21,292 research outputs found

    An approximation algorithm for a facility location problem with stochastic demands

    Get PDF
    In this article we propose, for any ϵ>0\epsilon>0, a 2(1+ϵ)2(1+\epsilon)-approximation algorithm for a facility location problem with stochastic demands. This problem can be described as follows. There are a number of locations, where facilities may be opened and a number of demand points, where requests for items arise at random. The requests are sent to open facilities. At the open facilities, inventory is kept such that arriving requests find a zero inventory with (at most) some pre-specified probability. After constant times, the inventory is replenished to a fixed order up to level. The time interval between consecutive replenishments is called a reorder period. The problem is where to locate the facilities and how to assign the demand points to facilities at minimal cost per reorder period such that the above mentioned quality of service is insured. The incurred costs are the expected transportation costs from the demand points to the facilities, the operating costs (opening costs) of the facilities and the investment in inventory (inventory costs). \u

    Approximation algorithms for stochastic and risk-averse optimization

    Full text link
    We present improved approximation algorithms in stochastic optimization. We prove that the multi-stage stochastic versions of covering integer programs (such as set cover and vertex cover) admit essentially the same approximation algorithms as their standard (non-stochastic) counterparts; this improves upon work of Swamy \& Shmoys which shows an approximability that depends multiplicatively on the number of stages. We also present approximation algorithms for facility location and some of its variants in the 22-stage recourse model, improving on previous approximation guarantees. We give a 2.29752.2975-approximation algorithm in the standard polynomial-scenario model and an algorithm with an expected per-scenario 2.49572.4957-approximation guarantee, which is applicable to the more general black-box distribution model.Comment: Extension of a SODA'07 paper. To appear in SIAM J. Discrete Mat

    Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under Uncertainty

    Get PDF
    In this paper we study how to optimally balance cheap inflexible resources with more expensive, reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the MinEMax model to study "build versus rent" problems. In our model different scenarios appear independently. Before knowing which scenarios appear, we may build rigid resources that cannot be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent reconfigurable but expensive resources to use across scenarios. Although computing the objective in our model might seem to require enumerating exponentially-many possibilities, we show it is well estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this objective we design algorithms that approximately-optimally balance inflexible and reconfigurable resources for several NP-hard covering problems. For example, we study variants of minimum spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate between previous demand-robust and stochastic two-stage problems

    Approximation Algorithms for Distributionally Robust Stochastic Optimization with Black-Box Distributions

    Full text link
    Two-stage stochastic optimization is a framework for modeling uncertainty, where we have a probability distribution over possible realizations of the data, called scenarios, and decisions are taken in two stages: we make first-stage decisions knowing only the underlying distribution and before a scenario is realized, and may take additional second-stage recourse actions after a scenario is realized. The goal is typically to minimize the total expected cost. A criticism of this model is that the underlying probability distribution is itself often imprecise! To address this, a versatile approach that has been proposed is the {\em distributionally robust 2-stage model}: given a collection of probability distributions, our goal now is to minimize the maximum expected total cost with respect to a distribution in this collection. We provide a framework for designing approximation algorithms in such settings when the collection is a ball around a central distribution and the central distribution is accessed {\em only via a sampling black box}. We first show that one can utilize the {\em sample average approximation} (SAA) method to reduce the problem to the case where the central distribution has {\em polynomial-size} support. We then show how to approximately solve a fractional relaxation of the SAA (i.e., polynomial-scenario central-distribution) problem. By complementing this via LP-rounding algorithms that provide {\em local} (i.e., per-scenario) approximation guarantees, we obtain the {\em first} approximation algorithms for the distributionally robust versions of a variety of discrete-optimization problems including set cover, vertex cover, edge cover, facility location, and Steiner tree, with guarantees that are, except for set cover, within O(1)O(1)-factors of the guarantees known for the deterministic version of the problem
    corecore