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COLORING ROOTED SUBTREES ON A
BOUNDED DEGREE HOST TREE

ANUJ RAWAT, MARK SHAYMAN, RICHARD LA AND STEVEN MARCUS∗

Abstract. We consider a rooted tree R to be a rooted subtree of a given tree T if the tree
obtained by replacing the directed arcs of R by undirected edges is a subtree of T .

In this work, we study the problem of assigning colors to a given set of rooted subtrees R of a
given host tree T such that if any two rooted subtrees share a directed edge, then they are assigned
different colors. The objective is to minimize the total number of colors used in the coloring. The
problem is NP hard even in the case when the degree of the host tree is restricted to 3. This problem
is motivated by the problem of assigning wavelengths to multicast traffic requests in all-optical tree
networks.

We present a greedy coloring scheme for the case when the degree of the host tree is restricted
to 3 and prove that it is a 5

2
-approximation algorithm. We then present another simpler coloring

scheme and prove that it is an approximation algorithm for the problem with approximation ratio
10
3

, 3 and 2 for the cases when the degree of the host tree is restricted to 4, 3 and 2 respectively.

Key words. vertex coloring, approximation algorithms, analysis of algorithms, graph algo-
rithms, rooted trees

AMS subject classifications. 05C15, 05C05, 05C85, 68W25, 68W40, 94C15

1. Introduction. Wavelength Division Multiplexing (WDM) [27, p.208-211] is
a scheme by which multiple signals can be transmitted simultaneously over a single
optical fiber by using a different wavelength of light for each signal. The extremely
high data transfer rate achievable by employing WDM, along with the low bit error
rate and delay characteristics of the optical fiber has made WDM based optical net-
works the obvious contender for the next generation high speed data communication
networks.

Using current technology, it is difficult to support the high speed data transfer
rates on the optical fibers by employing electronic switching at the intermediate nodes.
Therefore it is prudent to perform switching in the optical domain and move between
optical and electronic domains only at the sources and the destinations of the traffic
requests. This scenario in which a single lightpath is constructed between the source
and the destination is called transparent or all-optical networking. In absence of
wavelength converters, which is usually the case due to their high cost, a lightpath
must use the same wavelength on every fiber on which it exists. This is referred to as
the wavelength continuity constraint. Also, if two lightpaths share a fiber link (in the
same direction), then they must be routed on different wavelengths.

The number of traffic requests that can simultaneously be supported by a single
fiber in a WDM based optical network is equal to the number of wavelengths of
light that can be multiplexed on a fiber. Also, the higher the number of wavelengths
multiplexed, the higher is the cost of optics in the network. So a natural problem in
WDM based all-optical networks is to assign routes and wavelengths to a given set of
traffic requests such that the number of wavelengths required per fiber is minimized.

Until now most of the work on routing and wavelength assignment in WDM
based all-optical networks has concentrated on the scenario where the given traffic
requests are unicast (single source-single destination) in nature. But multicasting
(single source-multiple destinations) is an important technology which is tailor made
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2 ANUJ RAWAT

for catering to several upcoming applications such as multimedia conferencing, video
distribution, collaborative processing, etc. Therefore, studying the problem of routing
and wavelength assignment for multicast traffic in WDM based all-optical networks
is very important.

In order to maintain the transparent optics, multicasting in optical networks re-
quires nodes capable of performing light splitting [26] and tap-and-continue operations
[1]. For each multicast request, the idea is to form a single light tree from the source
to the corresponding set of destinations. The light is split and sent onto multiple
fibers on the nodes where bifurcation is required. On the intermediate nodes that
are also in the destination set, a small amount of light is tapped and used to retrieve
the data, while the rest of the light is allowed to travel through. The wavelength
continuity constraint requires that the light tree use the same wavelength on every
fiber on which it exists. In the special case when the underlying fiber network is a
tree, the routing of the light trees corresponding to the traffic requests is fixed and the
given traffic requests can be treated as rooted subtrees on the underlying fiber tree.
So the problem reduces to that of assigning wavelengths (colors) to these rooted sub-
trees such that any two rooted subtrees sharing a directed edge are assigned different
wavelengths. Now the objective of minimizing the number of wavelengths required
per fiber is equivalent to minimizing the number of colors used for coloring the set of
rooted subtrees (in the sense described above).

The rest of the paper is organized as follows. In the remainder of this section, we
review the related literature, present the notation followed in the paper and describe
in detail the problem that we shall study. In section 2, we present our greedy based
scheme for coloring a given set of rooted subtrees of a host tree with degree 3, and
prove that the scheme is a 5

2 -approximation algorithm. We also discuss the time
complexity of the scheme. Then in section 3 we present another coloring scheme
which is applicable in the case where the degree of the host tree is less than or
equal to 4. We analyze the coloring scheme and prove that it is an approximation
algorithm with approximation ratio 10

3 , 3 and 2 for the cases when the degree of the
host tree is 4, 3 and 2 respectively. As before, we also discuss the time complexity
of the scheme. Finally we conclude the paper in section 4 with some remarks on
the difference between the problem of coloring rooted subtrees and the related (and
extensively studied) problem of coloring directed paths in a tree.

1.1. Related Work. The work that is most closely related to the problem of
coloring a given set of rooted subtrees of a tree, consists of the following:

(i) Coloring a given set of undirected paths on a tree.
(ii) Coloring a given set of directed paths on a tree.
(iii) Coloring and characterization of a given set of subtrees of a tree.

Our contribution can be seen as the next logical step in this series of works.

In [14], Golumbic et al. proved that determining a minimum coloring for a given
set of undirected paths on a tree is NP hard in general. They showed that undirected
path coloring in stars is equivalent to edge coloring in multigraphs. Since edge coloring
is NP hard [19], undirected path coloring in stars is also NP hard. In fact, as observed
in [11], this equivalence result has several important implications:

(i) Undirected path coloring is solvable in polynomial time in bounded degree
trees.

(ii) Undirected path coloring is NP hard for trees of arbitrary degrees (even
with diameter 2, i.e., even for stars).

(iii) Any approximation algorithm for edge coloring in multigraphs can be trans-
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formed into an approximation algorithm for undirected path coloring in trees and vice
versa with the same approximation ratio.

(iv) Approximating undirected path coloring in trees of arbitrary degree with an
approximation ratio 4

3 − ǫ for any ǫ > 0 is NP hard.
In [33], Tarjan introduced a 3

2 -approximation algorithm for coloring a given set of
undirected paths in a tree. Later, this ratio was rediscovered by Raghavan and Upfal
[31] in the context of optical networks. Mihail et al. [28] presented a coloring scheme
with an asymptotic approximation ratio of 9

8 . Nishizeki et al. [29] presented an
algorithm for edge coloring multigraphs with an asymptotic approximation ratio of
1.1 and an absolute approximation ratio of 4

3 . This improves the asymptotic and
the absolute approximation ratio of undirected path coloring in trees to 1.1 and 4

3
respectively.

In [9], Erlebach et al. proved that coloring a given set of directed paths in trees is
NP hard. The hardness result holds even when we restrict instances to arbitrary trees
and sets of directed paths of load 3 or to trees with arbitrary degree and depth 3 [24].
Here by load of a set of directed paths, we mean the maximum number of directed
paths in the set that share a directed edge. For this problem, Mihail et al. [28] gave
a 15

8 -approximation algorithm. This ratio was improved to 7
4 in [22] and [25], and

finally to 5
3 in [23]. All these are greedy, deterministic algorithms and use the load of

the given set of directed paths as the lower bound on the number of colors required.
In [23], Kaklamanis et al. also proved that no greedy, deterministic algorithm can
achieve a better approximation ratio than 5

3 . Later, in [11], Erlebach et al. proved
that approximating directed path coloring with an approximation ratio 4

3 − ǫ for any
ǫ > 0 is NP hard.

Unlike its undirected counterpart, Erlebach et al. [10] proved by a reduction
from circular arc coloring that the problem of coloring directed paths is NP hard
even in binary trees. In [25], Kumar et al. gave a problem instance where the given
set of directed paths on a binary tree of depth 3 having load l requires at least 5

4 l
colors. Caragiannis et al. [4] and Jansen [21] gave simple algorithms for the directed
path coloring problem in binary trees having approximation ratio 5

3 (the same as the
approximation ratio for problem on general trees). In [2], Auletta et al. presented a
randomized greedy algorithm for coloring a given set of directed paths of maximum
load l in binary trees of depth O(l

1
3−ǫ) that uses at most 7

5 l + o(l) colors. They also
proved that with high probability, randomized greedy algorithms cannot achieve an
approximation ratio better than 3

2 when applied for binary trees of depth Ω(l), and
1.293− o(1) when applied for binary trees of constant depth. Moreover they proved
that an existential upper bound of 7

5 l+ o(l) holds on any binary tree.
Note that for a set of undirected paths (subtrees) of a tree, we can define a

corresponding conflict graph such that each vertex of the conflict graph represents one
undirected path (subtree) from the given set and there is an edge between two vertices
of the conflict graph if and only if the corresponding undirected paths (subtrees)
share some edge. Now the problem of assigning colors to the set of undirected paths
(subtrees) is equivalent to the problem of coloring the vertices of the conflict graph.1

In [20] Jamison et al. proved that the conflict graphs of subtrees in a binary tree
are chordal [12], and therefore easily colorable [13]. In [15] Golumbic et al. proved
that the conflict graphs (obtained as described above) of undirected paths on degree
4 trees are weakly chordal [17], therefore coloring them is easy [18]. Later, in [16],
they extended the result to the conflict graph of subtrees on degree 4 trees.

1We can construct similar conflict graphs for directed path and rooted subtree coloring also.
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For an extensive compilation of complexity results on both directed and undi-
rected paths in trees from the perspective of optical networks, the reader is referred
to [24] and [11]. And for a survey of algorithmic results, the reader is referred to [5],
[6] and [7].

Ours is the first work to study the problem of coloring rooted subtrees of a tree
(which may be seen as the directed counterpart of the problem of coloring subtrees of
a tree).

1.2. Notation. In this section we shall state the recurring notations and as-
sumptions used in this work. This is not a comprehensive list and we introduce more
notations in the text as and when required. For quick reference a list of important
symbols is also provided as Table 1.1.

