMH7 –

MMP8 lower bound: 2 MMH8 –
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9.2 Future Work

First, several challenges of the on-line problems need to be resolved: (1) optimal algo-

rithms for the number of customers more than two are still hard to be developed; (2)

different machine configurations should be of interest and need to be addressed; (3) more

complex situations with constraints on the transportation network should be of interest

and need to be addressed.

Second, scheduling on the holistic supply chain or network needs to be studied. The con-

cept of the holistic supply network was first elaborated in the thesis of Muddada [2010],

and the first paper on this concept refers to [Wang et al., 2013a]. The feature with the

holistic supply network is that (a) the configuration of a supply chain is dynamic and (b)

several supply chains may cross-link.

Third, the mathematical model for the robustness of algorithms need to be constructed.

This thesis presented a qualitative analysis for the robustness of algorithms but not a

quantitative measurement. The mathematical model to measure the robustness in engi-

neering system should be extended into the algorithm design field. A system is divided into

two levels: infrastructure and substance [Wang, 2013]. The infrastructure system refers

to the machine system in the context of production, and the substance system refers to

the job which ”flow” over the machine. Noises may present on the infrastructure system

and/or the substance system. Operations are applied on both the infrastructure system

and substance system. Operations are based on the plan and schedule. Therefore, the

measure of the robustness of a schedule should be a deviation of the performance of the
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system (I-S system) when the system has noise. Suppose that a underlying system has a

target to achieve. Then, the performance of the operation is the closeness of the output

of the system with respect to the target, which may be denoted by P = ‖A − T‖, where

A: output; T : target; P : performance. Let δ denote the noise. Then the robustness

may be measured by how large δ can go given P ≤ O(P ), max δ|P≤O(P ), where O(P ) is

the tolerance of P . If the performance satisfaction refers to the convergence of O → T ,

then the robustness may be measured by the largest δ to have O → T , max δ|O→T . If

the performance satisfaction is that the performance should satisfy X under the worst

scenario, then the robustness is max δ|worst scenario satifies X . The above shows some idea

of the robustness of a schedule beyond the worst case performance, and these ideas may

be interesting to be closely examined, as they are close to the real situations.

Fourth, the mathematical model for resilience of algorithms should also be studied. With

respect to the I-S architecture of the supply chain system, the resilience of a schedule is

the ability of a schedule to recover from a disruption which could be on the infrastructure

system and/or the substance system [Wang, 2013; Zhang and Lin, 2010]. The resilience of

a schedule is thus examined from two angles: the performance and the disruption. There

are two general types of disruptions: the infrastructure and the substance. The perfor-

mance has three types as mentioned before: Suppose the disruption can be measured by

something called Y . Then, the resilience of a schedule can be expressed by max Y |P≤O(P ),

max Y |O→T and max Y |worst scenario. The Y needs to be studied in future. In [Wang,

2013], the Y is defined as the cost and/or time to re-balance the supply and demand.
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Last, for the problems with more than two activities (Class 3), the systematic analysis of

the performance and property of algorithms is needed, as the literature has shown that

analytical results are almost for the first two classes. Though this has something to do

with the complexity of these problems, still more accurate results of scheduling are desired.

This means to study algorithms for trade-off between accuracy and efficiency through the

exploration of the properties of the problems (and thus heuristics).
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Lee, C.-Y., Çetinkaya, S., and Jaruphongsa, W., A Dynamic Model for Inventory Lot

Sizing and Outbound Shipment Scheduling at a Third-Party Warehouse, Oper. Res.,

vol. 51, no. 5, pp. 735-747, 2003.

Lee, I. S. and Yoon, S. H., Coordinated Scheduling of Production and Delivery Stages

with Stage-dependent Inventory Holding Costs, Omega, 38(6) (2010) 509-521.

265



Lee, K., Choi, B.-C., Leung, J. Y.-T., Pinedo, M. L., and Briskorn, D., Minimizing The

Total Weighted Delivery Time in Container Transportation Scheduling, Nav. Res. Log.,

59(3-4) (2012) 266-277.

Lee, K., Lei, L., and Dong, H., A Solvable Case of Emergency Supply Chain Scheduling

Problem with Multi-stage Lead Times, JOSCM, vol. 11, no. 2, pp. 30-45, 2013.

Li, C.-L. and Ou, J., Machine Scheduling with Pickup and Delivery, Nav. Res. Log., vol.

52, no. 7), pp. 617-630, 2005.

Li, C.-L. and Ou, J., Coordinated Scheduling of Customer Orders with Decentralized

Machine Locations, IIE Trans., vol. 39, no. 9, pp. 899-909, 2007.

