7 research outputs found

    Fractional Path Coloring in Bounded Degree Trees with Applications

    Get PDF
    OPTx-editorial-board=yes, OPTx-proceedings=yes, OPTx-international-audience=yesInternational audienceThis paper studies the natural linear programming relaxation of the path coloring problem. We prove constructively that finding an optimal fractional path coloring is Fixed Parameter Tractable (FPT), with the degree of the tree as parameter: the fractional coloring of paths in a bounded degree trees can be done in a time which is linear in the size of the tree, quadratic in the load of the set of paths, while exponential in the degree of the tree. We give an algorithm based on the generation of an efficient polynomial size linear program. Our algorithm is able to explore in polynomial time the exponential number of different fractional colorings, thanks to the notion of trace of a coloring that we introduce. We further give an upper bound on the cost of such a coloring in binary trees and extend this algorithm to bounded degree graphs with bounded treewidth. Finally, we also show some relationships between the integral and fractional problems, and derive a (1 + 5/3e) ~= 1.61 approximation algorithm for the path coloring problem in bounded degree trees, improving on existing results. This classic combinatorial problem finds applications in the minimization of the number of wavelengths in wavelength division multiplexing (WDM) optical networks

    Coloring Rooted Subtrees on a Bounded Degree Host Tree

    Get PDF
    We consider a rooted tree R to be a rooted subtree of a given tree T if the tree obtained by replacing the directed arcs of R by undirected edges is a subtree of T. In this work, we study the problem of assigning colors to a given set of rooted subtrees of a given host tree such that if any two rooted subtrees share a directed edge, then they are assigned different colors. The objective is to minimize the total number of colors used in the coloring. The problem is NP hard even in the case when the degree of the host tree is restricted to 3. This problem is motivated by the problem of assigning wavelengths to multicast traffic requests in all-optical tree networks. We present a greedy coloring scheme for the case when the degree of the host tree is restricted to 3 and prove that it is a 5/2-approximation algorithm. We then present another simpler coloring scheme and prove that it is an approximation algorithm for the problem with approximation ratio 10/3, 3 and 2 for the cases when the degree of the host tree is restricted to 4, 3, and 2, respectively

    Multicasting in All-Optical WDM Networks

    Get PDF
    n this dissertation, we study the problem of (i) routing and wavelength assignment, and (ii) traffic grooming for multicast traffic in Wavelength Division Multiplexing (WDM) based all-optical networks. We focus on the 'static' case where the set of multicast traffic requests is assumed to be known in advance. For the routing and wavelength assignment problem, we study the objective of minimizing the number of wavelengths required; and for the traffic grooming problem, we study the objectives of minimizing (i) the number of wavelengths required, and (ii) the number of electronic components required. Both the problems are known to be hard for general fiber network topologies. Hence, it makes sense to study the problems under some restrictions on the network topology. We study the routing and wavelength assignment problem for bidirected trees, and the traffic grooming problem for unidirectional rings. The selected topologies are simple in the sense that the routing for any multicast traffic request is trivially determined, yet complex in the sense that the overall problems still remain hard. A motivation for selecting these topologies is that they are of practical interest since most of the deployed optical networks can be decomposed into these elemental topologies. In the first part of the thesis, we study the the problem of multicast routing and wavelength assignment in all-optical bidirected trees with the objective of minimizing the number of wavelengths required in the network. We give a 5/2-approximation algorithm for the case when the degree of the bidirected tree is at most 3. We give another algorithm with approximation ratio 10/3, 3 and 2 for the case when the degree of the bidirected tree is equal to 4, 3 and 2, respectively. The time complexity analysis for both these algorithms is also presented. Next we prove that the problem is hard even for the two restricted cases when the bidirected tree has (i) depth 2, and (ii) degree 2. Finally, we present another hardness result for a related problem of finding the clique number for a class for intersection graphs. In the second part of the thesis, we study the problem of multicast traffic grooming in all-optical unidirectional rings. For the case when the objective is to minimize the number of wavelengths required in the network, given an 'a'-approximation algorithm for the circular arc coloring problem, we give an algorithm having asymptotic approximation ratio 'a' for the multicast traffic grooming problem. We develop an easy to calculate lower bound on the minimum number of electronic components required to support a given set of multicast traffic requests on a given unidirectional ring network. We use this lower bound to analyze the worst case performance of a pair of simple grooming schemes. We also study the case when no grooming is carried out in order to get an estimate on the maximum number of electronic components that can be saved by applying intelligent grooming. Finally, we present a new grooming scheme and compare its average performance against other grooming schemes via simulations. The time complexity analysis for all the grooming schemes is also presented

    Approximation Algorithms for Path Coloring in Trees

    No full text
    The study of the path coloring problem is motivated by the allocation of optical bandwidth to communication requests in all-optical networks that utilize Wavelength Division Multiplexing (WDM). WDM technology establishes communication between pairs of network nodes by establishing transmitter-receiver paths and assigning wavelengths to each path so that no two paths going through the same fiber link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. Since state-of-the-art technology allows for a limited number of wavelengths, the engineering problem to be solved is to establish communication minimizing the total number of wavelengths used. This is known as the wavelength routing problem. In the case where the underlying network is a tree, it is equivalent to the path coloring problem
    corecore