We denote the cardinality of a finite set S by |S|. For real valued x, by [x]+

we denote max{x, 0}. Unless otherwise stated, we assume that all the graphs are
undirected. We denote the vertex set and the edge set of a graph G by VG and
EG respectively. We denote the degree of a vertex v in graph G by δG(v) and the
degree of the graph, which is equal to maxv∈VG

δG(v), by ∆G. We denote the set of
vertices and the set of arcs of a directed graph D, by VD and AD respectively. In
this case, we denote the indegree and the outdegree of any vertex v ∈ VD by δiG(v)
and δoG(v) respectively. We denote the complement of graph G by Ḡ. So according
to the above notation VḠ = VG and EḠ = {uv|u, v ∈ VG, uv /∈ EG}. For graph G,
we denote the subgraph of G induced by vertex set W ⊆ VG by G[W ]. Similarly we
denote the subgraph of G induced by edge set F ⊆ EG by G[F ]. So VG[W ] = W ,
EG[W ] = {uv|u, v ∈ W,uv ∈ EG} and EG[F ] = F , VG[F ] = {v|∃uv ∈ F}. We denote
the underlying multigraph of a directed graph D by UD. This means that UD is
an undirected multigraph having vertex set VUD

= VD and its edge multiset EUD
is

constructed by replacing each directed arc −→uv ∈ AD by undirected edge uv.
Let N denote the set of natural numbers. Then for graphG, a valid vertex coloring

is a map ψ : VG −→ N such that for any pair of vertices u, v ∈ VG, if uv ∈ EG then
ψ(u) 6= ψ(v). The color of vertex v ∈ VG according to coloring ψ is given by ψ(v).
Extending the notation, we denote the set of colors assigned to vertex set W ⊆ VG
accoring to coloring ψ, by ψ(W ). So the total number of colors used by vertex coloring
ψ is |ψ(VG)|. We denote the set of all valid vertex colorings for graph G by ΨG. A
minimum vertex coloring of graph G is a valid vertex coloring ψ∗ ∈ ΨG such that
|ψ∗(VG)| = minψ∈ΨG

|ψ(VG)|. The number of colors used in any minimum vertex
coloring of graph G is called the chromatic number of G and is denoted by χG.

Directed graph R is said to be a subtree of tree T rooted at vertex r ∈ VR, if (i)
the underlying multigraph is a subtree of tree T , i.e. UR ≡ T [VR], and (ii) indegree
of each vertex of R is given by

δiR(v) =

{

1 if v ∈ VR \ r,
0 if v = r.

In case root vertex r is not important for discussion, R is simply said to be a rooted
subtree of tree T .

1.3. Problem Definition. Let T be a given tree and R = {R1, . . . , R|R|} be a
given multiset2 of rooted subtrees of the tree. We shall refer to tree T as the host tree.
Rooted subtree R is said to be present on host tree edge e if e ∈ EUR

. We denote

2From now onwards, for ease of exposition, we shall use the term set even though the object
being referred to might be a multiset.
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Table 1.1

List of Important Symbols

Symbol Description

|S| cardinality of finite set S
[x]+ max{x, 0} for real valued x

VG set of vertices of (directed or undirected) graph G
EG set of edge of graph G
AG set of arcs of directed graph D
δG(v) degree of vertex v in graph G
∆G degree of graph G
δi
D

(v) indegree of vertex v in directed graph D
δo
D

(v) outdegree of vertex v in directed graph D
Ḡ complement of graph G
G[S] subgraph of graph G induced by edge set S ⊆ EG (vertex set S ⊆ VG)
UD underlying multigraph of directed graph D
N set of natural numbers

ψ(W )
set of colors assigned to vertices in the set W ⊆ VG

accoring to coloring ψ : VG −→ N

ΨG set of all valid vertex colorings for graph G
χG chromatic number of graph G
ωG clique number of graph G
T given host tree
R given multiset of rooted subtrees

R[e] set of all rooted subtrees in R that are present on host tree edge e
R[−→uv] set of all rooted subtrees in R that contain arc −→uv
R[v] set of all rooted subtrees in R that are present on host tree vertex v
GT,R conflict graph of the set of rooted subtrees R of host tree T
UR set of underlying subtrees of rooted subtrees in set R

GT,UR conflict graph of the set of subtrees UR of host tree T

ψ(1) coloring generated by Algorithm 1
Qi set of rooted subtrees to be colored in the i-th round in Algorithm 1
Pi set of rooted subtrees colored in the first i rounds in Algorithm 1
ei host tree edge to be processed in the i-th round in Algorithm 1
Ei set of host tree edges processed in first i rounds in Algorithm 1

l
T,R
uv load of the set of rooted subtrees R at host tree edge uv
lT,R load of the set of rooted subtrees R on the host tree T
mT

S
size of maximum matching in ḠT,S

MB a maximum matching in bipartite graph B

the subset of all the given rooted subtrees present on host tree edge e by R[e], i.e.,
R[e] = {R ∈ R|e ∈ EUR

}. More specifically, we define R[−→uv] = {R ∈ R|−→uv ∈ AR}.
Following a similar notation, we denote the subset of all the given rooted subtrees that
contain host tree vertex v by R[v], i.e., R[v] = {R ∈ R|v ∈ VR}. Note that for any
host tree edge uv, sets R[−→uv] and R[←−uv] partition3 the set R[uv]. Two rooted subtrees
Ri, Rj of host tree T are said to collide (or conflict) on host tree edge uv ∈ ET if
−→uv ∈ ARi

⋂

ARj
or ←−uv ∈ ARi

⋂

ARj
. In this case we say that Ri, Rj collide (or

conflict). We define the conflict graph of given set of rooted subtrees R of host tree
T to be GT,R, where vertex set VGT,R = {n1, . . . , n|R|} represent the rooted subtrees
and there is an edge ninj ∈ EGT,R if and only if the corresponding rooted subtrees
Ri, Rj collide. It should be clear that for any subset P ⊆ R of the rooted subtrees,
the conflict graph GT,P is the subgraph of conflict graph GT,R induced by the vertices
corresponding to the rooted subtrees in set P .

The problem of interest is to determine ψ∗ ∈ ΨGT,R , a minimum vertex coloring

3Sets A0, . . . , AK are said to partition set A if
SK

i=0Ai = A and Ai

T

Aj = ∅ for every i 6= j

where i, j ∈ {0, . . . ,K}. In this case sets A0, . . . , AK are referred to as the partitions of set A.
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for the conflict graph GT,R of a given set of rooted subtrees R of a given host tree T .
Note that since there is a bijection between R and VGT,R , we can equivalently define
the vertex coloring of GT,R to be a mapping ψ : R −→ N such that if Ri, Rj collide
(i.e., if there is edge ninj ∈ EGT,R), then ψ(Ri) 6= ψ(Rj). We shall interchangeably
use both the vertex set VGT,R and the set of rooted subtrees R to be the domain of
coloring ψ. This should not create any confusion since both are equivalent.

In this piece of work we shall look at the restricted problem where the host tree
T has bounded degree, i.e., ∆T ≤ d for some fixed value of d. In particular we shall
study the problem when d ∈ {3, 4}. As already stated in section 1.1, the problem is
hard for both these values of d.

2. Greedy Coloring Scheme (∆T = 3). In this section, we present and ana-
lyze a simple greedy strategy for coloring a given set of rooted subtrees R on a given
host tree T with degree ∆T ≤ 3. We prove that the scheme is a 5

2 -approximation
algorithm.

2.1. Greedy Algorithm. The algorithm proceeds in rounds. In each round we
select and process a host tree edge which has not been selected in any of the previous
rounds. Processing a host tree edge means assigning colors to all the uncolored rooted
subtrees present on that edge. The key steps are the order in which the host tree edges
are traversed for processing and the policy used to color the uncolored rooted subtrees
present on the edge being processed.

The complete scheme is given as Algorithm 1 (GreedyColor). We denote the
coloring generated by the scheme by ψ(1).

2.1.1. Edge Order. We traverse the edges in a breadth-first manner, i.e., start-
ing with an arbitrary vertex r ∈ VT as root, we perform a Breadth First Search (BFS)
and rank the tree edges in the order of their discovery and then process the edges in
this order. In this section, we shall assume that the set of edges ET in the order of
enumeration is {e1, . . . , e|ET |}. Note that this edge ordering is not unique, but the
coloring scheme relies only on the fact that the ordering is obtained via some BFS.
Clearly the algorithm involves exactly |ET | rounds. In the i-th round of Algorithm
1, edge ei is processed, i.e., colors are assigned to all the uncolored rooted subtrees
present on ei.

2.1.2. Coloring Strategy. We denote the set of rooted subtrees that are colored
in the first i rounds of coloring in Algorithm 1 by Pi. We let P0 = ∅. The set of rooted
subtrees present on edge ei but not in the set Pi, is denoted by Qi, i.e., Qi = R[ei]\Pi.
Note that Qi is the set of rooted subtrees that are colored in the i-th round of coloring.

The basic idea is to be greedy in each round of coloring in the sense that we
try to use as few new colors as possible while processing each host tree edge, i.e., in
i-th round, we try to color rooted subtrees in the set Qi using as few new colors as
possible. Note that the coloring is constructive in the sense that once a color has been
assigned to any rooted subtree, it is never changed.

The actual coloring scheme followed in the i-th round of coloring depends on
the type of edge ei being processed. According to Lemma 2.3 below, tree edge ei
encountered during the i-th round of coloring in Algorithm 1 can be classified into
one of the four types (defined in the lemma) based on the status (whether already
processed or not) of its adjacent tree edges. If edge ei is of type (i), (ii) or (iii) as
defined in Lemma 2.3, then uncolored rooted subtrees are randomly selected from the
set Qi one at a time and are assigned colors greedily. In more detail, suppose rooted
subtree R has been selected from the set Qi for coloring. If there is a color that has
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Algorithm 1 GreedyColor

Require: Host tree T with ∆T ≤ 3. Set of rooted subtrees R on tree T .
Ensure: A valid vertex coloring ψ ∈ ΨGT,R .

/* For ease of exposition we treat ψ as an integer array where ψ[i] = ψ(Ri) for
each i ∈ {1, . . . , |R|}. */

1: Perform a BFS on tree T starting with an arbitrary vertex r ∈ VT as the root
and enumerate the tree edges in the order of their discovery. Let {e1, . . . , e|ET |}
be the ordered set of edges ET .

2: P0 ← ∅
3: for i = 1 to |ET | do
4: Qi ←R[ei] \ Pi−1

5: if edge ei = uv is of type (iv) as defined in Lemma 2.3 then
6: Let ψ1, ψ2 ∈ ΨGT,Qi

S

Pi−1

7: ψ1[j], ψ2[j]← ψ[j] for each j such that Rj ∈ Pi−1 (unassigned otherwise).
8: ColorEdge1(T, uv,Pi−1,Qi, ψ1)
9: ColorEdge2(T, {uv, uw, ux},Pi−1,Qi, ψ2)

/* Edges uv, uw, ux are as defined in Lemma 2.3. */
10: if |ψ1(Pi−1

⋃

Qi)| ≤ |ψ2(Pi−1

⋃

Qi)| then
11: ψ[j]← ψ1[j] for every j such that Rj ∈ Qi
12: else
13: ψ[j]← ψ2[j] for every j such that Rj ∈ Qi
14: end if
15: else
16: while ∃ some uncolored Rj ∈ Qi do
17: ψ[j]← min{l ∈ N | ∄ Rk ∈ Pi−1

⋃

Qi such that Rj , Rk collide and ψ[k]= l}
18: end while
19: end if
20: Pi ← Pi−1

⋃

Qi
21: end for

already been assigned to some rooted subtree(s) and can also be assigned to R, then
that color is assigned to R, otherwise a new color (not assigned to any other rooted
subtree previously) is assigned to R. In case there are several such used colors, anyone
of them can be assigned to R, e.g., according to line 17 of Algorithm 1. On the other
hand, if edge ei is of type (iv) as defined in Lemma 2.3, then we color the rooted
subtrees in the set Qi according to the better of the two different coloring schemes
presented as Subroutine 2 (ColorEdge1) and Subroutine 3 (ColorEdge2).