Li, C.-L., Vairaktarakis, G., and Lee, C.-Y., Machine Scheduling with Deliveries to Mul-

tiple Customer Locations, Eur. J. Oper. Res., vol. 164, no. 1, pp. 39-51, 2005.

Li, S. and Li, M., Integrated Production and Distribution Scheduling Problems Related

with Fixed Delivery Departure Dates and Number of Late Orders, . Inequal. Appl.,

(Online), DOI: 10.1186/1029-242X-2014-409, 2014.

Li, Q., Zhang, W. J., and Chen, L., Design for Control (DFC): a Concurrent Engineering

Approach for Mechatronic System Design, IEEE/ASME Trans. Mechatron., vol. 6, no.

2, pp. 161-169, 2001.

Li, S., Yuan, J., and Fan, B., Unbounded Parallel-batch Scheduling with Family Jobs and

Delivery Coordination, Inform. Process. Lett., vol. 111, no. 12, pp. 575-582, 2011.

Lim, G. J., Zangeneh, S., Baharnemati, M. R., and Assavapokee, T., A Capacitated

Network Flow Optimization Apporach for Short Notice Evacuation Planning, Eur. J.

Oper. Res., vol. 223, no. 1, pp. 234-245, 2012.

Lin, P., Lo, S. M., Huang, H. C., and Yuen, K. K., On The Use of Multi-stage Time-

varying Quickest Time Approach for Optimization of Evacuation Planning, Fire Safety

J., vol. 43, pp. 282-290, 2008.

Lipmann, M., On-line Routing, Phd thesis, Technical University of Eindhoven, 2003.

Liu, Q., Wan, L., and Wei, L., Online Scheduling on a Single Machine with Grouped

Processing Times, Discrete Dyn. Nat. Soc., (Online), Article ID 805294, 2014.

266



Mazdeh, M. M., Sarhadi, M. and Hindi, K. S., A Branch-and-bound Algorithm for Single-

machine Scheduling with Batch Delivery Minimizing Flow Times and Delivery Costs,

Eur. J. Oper. Res., vol. 183, no. 1, pp. 74-86, 2007.

Mazdeh, M. M., Shashaani, S., Ashouri, A., and Hindi, K. S., Single-machine Batch

Scheduling Minimizing Weighted Flow Times and Delivery Costs, Appl. Math. Model.,

vol. 35, no. 1, pp. 563-570, 2011.

McNaughton, R., Scheduling with Deadlines and Loss Functions, Manag. Sci., vol. 6, no.

1, pp. 1-12, 1959.

Meinecke, C. and Scholz-Reiter, B. A Heuristic for the Integrated Prodcution and Distri-

bution Scheduling Problem, IJIRSE vol. 8, no. 2, pp. 278-285, 2014.

Mor, B. and Mosheiov, G., Sheduling Problems with Two Competing Agents to Minimize

Minmax and Minsum Earliness Measures, Eur. J. Oper. Res., vol. 206, vol. 3, pp. 540-

546, 2010.

Muddada, R. R., Towards Resilient Supply Chain Networks, M.Sc. Thesis, University of

Saskatchewan, Saskatoon, Canada, 2010.

Nagel, K. and Schreckenberg, M., A Cellular Automaton Model for Freeway Traffic, J.

Phys. I France, vol. 2, pp. 2221-2229, 1992.

Ng, C. T., Cheng, T. C. E., and Yuan, J. J., A Note on The Complexity of The Problem

of Two-Agent Scheduling on A Single Machine, J. Comb. Optim., vol.12, no. 4, pp.

387-394, 2006.

Ng, C. T. and Lu, L., On-line Integrated Production and Outbound Distribution Schedul-

ing to Minimize The Maximum Delivery Completion Time, J. Sched., vol. 15, no. 3, pp.

391-398, pp. 2012.

Nong, Q. Q., Yuan, J. J., Fu, R. Y., Lin, L., and Tian, J., The Single-machine Parallel

Batching On-line Scheduling Problem with Family Jobs to Minmize Makespan, Int. J.

Prod. Econ., vol. 111, no. 2, pp. 435-440, 2008.

Ogier, R. G., Minimutn-Delay Routing in Continuous-Time Dynamic Networks with

Piecewise-Constant Capacities. Networks, vol. 18, pp. 303-318, 1988.

267



Orponen, P. and Mannila, H., On Approximation Preserving Reductions: Complete Prob-

lems and Robust Measures, Technical Report, University of Helsinki, 1990.

