2,741 research outputs found

    Tightness of the maximum likelihood semidefinite relaxation for angular synchronization

    Full text link
    Maximum likelihood estimation problems are, in general, intractable optimization problems. As a result, it is common to approximate the maximum likelihood estimator (MLE) using convex relaxations. In some cases, the relaxation is tight: it recovers the true MLE. Most tightness proofs only apply to situations where the MLE exactly recovers a planted solution (known to the analyst). It is then sufficient to establish that the optimality conditions hold at the planted signal. In this paper, we study an estimation problem (angular synchronization) for which the MLE is not a simple function of the planted solution, yet for which the convex relaxation is tight. To establish tightness in this context, the proof is less direct because the point at which to verify optimality conditions is not known explicitly. Angular synchronization consists in estimating a collection of nn phases, given noisy measurements of the pairwise relative phases. The MLE for angular synchronization is the solution of a (hard) non-bipartite Grothendieck problem over the complex numbers. We consider a stochastic model for the data: a planted signal (that is, a ground truth set of phases) is corrupted with non-adversarial random noise. Even though the MLE does not coincide with the planted signal, we show that the classical semidefinite relaxation for it is tight, with high probability. This holds even for high levels of noise.Comment: 2 figure

    Natural evolution strategies and variational Monte Carlo

    Full text link
    A notion of quantum natural evolution strategies is introduced, which provides a geometric synthesis of a number of known quantum/classical algorithms for performing classical black-box optimization. Recent work of Gomes et al. [2019] on heuristic combinatorial optimization using neural quantum states is pedagogically reviewed in this context, emphasizing the connection with natural evolution strategies. The algorithmic framework is illustrated for approximate combinatorial optimization problems, and a systematic strategy is found for improving the approximation ratios. In particular it is found that natural evolution strategies can achieve approximation ratios competitive with widely used heuristic algorithms for Max-Cut, at the expense of increased computation time

    Low-rank semidefinite programming for the MAX2SAT problem

    Full text link
    This paper proposes a new algorithm for solving MAX2SAT problems based on combining search methods with semidefinite programming approaches. Semidefinite programming techniques are well-known as a theoretical tool for approximating maximum satisfiability problems, but their application has traditionally been very limited by their speed and randomized nature. Our approach overcomes this difficult by using a recent approach to low-rank semidefinite programming, specialized to work in an incremental fashion suitable for use in an exact search algorithm. The method can be used both within complete or incomplete solver, and we demonstrate on a variety of problems from recent competitions. Our experiments show that the approach is faster (sometimes by orders of magnitude) than existing state-of-the-art complete and incomplete solvers, representing a substantial advance in search methods specialized for MAX2SAT problems.Comment: Accepted at AAAI'19. The code can be found at https://github.com/locuslab/mixsa

    Approximate Graph Coloring by Semidefinite Programming

    Full text link
    We consider the problem of coloring k-colorable graphs with the fewest possible colors. We present a randomized polynomial time algorithm that colors a 3-colorable graph on nn vertices with min O(Delta^{1/3} log^{1/2} Delta log n), O(n^{1/4} log^{1/2} n) colors where Delta is the maximum degree of any vertex. Besides giving the best known approximation ratio in terms of n, this marks the first non-trivial approximation result as a function of the maximum degree Delta. This result can be generalized to k-colorable graphs to obtain a coloring using min O(Delta^{1-2/k} log^{1/2} Delta log n), O(n^{1-3/(k+1)} log^{1/2} n) colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovasz theta-function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the theta-function

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    Multireference Alignment using Semidefinite Programming

    Full text link
    The multireference alignment problem consists of estimating a signal from multiple noisy shifted observations. Inspired by existing Unique-Games approximation algorithms, we provide a semidefinite program (SDP) based relaxation which approximates the maximum likelihood estimator (MLE) for the multireference alignment problem. Although we show that the MLE problem is Unique-Games hard to approximate within any constant, we observe that our poly-time approximation algorithm for the MLE appears to perform quite well in typical instances, outperforming existing methods. In an attempt to explain this behavior we provide stability guarantees for our SDP under a random noise model on the observations. This case is more challenging to analyze than traditional semi-random instances of Unique-Games: the noise model is on vertices of a graph and translates into dependent noise on the edges. Interestingly, we show that if certain positivity constraints in the SDP are dropped, its solution becomes equivalent to performing phase correlation, a popular method used for pairwise alignment in imaging applications. Finally, we show how symmetry reduction techniques from matrix representation theory can simplify the analysis and computation of the SDP, greatly decreasing its computational cost

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples

    Approximating the Little Grothendieck Problem over the Orthogonal and Unitary Groups

    Get PDF
    The little Grothendieck problem consists of maximizing ∑ijCijxixj\sum_{ij}C_{ij}x_ix_j over binary variables xi∈{±1}x_i\in\{\pm1\}, where C is a positive semidefinite matrix. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C a dn x dn positive semidefinite matrix, the objective is to maximize ∑ijTr(CijTOiOjT)\sum_{ij}Tr (C_{ij}^TO_iO_j^T) restricting OiO_i to take values in the group of orthogonal matrices, where CijC_{ij} denotes the (ij)-th d x d block of C. We propose an approximation algorithm, which we refer to as Orthogonal-Cut, to solve this problem and show a constant approximation ratio. Our method is based on semidefinite programming. For a given d≄1d\geq 1, we show a constant approximation ratio of αR(d)2\alpha_{R}(d)^2, where αR(d)\alpha_{R}(d) is the expected average singular value of a d x d matrix with random Gaussian N(0,1/d)N(0,1/d) i.i.d. entries. For d=1 we recover the known αR(1)2=2/π\alpha_{R}(1)^2=2/\pi approximation guarantee for the classical little Grothendieck problem. Our algorithm and analysis naturally extends to the complex valued case also providing a constant approximation ratio for the analogous problem over the Unitary Group. Orthogonal-Cut also serves as an approximation algorithm for several applications, including the Procrustes problem where it improves over the best previously known approximation ratio of~122\frac1{2\sqrt{2}}. The little Grothendieck problem falls under the class of problems approximated by a recent algorithm proposed in the context of the non-commutative Grothendieck inequality. Nonetheless, our approach is simpler and it provides a more efficient algorithm with better approximation ratios and matching integrality gaps. Finally, we also provide an improved approximation algorithm for the more general little Grothendieck problem over the orthogonal (or unitary) group with rank constraints.Comment: Updates in version 2: extension to the complex valued (unitary group) case, sharper lower bounds on the approximation ratios, matching integrality gap, and a generalized rank constrained version of the problem. Updates in version 3: Improvement on the expositio

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form min⁥f(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure
    • 

    corecore