Edge ei = uv being a type (iv) edge means that none of the tree edges adjacent to
vertex v have yet been processed and there are two edges adjacent to vertex u (besides
edge ei = uv), namely uw and ux, of which edge uw has already been processed and
edge ux has not yet been processed. The two schemes employed for coloring while
processing the type (iv) edge ei = uv, differ in the way they go about reusing the
colors. In Subroutine 2, we prefer to reuse colors from the set ψ(1)(Pi−1[uv]) (set
of colors assigned to rooted subtree(s) present on tree edge ei = uv, in the first
i− 1 rounds) over reusing colors from the set ψ(1)(Pi−1[uw] \ Pi−1[uv]) (set of colors
assigned to rooted subtree(s) present on tree edge uw, but not on tree edge uv = ei,
in the first i − 1 rounds), whereas in Subroutine 3 it is the other way round. Note
that the two sets of colors are not necessarily mutually exclusive.
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Subroutine 2 ColorEdge1

Require: Host tree T with ∆T ≤ 3. Edges e ∈ ET . Set of rooted subtrees P
⋃

Q on
tree T where P is the set of rooted subtrees that are already colored according
to the coloring ψ : P −→ N and Q is the set of all the uncolored rooted subtrees
present on edge e.

Ensure: Complete the coloring ψ to a valid coloring ψ : P
⋃

Q −→ N.
1: H1 ← GT,P[e]

S

Q

2: for all pairs Rj , Rk ∈ P [e]
⋃

Q such that Rj , Rk do not collide do
3: if any one of the following is true:

(i) Rj , Rk ∈ P and ψ[j] 6= ψ[k]
(ii) Rj ∈ Q, Rk ∈ P and ∃Rl ∈ P such that ψ[l] = ψ[k] and Rj , Rl collide

then
4: EH1 ← EH1

⋃

{njnk}, where nj , nk ∈ VH1 are the vertices corresponding to
rooted subtrees Rj , Rk respectively.

5: end if
6: end for
7: Determine a maximum matching MH̄1

⊆ EH̄1
. /* H̄1 is bipartite. */

8: for all matched edges njnk ∈MH̄1
such that Rj ∈ Q and Rk ∈ P do

9: ψ[j]← ψ[k]
10: end for
11: while ∃ some uncolored Rj ∈ Q do
12: if ∃ matched edge njnk ∈MH̄1

then
13: ψ[j], ψ[k] ← min{m ∈ N | ∄ Rl ∈ P

⋃

Q such that Rj , Rl or Rk, Rl collide
and ψ[l] = m}

14: else
15: ψ[j]← min{m ∈ N | ∄ Rl ∈ P

⋃

Q such that Rj , Rl collide and ψ[l] = m}
16: end if
17: end while

In Subroutine 2 (line 7), we determine the maximum number of mutually exclusive
pairs of rooted subtrees such that in each matched pair (say R,S) at least one of the
rooted subtrees (say R) is an uncolored rooted subtree from the set Qi (i.e., R ∈ Qi)
and the second rooted subtree (S in this case) may either be (i) another uncolored
rooted subtree from the set Qi (i.e., S ∈ Qi) or (ii) a rooted subtree from the set
Pi−1[ei] such that the uncolored rooted subtree in the pair can be safely assigned its
color (i.e., S ∈ Pi−1 such that R does not collide with any colored rooted subtree
having the same color as S). If the pair is of type (ii), then the uncolored rooted
subtree is assigned the same color as the colored rooted subtree (line 9). If the pair
is of type (i), then both the rooted subtrees of the pair are given the same color (line
13). In this case preference is given to colors from the set ψ(1)(Pi−1) (set of colors
that have already been assigned to some rooted subtree(s) in the first i− 1 rounds of
coloring). If no suitable color is present in the set, a new color is used.

In Subroutine 3 (line 7), we determine the maximum number of mutually exclusive
pairs of rooted subtrees such that in each matched pair (say R,S) at least one of the
rooted subtrees (say R) is an uncolored rooted subtree from the set Qi and is present
on tree edge ux (i.e., R ∈ Qi[ux]) and the second rooted subtree (S in this case)
may either be (i) another uncolored rooted subtree from the set Qi present on edge
ux (i.e., S ∈ Qi[ux]) or (ii) a rooted subtree from the set Pi−1[ux] \ Pi−1[uv] such
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Subroutine 3 ColorEdge2

Require: Host tree T with ∆T ≤ 3. Edges uv, uw, ux ∈ ET . Set of rooted subtrees
P

⋃

Q on tree T where P is the set of rooted subtrees that are already colored
according to the coloring ψ : P −→ N and Q is the set of all the uncolored rooted
subtrees present on edge uv.

Ensure: Complete the coloring ψ to a valid coloring ψ : P
⋃

Q −→ N.
1: H2 ← GT,(P[ux]\P[uv])

S

Q[ux]

2: for all pairs Rj , Rk ∈ (P [ux] \ P [uv])
⋃

Q[ux] such that Rj , Rk do not collide do
3: if any one of the following is true:

(i) Rj , Rk ∈ P and ψ[j] 6= ψ[k]
(ii) Rj ∈ Q, Rk ∈ P and ∃Rl ∈ P such that ψ[l] = ψ[k] and Rj , Rl collide

then
4: EH2 ← EH2

⋃

{njnk}, where nj , nk ∈ VH2 are the vertices corresponding to
rooted subtrees Rj , Rk respectively.

5: end if
6: end for
7: Determine a maximum matching MH̄2

⊆ EH̄2
.

8: for all matched edges njnk ∈MH̄2
such that Rj ∈ Q and Rk ∈ P do

9: ψ[j]← ψ[k]
10: end for
11: while ∃ some uncolored Rj ∈ Q[ux] do
12: if ∃ matched edge njnk ∈MH̄2

then
13: ψ[j], ψ[k] ← min{m ∈ N | ∄ Rl ∈ P

⋃

Q such that Rj , Rl or Rk, Rl collide
and ψ[l] = m}

14: else
15: ψ[j]← min{m ∈ N | ∄ Rl ∈ P

⋃

Q such that Rj , Rl collide and ψ[l] = m}
16: end if
17: end while
18: while ∃ some uncolored Rj ∈ Q do
19: ψ[j]← min{m ∈ N | ∄ Rl ∈ P

⋃

Q such that Rj , Rl collide and ψ[l] = m}
20: end while

that the uncolored rooted subtree in the pair can be safely assigned its color (i.e.,
S ∈ Pi−1[ux] \ Pi−1[uv] such that R does not collide with any colored rooted subtree
having the same color as S). If the pair is of type (ii), then the uncolored rooted
subtree is assigned the same color as the colored rooted subtree (line 9). If the pair
is of type (i), then both the rooted subtrees of the pair are given the same color (line
13). In this case preference is given to colors from the set ψ(1)(Pi−1). If no suitable
color is present in the set, a new color is used. After this all the remaining uncolored
rooted subtrees (all the rooted subtree in the set Qi \Qi[ux] and possibly some rooted
subtrees still uncolored in the set Qi[ux] are assigned colors one at a time (lines 15,
19). Again preference is given to colors from the set ψ(1)(Pi−1).

The exact steps of Subroutines 2 and 3 are explained in detail in Lemmas 2.7 and
2.8 respectively.

2.2. Analysis. We shall now prove that the number of colors required by color-
ing ψ(1) is within 5

2 times the minimum number of colors required to color the given
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set of rooted subtrees R on the given host tree T , i.e., we shall prove that

|ψ(1)(R)|

χGT,R

=
|ψ(1)(R)|

minψ∈ΨGT,R
|ψ(R)|

≤
5

2
.

2.2.1. Some Local Properties. We start off by proving the following pair of
useful results about the local structure of the problem at hand.

(i) In Lemma 2.1 we characterize the conflict graph of the rooted subtrees
present on a single host tree edge as the complement of a bipartite graph [3, p.6].
This is because the rooted subtrees on a single edge can be partitioned into two
subsets based on their direction on the edge, and the conflict graph of each of these
sets is a clique [3, p.112]. This result is important since most of the graphs that we
encounter during the analysis of Algorithm 1 are of this type and therefore have nice
properties (coloring etc.).

(ii) In Lemma 2.2 we prove that without loss of any generality, we can choose
to study the coloring problem where R, the set of rooted subtrees to be colored, is
such that for host tree edge uv, |R[−→uv]| = |R[←−uv]| is a known parameter and is the
same for every host tree edge uv ∈ ET .

Lemma 2.1. The complement of the conflict graph of any subset of rooted subtrees
present on a single host tree edge is bipartite.

Proof. Let S ⊆ R[uv], i.e., S is a subset of rooted subtrees present on host tree
edge uv ∈ ET . We have to show that ḠT,S , the complement of the conflict graph of
rooted subtrees in the set S, is bipartite. Note that S can be partitioned into S[−→uv]
and S[←−uv]. All the rooted subtrees in partition S[−→uv] collide on edge uv, similarly all
the rooted subtrees in partition S[←−uv] collide on edge uv. So for any pair of vertices
ni, nj ∈ VḠT,S

, if the corresponding rooted subtrees belong to the same partition, i.e.,

Ri, Rj ∈ S[−→uv] or Ri, Rj ∈ S[←−uv], then ni, nj are independent in ḠT,S , i.e., there is no
edge ninj in EḠT,S

. This implies that ḠT,S is bipartite.
For any host tree edge uv ∈ ET , we define the load of the set of rooted subtrees

R at edge uv to be lT,Ruv = max {|R[−→uv]|, |R[←−uv]|}. Along the same lines, the load of
the set of rooted subtrees R on the host tree T is defined to be lT,R = maxe∈ET

lT,Re .
Lemma 2.2. If the load of the set of rooted subtrees R on host tree T is lT,R and

the chromatic number of the corresponding conflict graph is χGT,R, then there exists
a set S ⊇ R of rooted subtrees on host tree T such that the following hold:

(i) The chromatic number of the new conflict graph remains unchanged, i.e.,
χGT,S = χGT,R .

