research

Approximating the Little Grothendieck Problem over the Orthogonal and Unitary Groups

Abstract

The little Grothendieck problem consists of maximizing ijCijxixj\sum_{ij}C_{ij}x_ix_j over binary variables xi{±1}x_i\in\{\pm1\}, where C is a positive semidefinite matrix. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C a dn x dn positive semidefinite matrix, the objective is to maximize ijTr(CijTOiOjT)\sum_{ij}Tr (C_{ij}^TO_iO_j^T) restricting OiO_i to take values in the group of orthogonal matrices, where CijC_{ij} denotes the (ij)-th d x d block of C. We propose an approximation algorithm, which we refer to as Orthogonal-Cut, to solve this problem and show a constant approximation ratio. Our method is based on semidefinite programming. For a given d1d\geq 1, we show a constant approximation ratio of αR(d)2\alpha_{R}(d)^2, where αR(d)\alpha_{R}(d) is the expected average singular value of a d x d matrix with random Gaussian N(0,1/d)N(0,1/d) i.i.d. entries. For d=1 we recover the known αR(1)2=2/π\alpha_{R}(1)^2=2/\pi approximation guarantee for the classical little Grothendieck problem. Our algorithm and analysis naturally extends to the complex valued case also providing a constant approximation ratio for the analogous problem over the Unitary Group. Orthogonal-Cut also serves as an approximation algorithm for several applications, including the Procrustes problem where it improves over the best previously known approximation ratio of~122\frac1{2\sqrt{2}}. The little Grothendieck problem falls under the class of problems approximated by a recent algorithm proposed in the context of the non-commutative Grothendieck inequality. Nonetheless, our approach is simpler and it provides a more efficient algorithm with better approximation ratios and matching integrality gaps. Finally, we also provide an improved approximation algorithm for the more general little Grothendieck problem over the orthogonal (or unitary) group with rank constraints.Comment: Updates in version 2: extension to the complex valued (unitary group) case, sharper lower bounds on the approximation ratios, matching integrality gap, and a generalized rank constrained version of the problem. Updates in version 3: Improvement on the expositio

    Similar works