Otto, C. and Pipe, A., Remote, Mobile Telemedicine: The Satellite Transmission of Med-

ical Data from Mount Logan, J. Telemed. Telecare., vol. 3, suppl 1, pp. 84-85, 1997.

Pei, J., Liu, X., Pardalos, P. M., Fan, W., Wang, L., and Yang, S., Solving A Sup-

ply Chain Scheduling Problem with Non-identical Job Sizes and Release Times by

Applying A Novel Effective Heuristic Algorithm, Int. J. Syst. Sci., (Online), DOI:

10.1080/00207721.2014.902553, 2014.

Pei, J., Liu, X., Pardalos, P. M., Fan, W., Wang, L., and Yang, S., Application of An Effec-

tive Modified Gravitational Search Algorithm for The Coordinated Scheduling Problem

in A Two-stage Supply Chain, Int. J. Adv. Manuf. Technol., vol. 70, no. 1-4, pp. 335-348,

2014.

Philpott, A. B., Continuous-Time Flows in Networks, Math. Oper. Res., vol. 15, no. 4,

pp. 640-661, 1990.

Potts, C. N., Analysis of A Heuristic for One Machine Sequencing with Release Dates and

Delivery Times, Oper. Res., vol. 28, no. 6, pp. 1436-1441, 1980.

Pruhs, K., Sgall, J. and Torng, E., Handbook of scheduling: Algorithms,Models, and Per-

formance Analysis, CRC Press, 2004.

Pundoor, G. and Chen, Z.-L., Scheduling A Production-distribution System to Optimize

The Tradeoff between Delivery Tardiness and Total Distribution Cost, Nav. Res. Log.,

vol. 52, no. 6, pp. 571-589, 2005.

Qi, X., A Logistics Scheduling Model: Inventory Cost Reduction by Batching, Nav. Res.

Log., vol. 52, no. 4, pp. 312-320, 2005.

Rainey, L. B. and Andreas, T., Modeling and Simulation Support for System of Systems

Engineering Applications, John Wiley & Sons, 2015.

Rasti-Barzoki, M. and Hejazi, S. R., Minimizing The Weighted Number of Tardy Jobs

with Due Date Assignment and Capacity-constrained Deliveries for Multiple Customers

in Supply Chains, Eur. J. Oper. Res., vol. 228, no. 2, pp. 345-357, 2013.

268



Rasti-Barzoki, M., Hejazi, S. R., and Mazdeh, M. M., A Branch and Bound Algorithm to

Minimize the Total Weighed Number of Tardy Jobs and Delivery Costs, Appl. Math.

Model., vol. 37, no. 7, pp. 4927-4937, 2013.

Ray, L. R. and Stengel, R. F., Stochastic Robustness of Linear-Time-Invariant Control

Systems, IEEE Trans. Automat. Contr., vol. 36. no. 1, pp. 82-82, 1991.

Rosenberger, J., P vs. NP Poll Results, Commun. ACM, vol. 55, no. 5, pp. 10, 2012.

Sarmiento, A. M. and Nagi, R., A Review of Intergrated Analysis of Production-

distribution Systems, IIE Trans., vol. 31, no. 1, pp. 1061-1074, 1999.

Sawik, T., Coordinated supply chain scheduling, Int. J. Prod. Econ., vol. 120, no. 2, pp.

437-451, 2009.

Selvarajah, E. and Zhang, R., Supply Chain Scheduling to Minimize Holding costs with

Outsourcing, Ann. Oper. Res., vol. 217, no. 1, pp. 479-490, 2014.

Schiller, J. H., Mobile Communications (Second Edition), Addison-Wesley, 2003.

Schmitt, L. M., Theory of Genetic Algorithms II: models for genetic operators over the

string-tensor representation of populations and convergence to global optima for arbi-

trary fitness function under scaling, Theor. Comput. Sci., vol. 310, no. 1-3, pp. 181-231,

2004.

Shirvani, N. and Shadrokh, S., Coordination of a Cyclic Three-stage Supply Chain for

Fast Moving Consumer Goods, Iranian Journal of Operations Research, vol. 4, no. 2,

pp. 175-190, 2013.

Smith, W. E., Various Optimizers for Single Stage Production, Nav. Res. Log., vol. 3, no.

1-2, pp. 59-66, 1956.

Sniedovich, M., Dynamic Programming: Foundations and Principles, CRC Press, 2010.

Sørensen, J. D., Framework for Robustness Assessment of Timber Structures, Eng. Struct.,

vol. 33, no. 11, pp. 3087-3092, 2011.