(ii) For each host tree edge uv ∈ ET , |S[−→uv]| = |S[←−uv]| = lT,Suv = lT,S = lT,R.
Moreover, S can be constructed in polynomial time.

Proof. Given a host tree T and a set R of rooted subtrees on T , we generate a set
S ⊇ R of rooted subtrees on T via Algorithm 4 (AddDummySubtrees). Condition
(ii) of the lemma is satisfied by construction of the set S in Algorithm 4.

Let ψ∗ ∈ ΨGT,R be a minimum vertex coloring of the conflict graph GT,R. Con-
sider vertex coloring ψ ∈ ΨGT,S of the conflict graph GT,S such that for each rooted
subtree R ∈ R ⊆ S, ψ(R) = ψ∗(R). For any host tree edge uv ∈ ET , the set of
subtrees added by Algorithm 4 that are rooted at vertex u is S[−→uv] \ R[−→uv] and the
set of subtrees added by Algorithm 4 that are rooted at vertex v is S[←−uv] \ R[←−uv].
Note that |S[−→uv] \ R[−→uv]| = lT,R − |R[−→uv]| and |S[←−uv] \ R[←−uv]| = lT,R − |R[←−uv]|. The
number of colors used by all the rooted subtrees in the set R[uv] in coloring ψ is
|ψ(R[uv])| = |ψ∗(R[uv])|. According to Lemma 2.1, ḠT,R[uv] is bipartite. Therefore,
in a valid vertex coloring of graph GT,R[uv], a rooted subtree can share its color with
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Algorithm 4 AddDummySubtrees

Require: Host tree T . Set of rooted subtrees R on tree T .
Ensure: A set of rooted subtrees S ⊇ R on tree T such that for each host tree edge

uv ∈ ET , |S[−→uv]| = |S[←−uv]| = lT,Suv = lT,S = lT,R.
1: S ← R
2: for all host tree edges uv ∈ ET do
3: while |S[−→uv]| < lT,R do
4: Let digraph D be such that VD = {u, v} and AD = {−→uv}.

/* D is a subtree of host tree T rooted at vertex u ∈ VT . */
5: S ← S

⋃

{D}
6: end while
7: while |S[←−uv]| < lT,R do
8: Let digraph D be such that VD = {u, v} and AD = {←−uv}.

/* D is a subtree of host tree T rooted at vertex v ∈ VT . */
9: S ← S

⋃

{D}
10: end while
11: end for

at most one other rooted subtree. So the number of rooted subtrees in the set R[uv]
that do not share their assigned colors with any other rooted subtree in the set R[uv]
is 2|ψ(R[uv])|−|R[uv]|. Observe that a rooted subtree in the set S[−→uv]\R[−→uv] collides
with every other rooted subtree in the set S[−→uv] and does not collide with any other
rooted subtree in the set S. Similarly, a rooted subtree in the set S[←−uv]\R[←−uv] collides
with every other rooted subtree in the set S[←−uv] and does not collide with any other
rooted subtree in the set S. Therefore we can color min {2|ψ(R[uv])|, |S[uv]|}−|R[uv]|
rooted subtrees in the set S[uv]\R[uv] using the colors already assigned to some other
rooted subtree in the setR[uv]. So the number of remaining uncolored rooted subtrees
in the set S[uv] \ R[uv] is

|S[uv] \ R[uv]| − (min {2|ψ(R[uv])|, |S[uv]|} − |R[uv]|) = [|S[uv]| − 2|ψ(R[uv])|]+

= 2
[

lT,R − |ψ(R[uv])|
]+
.

Note that half of the remaining uncolored rooted subtrees are in the set S[−→uv] \R[−→uv]

and the other half are in the set S[←−uv]\R[←−uv]. So we need
[

lT,R − |ψ(R[uv])|
]+

colors
that have not been assigned to any rooted subtree in the set R[uv] to color all the
rooted subtrees in the set S[uv]. Thus the total number of colors required for coloring
all the rooted subtrees in the set S[uv] is

|ψ(R[uv])|+
[

lT,R − |ψ(R[uv])|
]+

= max
{

lT,R, |ψ(R[uv])|
}

.

Therefore

χGT,S = max
e∈ET

max
{

lT,R, |ψ(R[e])|
}

= max
e∈ET

|ψ(R[e])| ≤ χGT,R ,

where the last equality is due to the fact that

max
e∈ET

|ψ(R[e])| ≥ lT,R.

Also since conflict graph GT,R is a subgraph of conflict graph GT,S , χGT,R ≤ χGT,S .
Therefore χGT,R = χGT,S , which proves condition (i) of the lemma.
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Due to Lemma 2.2, from now onwards we shall assume without loss of generality
that the load of the given set of rooted subtrees R at every host tree edge is equal to
lT,R, and the total number of rooted subtrees present on every host tree edge is equal
to 2lT,R.

2.2.2. Roadmap. Now we give a brief plan-of-action that we shall follow for
the rest of this section for proving the approximation ratio of 5

2 for Algorithm 1. The
analysis proceeds according to the following steps.

(i) First we characterize the types of host tree edges that we might encounter
during any round of coloring in Algorithm 1. This is done in Lemmas 2.3 and 2.4.

(ii) Next we prove that if the edge to be processed in i-th round of coloring is of
type (i), (ii) or (iii) as defined in Lemma 2.3, then either no new colors are required
in the i-th round or the total number of colors in use at the end of the i-th round is
less than or equal to 2lT,R. This is proved in Lemma 2.5.

(iii) We then prove a similar result for the case when the edge to be processed in
the i-th round of coloring is of type (iv) as defined in Lemma 2.3. In this case we first
show that either no new color is required in the i-th round or ψ(1)(Qi

⋃

Pi−1[uw]) =
ψ(1)(Pi). The set Qi

⋃

Pi−1[uw] consists of all the rooted subtrees that are colored in
the i-th round (Qi) and all the rooted subtrees that are present on edge uw which is
adjacent to the edge being processed in the i-th round and has already been processed
(Pi−1[uw]). This is shown in Lemma 2.6. Then we present bounds on the number
of colors required after the i-th round, for coloring all the rooted subtrees in the
set Qi

⋃

Pi−1[uw] by Subroutines 2 (Lemma 2.7) and 3 (Lemma 2.8). Note that in
Algorithm 1 (line 10), of the two colorings generated by Subroutines 2 and 3, the
coloring requiring fewer colors at the end of the i-th round is used.

(iv) Based on the previous lemmas, we determine the approximation ratio of
Algorithm 1 in a parameterized form in Lemma 2.9. In Lemma 2.10, we determine
the worst case (maximum) value of the parameterized fraction obtained in Lemma
2.9. This proves Theorem 2.11 that the approximation ratio of Algorithm 1 is 5

2 .

2.2.3. Host Edge Types. Now we start the actual analysis of our greedy col-
oring scheme. First we note that as Algorithm 1 proceeds, the host tree edge that is
processed in any round of coloring is from one of the four possible types defined in
Lemma 2.3. The edge type is characterized by the status (whether already processed
or not) of its adjacent edges. The scheme employed for assigning colors to the un-
colored rooted subtrees present on the edge being processed depends on the type of
the edge. In Lemma 2.4, we characterize the set of colored rooted subtrees that can
collide with the uncolored rooted subtrees being colored in the next round of coloring.

Both these results mainly rely on the BFS ordering of the edges in Algorithm 1
and the fact that the host T is a tree with degree ∆T = 3 .

Lemma 2.3. In Algorithm 1, when a host tree edge uv ∈ ET (where u was
discovered before v in the BFS) is being processed, then all the edges adjacent to
vertex v are unprocessed, and for the edges adjacent to vertex u exactly one of the
following is satisfied:

(i) None of the edges adjacent to u has been processed. In this case edge uv is
the first edge to be processed among all host tree edges.

(ii) Vertex u has degree δT (u) = 2 with adjacent edges uv, uw of which edge uw
has already been processed.

(iii) Vertex u has degree δT (u) = 3 with adjacent edges uv, uw, ux of which edges
uw, ux have already been processed.
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Fig. 2.1. Enumerate the edges of the host tree according to their order of discovery in a BFS
starting from an arbitrary root vertex. The bold-solid edges are the edges that have been processed
before the 5-th round of coloring in Algorithm 1. The bold-dotted edge is the edge being processed
in the 5-th round. Observe that the subgraph of the host tree induced by the set of edges that have
already been processed at any given round, is a tree.

(iv) Vertex u has degree δT (u) = 3 with adjacent edges uv, uw, ux of which edge
uw has already been processed while edge ux has not yet been processed.

Proof. To motivate the intuition behind this lemma, observe Figure 2.1. Consider
the host tree and the BFS ordering of its edges as shown in the figure. In this case
edge 1 is of type (i), edge 2 is of type (ii), edge 4 is of type (iii) and edge 3 is of type
(iv). Similarly note that all the host tree edges can be classified as being of one of
the four types described in the lemma. Now we present the actual proof.

Algorithm 1 selects an arbitrary vertex r ∈ VT and ranks the edges of the host
tree according to their order of discovery in a BFS with r as the root. The edges are
then processed according to this ordering. We denote the set of host tree edges that
are processed in the first i rounds of coloring by Ei. According to the notation defined
in section 2.1.1, Ei = {e1, . . . , ei}. Observe that due to the BFS ordering, T [Ei] is a
connected subgraph of host T . Moreover since T is a tree, T [Ei] must be a subtree.
Also note that the root of the BFS lies in this subtree, i.e., r ∈ VE[Ti] for every i > 0.
This is because r has to be an end vertex of e1, the first processed edge.

Let ek = uv ∈ ET be the edge being processed in the k-th round of coloring.
Observe that T [ET \ {ek}], the subgraph of the host tree induced by all the edges of
the host tree except edge ek is a forest [3, p.6] containing two trees. Let us denote
the two trees as Tu and Tv such that u ∈ VTu

and v ∈ VTv
. This is shown in Figure

2.2(a). Note that since u was discovered before v in the BFS, the path from root r
to v should contain edge uv. This observation, along with the fact that T is a tree,
implies that r ∈ VTu

. So every edge in the set ETv
must have been discovered after

the discovery of the edge ek = uv. Therefore no edge in the set ETv
was processed in

the first k rounds of coloring. Since every edge adjacent to v is in the set ETv

⋃

{ek},
it must be unprocessed at the end of k − 1 rounds of coloring.

Now consider the edges adjacent to u. If none of the edges adjacent to u are
processed in the first k−1 rounds, then we claim that k is equal to 1. This is because
T [Ek] is a tree (therefore connected) and none of the edges adjacent to v were colored
in the first k − 1 rounds. Thus, the only scenario when T [Ek] is connected is when
Ek−1 = ∅, which implies that ek = uv is indeed the first edge being processed. This
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Tv

u v

Tu

(a) T [ET \ {uv}] is a forest con-
taining two trees: Tu, Tv. Also
r ∈ VTu

.

u

v

w x

TxTw

Tv

(b) T [VT \{u}] is a forest containing δT (u)

trees. If δT (u) = 3 and w, v, x are the
neighbors of u, then the forest contains
three trees: Tw, Tv, Tx. If we assume that
w was discovered before u, then r ∈ VTw

.

