1,603 research outputs found

    Linear Programming in the Semi-streaming Model with Application to the Maximum Matching Problem

    Get PDF
    In this paper, we study linear programming based approaches to the maximum matching problem in the semi-streaming model. The semi-streaming model has gained attention as a model for processing massive graphs as the importance of such graphs has increased. This is a model where edges are streamed-in in an adversarial order and we are allowed a space proportional to the number of vertices in a graph. In recent years, there has been several new results in this semi-streaming model. However broad techniques such as linear programming have not been adapted to this model. We present several techniques to adapt and optimize linear programming based approaches in the semi-streaming model with an application to the maximum matching problem. As a consequence, we improve (almost) all previous results on this problem, and also prove new results on interesting variants

    Parallel Algorithms for Geometric Graph Problems

    Full text link
    We give algorithms for geometric graph problems in the modern parallel models inspired by MapReduce. For example, for the Minimum Spanning Tree (MST) problem over a set of points in the two-dimensional space, our algorithm computes a (1+ϵ)(1+\epsilon)-approximate MST. Our algorithms work in a constant number of rounds of communication, while using total space and communication proportional to the size of the data (linear space and near linear time algorithms). In contrast, for general graphs, achieving the same result for MST (or even connectivity) remains a challenging open problem, despite drawing significant attention in recent years. We develop a general algorithmic framework that, besides MST, also applies to Earth-Mover Distance (EMD) and the transportation cost problem. Our algorithmic framework has implications beyond the MapReduce model. For example it yields a new algorithm for computing EMD cost in the plane in near-linear time, n1+oϵ(1)n^{1+o_\epsilon(1)}. We note that while recently Sharathkumar and Agarwal developed a near-linear time algorithm for (1+ϵ)(1+\epsilon)-approximating EMD, our algorithm is fundamentally different, and, for example, also solves the transportation (cost) problem, raised as an open question in their work. Furthermore, our algorithm immediately gives a (1+ϵ)(1+\epsilon)-approximation algorithm with nδn^{\delta} space in the streaming-with-sorting model with 1/δO(1)1/\delta^{O(1)} passes. As such, it is tempting to conjecture that the parallel models may also constitute a concrete playground in the quest for efficient algorithms for EMD (and other similar problems) in the vanilla streaming model, a well-known open problem

    Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams

    Get PDF
    We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α\alpha be the cardinality of the largest independent set. Our goal is to estimate α\alpha in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating β\beta, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating α\alpha and β\beta. For unit-length intervals, we obtain a (2+ϵ)(2+\epsilon)-approximation to α\alpha and β\beta in poly(log(n)ϵ)(\frac{\log(n)}{\epsilon}) space. We also show a matching lower bound. Combined with the 3/23/2-approximation for insertion-only streams by Cabello and Perez-Lanterno [CP15], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a (83π)\left(\frac{8\sqrt{3}}{\pi}\right)-approximation to α\alpha and β\beta in poly(log(n),ϵ1)(\log(n), \epsilon^{-1}) space, which is closely related to the hexagonal circle packing constant. We provide algorithms for estimating α\alpha for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating α\alpha and β\beta, where the parameter is the ratio of maximum to minimum interval length.Comment: The lower bound for arbitrary length intervals in the previous version contains a bug, we are updating the submission to reflect thi

    Incidence Geometries and the Pass Complexity of Semi-Streaming Set Cover

    Full text link
    Set cover, over a universe of size nn, may be modelled as a data-streaming problem, where the mm sets that comprise the instance are to be read one by one. A semi-streaming algorithm is allowed only O(npoly{logn,logm})O(n\, \mathrm{poly}\{\log n, \log m\}) space to process this stream. For each p1p \ge 1, we give a very simple deterministic algorithm that makes pp passes over the input stream and returns an appropriately certified (p+1)n1/(p+1)(p+1)n^{1/(p+1)}-approximation to the optimum set cover. More importantly, we proceed to show that this approximation factor is essentially tight, by showing that a factor better than 0.99n1/(p+1)/(p+1)20.99\,n^{1/(p+1)}/(p+1)^2 is unachievable for a pp-pass semi-streaming algorithm, even allowing randomisation. In particular, this implies that achieving a Θ(logn)\Theta(\log n)-approximation requires Ω(logn/loglogn)\Omega(\log n/\log\log n) passes, which is tight up to the loglogn\log\log n factor. These results extend to a relaxation of the set cover problem where we are allowed to leave an ε\varepsilon fraction of the universe uncovered: the tight bounds on the best approximation factor achievable in pp passes turn out to be Θp(min{n1/(p+1),ε1/p})\Theta_p(\min\{n^{1/(p+1)}, \varepsilon^{-1/p}\}). Our lower bounds are based on a construction of a family of high-rank incidence geometries, which may be thought of as vast generalisations of affine planes. This construction, based on algebraic techniques, appears flexible enough to find other applications and is therefore interesting in its own right.Comment: 20 page

    Online Directed Spanners and Steiner Forests

    Get PDF
    We present online algorithms for directed spanners and Steiner forests. These problems fall under the unifying framework of online covering linear programming formulations, developed by Buchbinder and Naor (MOR, 34, 2009), based on primal-dual techniques. Our results include the following: For the pairwise spanner problem, in which the pairs of vertices to be spanned arrive online, we present an efficient randomized O~(n4/5)\tilde{O}(n^{4/5})-competitive algorithm for graphs with general lengths, where nn is the number of vertices. With uniform lengths, we give an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3+\epsilon})-competitive algorithm, and an efficient deterministic O~(k1/2+ϵ)\tilde{O}(k^{1/2+\epsilon})-competitive algorithm, where kk is the number of terminal pairs. These are the first online algorithms for directed spanners. In the offline setting, the current best approximation ratio with uniform lengths is O~(n3/5+ϵ)\tilde{O}(n^{3/5 + \epsilon}), due to Chlamtac, Dinitz, Kortsarz, and Laekhanukit (TALG 2020). For the directed Steiner forest problem with uniform costs, in which the pairs of vertices to be connected arrive online, we present an efficient randomized O~(n2/3+ϵ)\tilde{O}(n^{2/3 + \epsilon})-competitive algorithm. The state-of-the-art online algorithm for general costs is due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP 2018) and is O~(k1/2+ϵ)\tilde{O}(k^{1/2 + \epsilon})-competitive. In the offline version, the current best approximation ratio with uniform costs is O~(n26/45+ϵ)\tilde{O}(n^{26/45 + \epsilon}), due to Abboud and Bodwin (SODA 2018). A small modification of the online covering framework by Buchbinder and Naor implies a polynomial-time primal-dual approach with separation oracles, which a priori might perform exponentially many calls. We convert the online spanner problem and the online Steiner forest problem into online covering problems and round in a problem-specific fashion

    All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method

    Get PDF
    In the weighted load balancing problem, the input is an n-vertex bipartite graph between a set of clients and a set of servers, and each client comes with some nonnegative real weight. The output is an assignment that maps each client to one of its adjacent servers, and the load of a server is then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is well-balanced, typically captured by (approximately) minimizing either the ?_?- or ??-norm of the server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for an assignment that approximately minimizes all ?_p-norm objectives for p ? 1, including p = ?, simultaneously. Our main result is a deterministic O(log n)-pass O(1)-approximation semi-streaming algorithm for the all-norm load balancing problem. Prior to our work, only an O(log n)-pass O(log n)-approximation algorithm for the ?_?-norm objective was known in the semi-streaming setting. Our algorithm uses a novel application of the multiplicative weights update method to a mixed covering/packing convex program for the all-norm load balancing problem involving an infinite number of constraints
    corecore