Steiner, G. and Zhang, R., Approximation Algorithms for Minimizing The Total Weighted

Number of Late Jobs with Late Deliveries in Two-level Supply Chains, J. Sched., vol.

12, no. 6, pp. 565-574, 2009.

269



Steiner, G. and Zhang, R., Minimizing The Weighted Number of Tardy Jobs with Due

Date Assignment and Capacity-constrained Deliveries, Ann. Oper. Res., vol. 191, no. 1,

pp. 171-181, 2011.

Takizawa, A., Inoue, M., and Katoh, N., An Emergency Evacuation Planning Model Using

the Universally Quickest Flow, Rev. Socionetwork Strat., vol. 6, no. 1, pp. 15-28, 2012.

Tang, L., Gong, H., Liu, J., and Li, F., Bicriteria Scheduling on A Single Batching Machine

with Job Transportationand Deterioration Considerations, Nav. Res. Log., vol. 61, no.

4, pp. 269-285, 2014.

Ullrich, C. A., Supply Chain Scheduling: Makespan Reduction Potential, Int. J. logist.,

vol. 15, no. 5, pp. 323-336, 2012.

Ullrich, C. A., Integrated Machine Scheduling and Vehicle Routing with Time Windows,

Eur. J. Oper. Res., vol. 227, no. 1, pp. 152-165, 2013.

Viswanadham, N., The Past, Present, and Future of Supply-Chain Automation, IEEE

Robot. and Autom. Mag., vol. 9, no. 2, pp. 48-56, (2002).

Wan, L. and Zhang, A., Coordinated Scheduling on Parallel Machines with Batch Delivery,

Int. J. Prod. Econ., vol. 150, pp. 199-203, 2014.

Wang, D., Grunder, O., and Moudni, A. E., Using Genetic Algorithm for Lot Sizing and

Scheduling Problem with Arbitrary Job Volumes and Distinct Job Due Date Consider-

ations, Int. J. of Sys. Sci., vol. 45, no. 8, pp. 1694-1707, 2014.

Wang, G., Vakati, R. S. R., Leund, J. Y.-T., and Pinedo, M., Scheduling Two Agents with

Controllable Processing Times. Eur. J. Oper. Res., vol. 205, pp. 528-539, 2010.

Wang, J. W., Towards A Resilient Networked Service System, in the Department of Me-

chanical Engineering, Ph.D. Thesis, University of Saskatchewan, Saskatoon, Canada,

2013.

Wang, J. W., Ip, W. H., Muddada, R. R., Huang, J. L., and Zhang, W. J., On Petri Net

Implementation of Proactive Resilient Holistic Supply Chain Networks, Int. J. Adv.

Manuf. Tech., vol. 69, no. 1-4, pp. 427-437, 2013a.

270



Wang, J. W., Wang H. F., Zhang W. J., Ip, W. H., and Furuta, K., Evacuation Planning

Based on the Contraflow technique with Consideration of Evacuation Priorities and

Traffic Setup Time, IEEE Intell. Transp. Syst., vol. 14, no. 1, pp. 480-485, 2013b.

Wang, X. L. and Cheng, T. C. E., Machine Scheduling with An Availability Constraint

and Job Delivery Coordination, Nav. Res. Log., vol. 54, no. 1, pp. 11-20, 2007.

Wang, X. L. and Cheng, T. C. E., Production Scheduling with Supply and Delivery

Considerations to Minimize The Makespan, Eur. J. Oper. Res., vol. 194, no. 3, pp.743-

752, 2009a.

Wang, X. L. and Cheng, T. C. E., Logistics Scheduling to Minimize Inventory and Trans-

port Costs, Int. J. Prod. Econ., vol. 121, no. 1, pp. 266-273, 2009b.

Yamada, T., A Network Approach to A City Emergency Evacuation Planning, Int. J. Sys.

Sci., vol. 27, no. 10, pp. 931-936, 1996.

Yang, X., Scheduling with Generalized Batch Delivery Dates and Earliness Penalties, IIE

Trans., vol. 32, no. 8, pp. 735-741, 2000.

Yeung, W.-K., Choi, T.-M., and Cheng, T. C. E., Supply Chain Scheduling and Coordi-

nation with Dual Delivery Modes and Inventory Storage Cost, Int. J. Prod. Econ., vol.

132, no. 2, pp. 223-229, 2011.

Yuan, J., Soukhal, A., Chen, Y., and Lu, L., A Note on The Complexity of Flow Shop

Scheduling with Transportation Constraints, Eur. J. Oper. Res., vol. 178, no. 3, pp.