Fig. 2.2. Let uv be the host tree edge currently being processed. We assume that u was discovered
before v according to the BFS starting from some arbitrary root vertex r ∈ VT .

corresponds to case (i) of the lemma. Now let there be an edge uw ∈ ET [Ek−1], i.e.,
there is an edge uw adjacent to u that has already been processed in the first k − 1
rounds. If v and w are the only neighbors of u, then δT (u) = 2 and this corresponds
to case (ii) of the lemma. On the other hand if δT (u) = 3 then let w, v, x be the three
neighboring nodes of u in the host tree. Now as discussed, edge uw has already been
processed in the first k − 1 rounds and edge uv is the current edge being processed
in the k-th round. Now depending on whether edge ux has already been processed in
the first k− 1 rounds or not, we obtain cases (iv) and (iii) respectively of the lemma.

Since δT (u) ≤ ∆T = 3, there are no other possible cases.
Lemma 2.4. In the i-th round of coloring in Algorithm 1 (while processing host

tree edge ei ∈ ET ), if a colored rooted subtree P ∈ Pi−1 collides with any rooted subtree
Q ∈ Qi, then exactly one of the following is satisfied:

(i) Edge ei is of type (i), (ii) or (iii) defined in Lemma 2.3, and rooted subtree
P ∈ Pi−1[ei].

(ii) Edge ei is of type (iv) defined in Lemma 2.3, and rooted subtree P ∈ Pi−1[uv]
⋃

Pi−1[ux] (where vertices u, v, x and edges uv, ux are as defined in Lemma 2.3).
Proof. If edge ei ∈ ET being processed is of type (i) defined in Lemma 2.3, then

it is the first edge being processed, i.e., Pi−1 = ∅. Thus there can be no colored rooted
subtree which collides with any rooted subtree in the set Qi. This is exactly what the
lemma states for edges of type (i).

Now assume that the edge ei ∈ ET being processed is of type (ii). As observed
during the proof of Lemma 2.3, T [ET \ {uv}] is a forest containing two trees Tu and
Tv where u ∈ ETu

and v ∈ ETv
. In this case the following hold:

(i) No edges in the set ETv
are processed in the first i rounds of coloring.

(ii) No rooted subtree in the set Qi is present on any host tree edge in the set
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ETu
, i.e., for every rooted subtree R ∈ Qi, EUR

⋂

ETu
= ∅.

We have already shown (i) in the proof of Lemma 2.3 and the reasoning for (ii) is
as follows. Let there be a rooted subtree R ∈ Qi and an edge e ∈ ETu

such that
e ∈ EUR

. First, note that since R ∈ Qi, ei = uv ∈ EUR
. Next observe that in

this case edge uw (the only other edge adjacent to u except uv) has already been
processed, so uw /∈ EUR

. Also note that uw is the only edge adjacent to u in the set
ETu

. Therefore, the facts that UR is a subtree of T and R is present on edges e ∈ ETu

and uv imply that it must be present on edge uw. This is a contradiction, which
proves (ii). Now let rooted subtree S ∈ Pi−1 collide with some rooted subtree in the
set Qi. Since S has already been colored in the first i− 1 rounds of coloring, it must
be present on some already processed edge. Therefore, by (i) it must be present on
some edge in the set ETu

. Also, since it collides with some rooted subtree from the
set Qi, due to (ii) it must be present on some edge in the set ETv

. The above two
observations, combined with the fact that US is a subtree of the host tree, prove that
S is present on the edge ei = uv. This is exactly what the lemma states for edges of
type (ii).

The case when the edge being processed in the i-th round of coloring is of type
(iii) is exactly analogous to the above case and the proof follows the same lines.

Now assume that the edge ei = uv ∈ ET being processed is of type (iv). Hence,
uw, uv and ux are the three edges adjacent to u, and in the first i − 1 rounds of
coloring, uw has already been processed whereas ux has not been processed. In this
case observe that T [VT \{u}], the subgraph of the host tree induced by all the vertices
of the host tree except vertex u, is a forest containing three trees. Let us denote the
three trees as Tw, Tv and Tx such that w ∈ VTw

, v ∈ VTv
and x ∈ VTx

. This is shown
in Figure 2.2(b). Now we claim that in this case, the following hold:

(i) No edges in the set ETv

⋃

ETx

⋃

{ux} are processed in the first i rounds of
coloring.

(ii) No rooted subtree in the set Qi is present on any host tree edge in the set
ETw

⋃

{uw}, i.e., for every rooted subtree R ∈ Qi, we have EUR

⋂

(ETw

⋃

{uw}) = ∅.

Note that we have already shown in the proof of Lemma 2.3 that no edges in the set
ETv

are processed in the first i rounds of coloring. Also, note that in this case we
assume that ux is unprocessed in the first i rounds of coloring. Now suppose there
is an edge e ∈ ETx

which is processed in the first i rounds of coloring. Since uv is a
type (iv) edge, edge uw has already been processed in the first i rounds of coloring.
Also, we have shown in the proof of Lemma 2.3 that T [Ei], the subgraph of host tree
T induced by the set Ei of edges processed during the first i rounds of coloring, is a
subtree of the host tree. Thus, the fact that edges e ∈ ETx

and uw both lie in the set
Ei requires that the edge ux also lie in the set Ei. This is a contradiction. Therefore
no edges in the set ETx

are processed in the first i rounds of coloring. This proves
(i). The reasoning for (ii) is as follows. Since edge uv is of type (iv), edge uw has
already been processed in the first i − 1 rounds of coloring. Therefore any rooted
subtree that is yet uncolored after the first i− 1 rounds of coloring cannot be present
on the edge uw. Now let there be a rooted subtree R ∈ Qi and an edge e ∈ ETw

such that e ∈ EUR
. First note that since R ∈ Qi, ei = uv ∈ EUR

. The facts that
UR is a subtree of T , and R is present on edges e ∈ ETw

and uv imply that it must
be present on edge uw. Since we have already shown that this is not possible, we
have a contradiction. This proves (ii). Now let rooted subtree S ∈ Pi−1 collide with
some rooted subtree in the set Qi. Since S has already been colored in the first i− 1
rounds of coloring, it must be present on some already processed edge. Therefore by
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(i) it must be present on some edge in the set ETw

⋃

{uw}. Also, since it collides with
some rooted subtree from the set Qi, due to (ii) it must be present on some edge in
the set ETv

⋃

ETx

⋃

{uv, ux}. Let us suppose that S is present on some edge in the
set ETv

. This along with the facts that S must be present on some edge in the set
ETw

⋃

{uw} and US is a subtree of the host tree, imply that S is present on the edge
uv. Similarly, if we let S be present on some edge in the set ETx

, it must be present
on the edge ux. Therefore, we conclude that S must be present on either edge uv or
edge ux or both. This is exactly what the lemma states for edges of type (iv).

According to Lemma 2.3, these are the only possible types of edges that are
encountered in Algorithm 1. This observation completes the proof.

2.2.4. Type (i), (ii) and (iii) Edges. According to the notation presented
in section 1.2, ψ(1)(Pi) is the set of colors used by Algorithm 1 for coloring all the
rooted subtrees present on host tree edges that are processed in the first i rounds of
coloring. Hence, the number of colors used by Algorithm 1 after i rounds of coloring
is given by |ψ(1)(Pi)|. Note that by this convention |ψ(1)(P0)| = |ψ(1)(∅)| = 0 and
|ψ(1)(P|ET |)| = |ψ

(1)(R)|.
First, we study the case when edge ei being processed during the i-th round of

Algorithm 1 is of type (i), (ii) or (iii) defined in Lemma 2.3.

Lemma 2.5. If edge ei is of type (i), (ii) or (iii) defined in Lemma 2.3, then

|ψ(1)(Pi)| ≤ max
{

2lT,R, |ψ(1)(Pi−1)|
}

.

Proof. First note that the set R[ei] of all the rooted subtrees present on host tree
edge ei, can be partitioned into sets Qi and Pi−1[ei]. Therefore

|Qi| = |R[ei]| − |Pi−1[ei]| ≤ 2lT,R − |ψ(1)(Pi−1[ei])|, (2.1)

where the last inequality is due to the fact that for any coloring, the number of colors
required to color a set of vertices can never be larger than the cardinality of the vertex
set.

According to Lemma 2.4, if a colored rooted subtree P ∈ Pi−1 collides with
any rooted subtrees Q ∈ Qi, then P ∈ Pi−1[ei]. Hence any color present in the set
ψ(1)(Pi−1) but absent in ψ(1)(Pi−1[ei]) can be safely used to color any rooted subtrees
in uncolored set Qi. There are |ψ(1)(Pi−1)| − |ψ

(1)(Pi−1[ei])| such colors. Algorithm
1 tries to reuse these colors first and if there are still uncolored rooted subtrees left
in Qi, then it starts to assign new colors to those rooted subtrees. In the worst
case we need |Qi| colors for coloring the uncolored rooted subtrees in the i-th round.
Therefore, the number of new colors required in the i-th round is given by

|ψ(1)(Pi)| − |ψ
(1)(Pi−1)| ≤

[

|Qi| −
(

|ψ(1)(Pi−1)| − |ψ
(1)(Pi−1[ei])|

)]+

≤
[(

2lT,R − |ψ(1)(Pi−1[ei])|
)

−
(

|ψ(1)(Pi−1)| − |ψ
(1)(Pi−1[ei])|

)]+

=
[

2lT,R − |ψ(1)(Pi−1)|
]+

, (2.2)

where the second inequality is by equation (2.1).
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v

u

xw

Qi \ Qi[ux]

Qi[ux]

Pi−1[uv] Pi−1[ux] \ Pi−1[uv]

Pi−1[uw] \ (Pi−1[uv]
⋃

Pi−1[ux])

Fig. 2.3. Sets of interesting rooted subtrees while processing edge uv of type ( iv) as defined in
Lemma 2.3

From equation (2.2), we obtain

|ψ(1)(Pi)| ≤ |ψ
(1)(Pi−1)|+

[

2lT,R − |ψ(1)(Pi−1)|
]+

= max
{

2lT,R, |ψ(1)(Pi−1)|
}

.

2.2.5. Type (iv) Edges. Now we consider the case when edge ei being pro-
cessed during the i-th round of Algorithm 1 is of type (iv) defined in Lemma 2.3.
As stated in Lemma 2.3, we assume that edge ei = uv is such that (i) vertex u was
discovered before vertex v in the BFS; (ii) all the edges adjacent to vertex v are
unprocessed through round i− 1; and (iii) vertex u has degree 3 with adjacent edges
uv, uw, ux of which edge uw has already been processed while edge ux has not yet
been processed.

As we shall discuss later in Lemma 2.6, in this case the set of relevant rooted
subtrees consist of Pi−1[uw], the set of rooted subtrees that have been colored in the
first i− 1 rounds of coloring and are present on host tree edge uw, and Qi, the set of
rooted subtrees that are to be colored in the i-th round. These rooted subtrees are
shown in more detail in Figure 2.3.

More specifically, we can partition the set of relevant colored and uncolored sub-
trees based on whether they are present or absent on the three tree edges uv, uw, ux.
In Figure 2.3, we show representative rooted subtrees from the relevant partitions
of the relevant sets. The presence of a solid line in a representative rooted tree on
an edge implies that every rooted subtree of that set must be present on that edge.
Similarly, the absence of a line in a representative rooted subtree on an edge implies
that no rooted subtree of that set can be present on that edge. And, if some rooted
subtrees of a set may be present on an edge, then the representative rooted subtree
for that set has a dotted line on that edge in the figure.

As already stated, Algorithm 1 colors the rooted subtrees in the set Qi using
two different methods (Subroutine 2 and 3) and then picks the better (the one using
fewer new colors) of the two colorings. The basic difference between the two schemes



18 ANUJ RAWAT

is that of all the colors in the set ψ(1)(Pi−1[uw]), Subroutine 2 focuses on maximiz-
ing the reuse of colors from the set ψ(1)(Pi−1[uv]), whereas Subroutine 3 focuses on
maximizing reuse of colors from the set ψ(1)(Pi−1[uw] \ Pi−1[uv]).

Lemma 2.6. If edge ei is of type (iv) defined in Lemma 2.3, then

|ψ(1)(Pi)| = max
{

|ψ(1)(Qi
⋃

Pi−1[uw])|, |ψ(1)(Pi−1)|
}

,

where edge uw ∈ ET is as defined in Lemma 2.3.
Proof. According to Lemma 2.4, if a colored rooted subtree collides with any

rooted subtree in the set Qi, then it must belong to the set Pi−1[uv]
⋃

Pi−1[ux].
Since Pi−1[uv]

⋃

Pi−1[ux] ⊆ Pi−1[uw], this implies that any rooted subtree in the set
Pi−1 \ Pi−1[uw] cannot collide with any rooted subtree in the set Qi. Therefore, any
color already assigned to some rooted subtree in the set Pi−1 \ Pi−1[uw], but not to
any rooted subtree in the set P [uw], can be used for coloring any rooted subtree in
the set Qi. There are |ψ(1)(Pi−1)| − |ψ(1)(Pi−1[uw])| such colors. In Algorithm 1, in
the i-th round of coloring, let Ni ∈ Qi be the set of rooted subtrees which do not
share colors with rooted subtrees in the set Pi−1[uw], i.e, Qi \Ni is the largest subset
of the set Qi such that |ψ(1)((Qi \ Ni)

⋃

Pi−1[uw])| = |ψ(1)(Pi−1[uw])|. We need
|ψ(1)(Ni)| additional colors for coloring all the rooted subtrees in the set Ni and there
are |ψ(1)(Pi−1)| − |ψ(1)(Pi−1[uw])| available colors that can be used without adding
any new color in the i-th round of coloring. In Algorithm 1, we always try to reuse
these available colors before adding any new colors. Therefore, the total number of
colors required at the end of i-th round of coloring is

|ψ(1)(Pi)| = |ψ
(1)(Pi−1)|+

[

|ψ(1)(Ni)| −
(

|ψ(1)(Pi−1)| − |ψ
(1)(Pi−1[uw])|

)]+

= |ψ(1)(Pi−1)|+
[

|ψ(1)(Ni)|+ |ψ
(1)((Qi \ Ni)

⋃

Pi−1[uw])| − |ψ(1)(Pi−1)|
]+

= |ψ(1)(Pi−1)|+
[

|ψ(1)(Qi
⋃

Pi−1[uw])| − |ψ(1)(Pi−1)|
]+

= max
{

|ψ(1)(Qi
⋃

Pi−1[uw])|, |ψ(1)(Pi−1)|
}

,

where the third equality is due to the fact that the rooted subtrees in the set Ni do
not share any color with the rooted subtrees in the set (Qi \ Ni)

⋃

Pi−1[uw].
In light of Lemma 2.6, it makes sense to evaluate bounds for |ψ(1)|Qi

S

Pi−1[uw]| in
the i-th round of coloring. Using the notation of the lemma, if Ni ⊆ Qi is the set of
rooted subtrees that do not share colors with any rooted subtrees in the set Pi−1[uw],
then

|ψ(1)(Qi
⋃

Pi−1[uw])| = |ψ(1)(Ni)|+ |ψ
(1)((Qi \ Ni)

⋃

Pi−1[uw])|

= |ψ(1)(Ni)|+ |ψ
(1)(Pi−1[uw])|.

Hence, in order to limit the use of new colors in i-th round of coloring, we try to
minimize |ψ(1)(Ni)| = |ψ(1)(Qi

⋃

Pi−1[uw])| − |ψ(1)(Pi−1[uw])|, the number of colors
used in the i-th round of coloring that are different from the colors assigned to the
rooted subtrees in the set P [uw].

For any set S of rooted subtrees on host tree T such that the complement of
the conflict graph is bipartite, i.e., ḠT,S is bipartite, we denote the size of maximum
matching [3, p.67] in ḠT,S by mT

S .
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Lemma 2.7. If edge ei is of type (iv) defined in Lemma 2.3, and Subroutine 2 is
used to color the uncolored rooted subtrees in the i-th round of Algorithm 1, then

|ψ(1)(Qi
⋃

Pi−1[uw])| ≤ 2lT,R + |Qi| −
(

mT
R[uv] −m

T
Pi−1[uv]

)

.

Proof. [Sketch of proof] Here we give a brief sketch of the proof. The complete
proof is presented in Appendix A.

As stated before, in Subroutine 2, we focus on reusing the colors from the set
ψ(1)(Pi−1[uv]).

We start with the scenario when the sets ψ(1)(Pi−1[uv]) and ψ(1)(Pi−1[uw] \
Pi−1[uv]) are disjoint. In this case, we consider all the disjoint pairs (R,S) of rooted
subtrees in the set R[uv] = Pi−1[uv]

⋃

Qi satisfying one of the following:
(i) Both R,S ∈ Pi−1[uv], and ψ(1)(R) = ψ(1)(S).
(ii) R ∈ Qi, S ∈ Pi−1[uv], and R can be assigned ψ(1)(S).
(iii) Both R,S ∈ Qi, and they can be assigned the same color.

We prove that the number of such pairs is lower bounded by mT
R[uv]−m

T
Pi−1[uv]

. This
gives us an upper bound on the number of colors required for coloring all the rooted
subtrees in the set Pi−1[uv]

⋃

Qi. This bound on |ψ(1)(Pi−1[uv]
⋃

Qi)| along with the
fact that the set Pi−1[uw]

⋃

Qi can be partitioned into subsets Pi−1[uw] \ Pi−1[uv]
and Pi−1[uv]

⋃

Qi, allows us to establish the inequality stated in the lemma.
Next we relax our assumption and generalize the result for the scenario when the

sets ψ(1)(Pi−1[uv]) and ψ(1)(Pi−1[uw] \ Pi−1[uv]) are not disjoint. In this case, we
argue that the additional colors needed for coloring all the rooted subtrees in the set
Pi−1[uv]

⋃

Qi are offset by the colors saved while coloring the rooted subtrees in the
set Pi−1[uw] \ Pi−1[uv]. Hence, the inequality stated in the lemma still holds.

Lemma 2.8. If edge ei is of type (iv) defined in Lemma 2.3, and Subroutine 3 is
used to color the uncolored rooted subtrees in the i-th round of Algorithm 1, then

|ψ(1)(Pi−1[uw]
⋃

Qi)| ≤ 2lT,R + [g − h]+ ,

where

g = |Qi[ux]|+ |Pi−1[ux] \ Pi−1[uv]| − |Qi|,

h =

[

|Qi[ux]|+
|Pi−1[ux] \ Pi−1[uv]|

2
+mT

R[ux] − 2lT,R
]+

.

Proof. [Sketch of proof] Again we only give a brief sketch of the proof here. The
complete proof is presented in Appendix B.

As stated before, in Subroutine 3, we focus on reusing the colors from the set
ψ(1)(Pi−1[uw] \ Pi−1[uv]).

We start with the scenario when the sets ψ(1)(Pi−1[uv]) and ψ(1)(Pi−1[uw] \
Pi−1[uv]) are disjoint. In this case, we consider all the disjoint pairs (R,S) of rooted
subtrees in the set (Pi−1[ux] \ Pi−1[uv])

⋃

Qi[ux] satisfying one of the following:
(i) Both R,S ∈ Pi−1[ux] \ Pi−1[uv], and ψ(1)(R) = ψ(1)(S).
(ii) R ∈ Qi[ux], S ∈ Pi−1[ux] \ Pi−1[uv], and R can be assigned ψ(1)(S).
(iii) Both R,S ∈ Qi[ux], and they can be assigned the same color.

We prove that the number of such pairs is lower bounded by h. Next we observe that
any color in the set ψ(1)(Pi−1[uw] \ (Pi−1[uv]

⋃

Pi−1[ux])) \ψ(1)(Pi−1[ux] \Pi−1[uv])
can be assigned to any of the rooted subtrees in the set Qi[ux], and any color in the
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set ψ(1)(Pi−1[uw] \ Pi−1[uv]) can be assigned to any of the rooted subtrees in the
set Qi \ Qi[ux]. Using these observations and the lower bound described above, we
obtain an upper bound on the number of colors required for coloring all the rooted
subtrees in the set Qi

⋃

(Pi−1[uw] \ Pi−1[uv]). This bound on |ψ(1)(Qi
⋃

(Pi−1[uw] \
Pi−1[uv]))| along with the fact that the set Pi−1[uw]

⋃

Qi can be partitioned into
subsets Qi

⋃

(Pi−1[uw] \ Pi−1[uv]) and Pi−1[uv], allows us to establish the inequality
stated in the lemma.

Next we relax our assumption and generalize the result for the scenario when the
sets ψ(1)(Pi−1[uv]) and ψ(1)(Pi−1[uw] \ Pi−1[uv]) are not disjoint. In this case, we
argue that the additional colors needed for coloring all the rooted subtrees in the set
Qi are offset by the colors saved while coloring the rooted subtrees in the set Pi−1[uv].
Hence, the inequality stated in the lemma still holds.

2.2.6. Approximation Ratio. Using the bounds developed in Lemmas 2.5,
2.6, 2.7 and 2.8, we prove the required approximation ratio for Algorithm 1. We
develop the approximation ratio in the form of a parameterized inequality in Lemma
2.9 and then in Lemma 2.10, using the ranges of the parameters, we show that the
ratio is bounded by 5

2 .