918-925, 2007.

Zdrzalka, S., Approximation Algorithms for Single-machine Sequencing with Delivery

Times and Unit Batch Set-up Times, Eur. J. Oper. Res., vol. 51, no. 2, pp. 199-209,

1991.

Zdrzalka, S., Preemptive Scheduling with Release Dates, Delivery Times and Sequence

Independent Setup Times, Eur. J. Oper. Res., vol. 76, no. 1, pp. 60-71, 1994.

Zdrzalka, S., Analysis of Approximation Algorithms for Single-machine Scheduling with

Delivery Times and Sequence Independent Batch Setup Times, Eur. J. Oper. Res., vol.

80, no. 2, pp. 371-380, 1995.

271



Zhang, W. J., Is Resilience The Destiny for Safety Management Paradigm? Presentation,

Northeastern University, China, 2007.

Zhang, W. J., Resilience Engineering, Seminar, Chinese Natural Science Foundation, 2008.

Zhang, W. J., Towards a New Paradigm of Theory for Having a Dynamic System: Oper-

ation Management Through Design (OMTD), Seminar Presentation at Shanghai Uni-

versity, China, www.homepage.usask.caw̃jz485 (publication, other), PPT, 2010.

Zhang, W. J. and Lin, Y., Principles of Design of Resilient Systems and its Application

to Enterprise Information Systems, Enterp. Inf. Syst., vol.4, no. 2, pp. 99-110, 2010.

Zhang, W. J., Liu, X., and Van Luttervelt, C. A., A New Theory, Methodology and Com-

puter Aid for Manufacuting Systems Design with Special Reference to Partner Facto-

ries Selection in Virtual Enterprises, Proceedings of Int. Conf. of World Manufacturing

Congress 97, pp. 61-66, 1997.

Zhong, W.-Y. and Lv, L.-H., Hybrid Flowshop Scheduling with Interstage Job Transporta-

tion, J. Oper. Res. Soc. China, vol. 2, no. 1, pp. 109-121, 2014.

272



APPENDIX A

LOWER BOUND FOR SMP2

Consider the performance of an arbitrary on-line algorithm H for the following instance.

For Customer i, the instance releases a job with zero processing time at time r
(i)
1 = 0, and

if the algorithm H delivers the job at time ρ
(i)
1 ≥ D, then there are no jobs coming for

customer i. Otherwise, the second job with zero processing time arrives at time r
(i)
2 = D,

and if the departure time of this job ρ
(i)
2 ≥ 2D, then there are no jobs coming, otherwise,

the third job comes at time r
(i)
3 = 2D, and so on. If the algorithm H delivers the jth

job with zero preparation time at time ρ
(i)
j ≥ jD, then there are no jobs coming, or the

(j + 1)th job with zero processing time comes at time r
(i)
j+1 = jD. The process is repeated

until at most N jobs have been released and delivered (see Figure 10.1).

If the instance at last has released and delivered l jobs for Customer i, where l < N ,

then the l jobs are delivered in l different batches and D
(i)
l = ρ

(i)
l ≥ kD. So there is

D
(i)
max(η)+TC(i)(η) = D

(i)
l (η)+lD ≥ 2lD, where η is the schedule obtained by the algorithm

H and TC(i)(η) is the delivery cost for Customer i in η. The optimal schedule delivers all

the jobs in a batch at time (l−1)D and there is D
(i)
max(opt)+TC(i)(opt) = (l−1)D+D = lD.

Therefore, D
(i)
max(η)+TC

(i)(η)

D
(i)
max(opt)+TC(i)(opt)

≥ 2.

If the instance at last has released and delivered N jobs for Customer i, the N jobs

are delivered in N batches and D
(i)
N ≥ rN = (N − 1)D. So there is D

(i)
max(η) + TC(i)(η) =

D
(i)
N (η) + ND ≥ (2N − 1)D, where η is the schedule obtained by the algorithm H and

TC(i)(η) is the delivery cost for Customer i in η. The optimal schedule delivered all

the requirements in a batch at time (N − 1)D and there is D
(i)
max(opt) + TC(i)(opt) =

(N − 1)D +D = ND. As N gets infinitely large, D
(i)
max(η)+TC

(i)(η)

D
(i)
max(opt)+TC(i)(opt)

will tend to 2.
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Figure 10.1. The Construction of Lower Bound for SMP2

Therefore, one can conclude
∑k

i D
(i)
max(η)+TC(η)∑k

i D
(i)
max(opt)+TC(i)(opt)

cannot be less than 2, which com-

pletes the proof.
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