Lemma 2.9. The ratio of the number of colors used in the coloring ψ(1) generated
by Algorithm 1 and the chromatic number of the conflict graph GT,R satisfies

|ψ(1)(R)|

χGT,R

≤ max
α,β,γ,δ,ǫ

2 + min
{

f1, [f2 − f3]
+
}

2−min {β, γ}
,

where

f1 = α−
[

β +
α

2
− 1

]+

, f2 = δ + ǫ− α, f3 =
[

δ +
ǫ

2
+ γ − 2

]+

,

and the maximum is over α, β, γ, δ, ǫ satisfying

0 ≤ β, γ ≤ 1, 0 ≤ δ, ǫ ≤ α ≤ 2, δ + ǫ ≤ 2.

Proof. If in the i-th round of coloring, host tree edge ei = uv ∈ ET being processed
is of type (i), (ii) or (iii) defined in Lemma 2.3, then according to Lemma 2.5

|ψ(1)(Pi)| ≤ max
{

|ψ(1)(Pi−1)|, 2l
T,R

}

. (2.3)

On the other hand, if edge ei = uv ∈ ET being processed in the i-th round of
coloring is of type (iv) defined in Lemma 2.3, then according to Lemmas 2.6, 2.7 and
2.8

|ψ(1)(Pi)| ≤ max
{

|ψ(1)(Pi−1)|, 2l
T,R + min

{

ai, [gi − hi]
+
}}

, (2.4)

where

ai = |Qi| −
(

mT
R[uv] −m

T
Pi−1[uv]

)

,

and as defined in Lemma 2.8,

gi = |Qi[ux]|+ |Pi−1[ux] \ Pi−1[uv]| − |Qi|,

hi =

[

|Qi[ux]|+
|Pi−1[ux] \ Pi−1[uv]|

2
+mT

R[ux] − 2lT,R
]+

.
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Here we follow the naming convention of Lemma 2.3, i.e., edge uv = ei is the edge
being processed in the i-th round of coloring and edges uw, ux have the corresponding
meanings as defined in Lemma 2.3 whenever ei is of type (iv).

We claim that the number of colors required by Algorithm 1 satisfies

|ψ(1)(R| ≤ 2lT,R + max
ei∈E

(iv)
T

min
{

ai, [gi − hi]
+
}

, (2.5)

where E
(iv)
T ⊆ ET is the set of all the edges of type (iv) as defined in Lemma 2.3

encountered in the algorithm. The proof follows from equations (2.3) and (2.4), and
a straightforward induction argument.

Also note that the number of colors required for coloring all the rooted subtrees
present on host tree edge e ∈ ET is at least |R[e]|−mT

R[e]. This is because ḠT,R[e], the
complement of the conflict graph of rooted subtrees on host tree edge e, is bipartite
with the size of maximum matching being mT

R[e] and the size of the vertex set being

|VḠT,R[e]
| = |R[e]|. This implies that the chromatic number of the conflict graph GT,R

is bounded as

χGT,R ≥ max
e∈ET

{

|R[e]| −mT
R[e]

}

= 2lT,R − min
e∈ET

mT
R[e]. (2.6)

Therefore, from equations (2.5) and (2.6) we have

|ψ(1)(R)|

χGT,R

≤
2lT,R + max

ei∈E
(iv)
T

min
{

ai, [gi − hi]
+
}

2lT,R −mine∈ET
mT

R[e]

= max
ei∈E

(iv)
T







2lT,R + min
{

ai, [gi − hi]
+
}

2lT,R −mine∈ET
mT

R[e]







≤ max
ei∈E

(iv)
T







2lT,R + min
{

ai, [gi − hi]
+
}

2lT,R −min
{

mT
R[uv],m

T
R[ux]

}







. (2.7)

Observe that for any edge ei = uv of type (iv) as defined in Lemma 2.3 we have
the following.

(i) Since Qi ⊆ R[uv],

|Qi| ≤ |R[uv]| = 2lT,R.

Let |Qi| = αil
T,R, where αi is a constant from the set [0, 2].

(ii) Since mT
R[uv] is the size of maximum matching in graph ḠT,R[uv],

mT
R[uv] ≤

|VḠT,R[uv]
|

2
=
|R[uv]|

2
= lT,R.

Let mT
R[uv] = βil

T,R, where βi is a constant from the set [0, 1].

(iii) R[uv], the set of rooted subtrees present on edge uv, can be partitioned into
subsets Qi and Pi−1[uv]; therefore

|Pi−1[uv]| = |R[uv]| − |Qi| = (2− αi) l
T,R.
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Since mT
Pi−1[uv]

is the size of maximum matching in graph ḠT,Pi−1[uv], we have

mT
Pi−1[uv] ≤

|VḠT,Pi−1[uv]
|

2
=
|Pi−1[uv]|

2
=

(

1−
αi
2

)

lT,R.

Also, since ḠT,Pi−1[uv] is a subgraph of ḠT,R[uv] we have

mT
Pi−1[uv]

≤ mT
R[uv].

The above two inequalities imply that

mT
R[uv] −m

T
Pi−1[uv] ≥

[

βi +
αi
2
− 1

]+

lT,R.

(iv) Since Qi[ux] ⊆ Qi,

|Qi[ux]| ≤ |Qi| = αil
T,R.

Let |Qi[ux]| = δil
T,R, where δi is a constant from the set [0, αi].

(v) Note that Pi−1[ux] \ Pi−1[uv] and Pi−1[uv] are non-overlapping subsets of
Pi−1[uw] = R[uw]. Also, the set R[uv] can be partitioned into Qi and Pi−1[uv].
Therefore,

|Pi−1[ux] \ Pi−1[uv]| ≤ |R[uw]| − |Pi−1[uv]| = |R[uv]| − |Pi−1[uv]| = |Qi| = αil
T,R.

Let |Pi−1[ux] \ Pi−1[uv]| = ǫil
T,R, where ǫi is a constant from the set [0, αi].

(vi) Note that Qi[ux] ⊆ R[ux], and also Pi−1[ux]\Pi−1[uv] ⊆ R[ux]. Moreover,
both the sets Qi[ux] and Pi−1[ux] \ Pi−1[uv] are non-overlapping. Therefore,

|Qi[ux]|+ |Pi−1[ux] \ Pi−1[uv]| ≤ |R[ux]|.

This implies that δi + ǫi ≤ 2.
(vii) Since mT

R[ux] is the size of maximum matching in graph ḠT,R[ux],

mT
R[ux] ≤

|VḠT,R[ux]
|

2
=
|R[ux]|

2
= lT,R.

Let mT
R[ux] = γil

T,R, where γi is a constant from the set [0, 1].

Now from (i), (ii) and (iii),

ai ≤

(

αi −
[

βi +
αi
2
− 1

]+
)

lT,R. (2.8)

From (i), (iv), (v) and (vi),

gi =
(

δi +
ǫi
2
− αi

)

lT,R. (2.9)

And, from (iv), (v), (vi) and (vii),

hi =
[

δi +
ǫi
2

+ γi − 2
]+

lT,R, (2.10)

where αi, βi, γi, δi, ǫi are known constants satisfying the following inequalities.

0 ≤ βi, γi ≤ 1, 0 ≤ δi, ǫi ≤ αi ≤ 2, δi + ǫi ≤ 2 (2.11)
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From equations (2.7), (2.8), (2.9) and (2.10) we obtain

|ψ(1)(R)|

χGT,R

≤ max
ei∈E

(iv)
T







2 + min
{

f1i
, [f2i

− f3i
]
+
}

2−min {βi, γi}







, (2.12)

where

f1i
= αi −

[

βi +
αi
2
− 1

]+

, f2i
= δi + ǫi − αi, f3i

=
[

δi +
ǫi
2

+ γi − 2
]+

,

and αi, βi, γi, δi, ǫi are constants satisfying the inequalities (2.11).
The lemma follows from equation (2.12).
Lemma 2.10. For any real α, β, γ, δ and ǫ satisfying

0 ≤ β, γ ≤ 1, 0 ≤ δ, ǫ ≤ α ≤ 2, δ + ǫ ≤ 2,

and functions f1, f2, f3 given by

f1 = α−
[

β +
α

2
− 1

]+

, f2 = δ + ǫ− α, f3 =
[

δ +
ǫ

2
+ γ − 2

]+

,

the following holds

max
α,β,γ,δ,ǫ

2 + min
{

f1, [f2 − f3]
+
}

2−min {β, γ}
≤

5

2
.

Proof. Note that for all permissible values of α, β, γ, δ and ǫ we have the following.

2 + min
{

f1, [f2 − f3]
+
}

2−min {β, γ}
= min

{

2 + f1
2−min {β, γ}

,
2 + [f2 − f3]+

2−min {β, γ}

}

≤ min

{

2 + f1
2− β

,
2 + [f2 − f3]+

2− γ

}

(2.13)

Now we shall prove that, for 0 ≤ α ≤ 1,

2 + f1
2− β

≤
5

2
, (2.14)

and, for 1 ≤ α ≤ 2,

2 + [f2 − f3]
+

2− γ
≤

5

2
. (2.15)

From equations (2.13), (2.14), and (2.15) we get the required result.
For equation (2.14), observe that

2 + f1
2− β

=
2 + α−

[

β + 1
2α− 1

]+

2− β
=

2 + α−max
{

β + 1
2α− 1, 0

}

2− β

=
min

{

3 + 1
2α− β, 2 + α

}

2− β
≤

3 + 1
2α− β

2− β
≤

5

2
,
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where the final inequality follows from the assumption that 0 ≤ α, β ≤ 1.
Now we prove equation (2.15). Note that if f2 ≤ f3, we have

2 + [f2 − f3]
+

2− γ
=

2

2− γ
≤ 2,

where the inequality follows from the assumption that 0 ≤ γ ≤ 1. Thus, the case of
interest is when f2 > f3. Also, since f3 ≥ 0, f2 = δ + ǫ− α > 0. Hence, in this case
we have

2 + [f2 − f3]
+

2− γ
=

2 + δ + ǫ− α−
[

δ + 1
2ǫ+ γ − 2

]+

2− γ

=
2 + δ + ǫ− α−max

{

δ + 1
2ǫ+ γ − 2, 0

}

2− γ

=
min

{

2 + 1
2ǫ− α+ 2− γ, 2 + 1

2ǫ− α+ δ + 1
2ǫ

}

2− γ

=
2 + 1

2ǫ− α

2− γ
+ min

{

1,
δ + 1

2 ǫ

2− γ

}

≤
2− 1

2α

2− γ
+ 1 ≤

5

2
,

where the first inequality follows from the assumption that ǫ ≤ α and the second
inequality follows from the assumptions that 0 ≤ γ ≤ 1 and 1 ≤ α ≤ 2.

Theorem 2.11. Algorithm 1 is an approximation algorithm for the problem with
approximation ratio 5

2 .
Proof. The theorem follows from Lemmas 2.9 and 2.10.

2.3. Complexity. We claim that the greedy scheme presented as Algorithm 1
in section 2.1, has a polynomial running time. In particular, we have the following
result.

Proposition 2.12. The running time complexity of Algorithm 1 is

O
(

|ET |
(

lT,R
)2.5

+ |R|lT,R + |ET ||R|
2
)

.

Proof. Algorithm 1 starts off with a BFS of host tree T from some arbitrary root
vertex. Complexity of BFS in graph G is O (|VG|+ |EG|) [8, p.531-539]. Therefore,
for tree T , BFS is linear in |ET |. For constructing conflict graph GT,R we need to
decide for every pair of rooted subtrees in the set R, whether the rooted subtrees in
that pair collide or not. For each pair we have to check for collision on a maximum
of |ET | edges. Therefore the conflict graph can be constructed in O

(

|ET ||R|2
)

time.
Let us first consider the case when the host tree edge ei = uv ∈ ET being

processed in the i-th round of coloring is of type (i), (ii) or (iii) as defined in Lemma
2.3. In order to color rooted subtree R ∈ Qi we first determine the set of unavailable
colors for R. This is the set of colors that have already been assigned to (either in
the first i− 1 rounds or in the i-th round itself) any rooted subtree that collides with
R. Using Lemma 2.4, we can upper bound the size of this set by |Pi−1[uv]

⋃

Qi| =
|R[uv]| = 2lT,R. Now R is greedily assigned the first color that is not in this set of
unavailable colors. This shows that R is assigned color in O

(

lT,R
)

time.
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Now let us consider the case when the host tree edge ei = uv ∈ ET being processed
in the i-th round of coloring is of type (iv) as defined in Lemma 2.3. In this case
Algorithm 1 calls Subroutines 2 and 3. In Subroutine 2, the construction of graph

H1 takes O
(

(

lT,R
)2

)

time. Note that since |Pi−1[uv]
⋃

Qi| = 2lT,R, initializing

H1 as complementary bipartite graph GT,Pi−1[uv]
S

Qi
takes O

(

(

lT,R
)2

)

time. Now

between every pair of independent vertices in H1, we decide whether to introduce an
edge or not. Let a pair of independent vertices in H1 correspond to rooted subtrees
Rj , Rk ∈ Pi−1[uv]

⋃

Qi. If Rj , Rk are both uncolored or colored with the same color,
then no edge is added. On the other hand, if Rj , Rk are colored with different colors,
then a new edge is added in H1 between the corresponding vertices. Clearly these are
constant time checks. The interesting case is when Rj is uncolored and Rk is colored.
In this case we check if there is some colored rooted subtree Rl which shares its color
with Rk and collides with Rj . If there is such a rooted subtree, then we add a new
edge in H1 between the vertices corresponding to rooted subtrees Rj , Rk. To perform
this check in constant time, for each processed host tree edge we track the pairs of
rooted subtrees that share colors. Note that due to Lemma 2.1, more than two rooted
subtrees present on a host tree edge cannot share colors. Also, from Lemma 2.4 we
can infer that if there is a rooted subtree Rl which shares its color with Rk and collides
with Rj , then it must be present on edge uw (as defined in Lemma 2.3, uw is the edge
adjacent to u that has already been processed). Now since Rk, Rl form a pair of rooted
subtrees present on host tree edge uw that share color, the pair is tracked. So we can
simply check (in constant time) if Rj collides with the rooted subtree (if present) that
shares its color with Rk on host tree edge uw. This determines whether we have to add
a new edge in H1 between the vertices corresponding to rooted subtrees Rj , Rk or not.

Since the number of pairs of independent vertices in H1 is upperbounded by
(

lT,R
)2

,

graph H1 is updated in O
(

(

lT,R
)2

)

time. After this, H̄1 can also be obtained from

H1 in O
(

(

lT,R
)2

)

time. Complexity of determining maximum matching in bipartite

graph B is O
(

√

|VB ||EB|
)

[8, p.696-697]. Therefore, in bipartite graph H̄1 having

2lT,R nodes, determining maximum matching requires O
(

(

lT,R
)2.5

)

time. Now if an

uncolored rooted subtree is matched to a colored rooted subtree, the color assignment
for that uncolored rooted subtree is a constant time operation. On the other hand,
for unmatched uncolored rooted subtrees and pairs of uncolored rooted subtrees, as
explained in the previous paragraph, color assignment is carried out in O

(

lT,R
)

time.
Similar time complexities hold for various steps of Subroutine 3. Now determining
the better of the two subroutines and assigning color to an uncolored rooted subtree
R ∈ Qi is a constant time operation.

To summarize, the running time complexity of Algorithm 1 depends on the fol-
lowing steps.

(i) Constructing the conflict graph GT,R requires O
(

|ET ||R|2
)

time.
(ii) Determining maximum matching in bipartite graphs H̄1 and H̄2 requires

O
(

(

lT,R
)2.5

)

time. This is done for all host tree edges of type (iv). Since there are

O (|ET |) such edges, the total time required for determining maximum matching is

O
(

|ET |
(

lT,R
)2.5

)

.

(iii) Assigning colors to rooted subtrees is either a constant time or a O
(

lT,R
)

operation. Since there are |R| rooted subtrees, total time required for assigning colors
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is O
(

|R|lT,R
)

.
This gives us the required time complexity for Algorithm 1.

3. Coloring Scheme Based on Subtree Coloring (∆T ≤ 4). In this section
we present another, simpler scheme for coloring a given set of rooted subtrees R on a
given host tree T . We prove that this scheme is a 10

3 -approximation algorithm when
∆T = 4, a 3-approximation algorithm when ∆T = 3 and a 2-approximation algorithm
when ∆T = 2.

3.1. Coloring Algorithm. Let UR denote the set of subtrees of host tree T
obtained by taking the underlying multigraphs of all the rooted subtrees in the set
R, i.e., if R = {R1, . . . , R|R|}, then UR = {UR1 , . . . , UR|R|

}. With a slight abuse

of notation, let GT,UR denote the conflict graph of all the subtrees in the set UR

such that the vertices of the conflict graph correspond to the subtrees in the set UR,
and there is an edge between two vertices in the conflict graph if and only if the
corresponding subtrees share some common host tree edge.

The basic idea is that instead of coloring rooted subtrees in the set R, which is
hard, we color the subtrees in the set UR and then use this coloring to generate a
coloring for the rooted subtrees.

Lemma 3.1. GT,R is a spanning subgraph of GT,UR .
Proof. By definition of the set UR there is an obvious bijection between VG

T,UR

and VGT,R . Also for every pair of rooted subtrees Ri, Rj ∈ R, if there is some directed
arc ~eij ∈ ARi

⋂

ARj
, then the corresponding undirected edge eij ∈ EUi

⋂

EUj
. There-

fore if there is an edge ninj ∈ EGT,R , then edge ninj ∈ EG
T,UR

where ni, nj are the
vertices corresponding to rooted subtrees Ri, Rj and subtrees URi

, URj
respectively

in the two graphs.
Lemma 3.1 results in the following corollary.
Corollary 3.2. Any valid vertex coloring for GT,UR is also a valid vertex

coloring for GT,R.
Corollary 3.2 suggests that we can simply color the conflict graph GT,UR of the

underlying subtrees of the rooted subtrees in the set R, and then assign each rooted
subtree R ∈ R the same color as determined for its underlying subtree UR. This is
essentially the scheme that we follow.

Observe that if the host tree degree ∆T = 2, then the graph GT,UR is simply an
interval graph [3, p.175]. Moreover as stated in section 1.1, if the host tree degree
∆T = 3, then the graph GT,UR is chordal, and if the host tree degree ∆T = 4, then
the graph GT,UR is weakly chordal. In all three cases, the graph is easily colorable.

The complete scheme is given as Algorithm 5 (SubtreeBasedColor).

Subroutine 5 SubtreeBasedColor
Require: Host tree T with ∆T ≤ 4. Set of rooted subtrees R on tree T .
Ensure: A valid vertex coloring ψ ∈ ΨGT,R .

/* For ease of exposition we treat ψ as an integer array where ψ[i] = ψ(Ri) (or
ψ(|Ri|), as the case may be) for each i ∈ {1, . . . , |R|}. */

1: Determine UR = {UR ∀R ∈ R} and the conflict graph GT,UR .
2: Determine a minimum vertex coloring ψ∗ for the conflict graph GT,UR .

/* This is easy since the conflict graph is an interval graph, chordal graph or
weakly chordal graph depending on whether the host tree degree is 2, 3 or 4. */

3: ψ[i]← ψ∗[i] for every Ri ∈ R
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3.2. Analysis. Now we shall prove that the coloring scheme presented as Algo-
rithm 5 is an approximation algorithm for the problem. We shall first discuss the case
when the host tree degree ∆T = 4. The other two cases (∆T = 2, 3) are similar.

We start our analysis by proving a pair of useful results that characterize the
subtrees in the set UR based on the structure of the conflict graph GT,UR . Both of
these results are independent of the degree of the host tree T . In Lemma 3.3 we prove
that in the conflict graph GT,UR , all the subtrees forming a clique must have at least
one host tree vertex in common. And in Lemma 3.4 we prove that if two subtrees
of a tree contain a common edge, then they must contain at least one common edge
adjacent to their every common vertex.

We shall see that Lemma 3.3 allows us to determine the size of a maximum clique
in the conflict graph by studying the sets of subtrees containing a common host tree
vertex one at a time, rather than studying the set of all the subtrees at once. And
for each such set of subtrees, Lemma 3.4 then allows us to concentrate only on the
conflicts on the host tree edges adjacent to the common host tree vertex among the
subtrees in the set, and ignore the presence or absence of the subtrees on all the other
host tree edges. We require the size of maximum clique in conflict graph GT,UR to
determine the chromatic number of the graph, which in turn is needed to determine
the approximation ratio for our coloring Algorithm 5.

Lemma 3.3. If vertices ni1 , . . . , nik ∈ VG
T,UR

form a clique of size k, then
there is a host tree vertex v ∈ VT common to all the corresponding subtrees, i.e.,
v ∈

⋂k
j=1 VURij

.

Proof. We prove by induction.

For the case when k = 2, the lemma effectively states that if there is an edge
ni1ni2 ∈ EGT,UR

, then for the corresponding subtrees VURi1

⋂

VURi2
6= ∅. By defini-

tion of the conflict graph, the existence of edge ni1ni2 ∈ EGT,UR
implies that there

is at least one edge common in the corresponding subtrees, i.e., EURi1

⋂

EURi2
6= ∅,

which in turn implies that VURi1

⋂

VURi2
6= ∅. Hence, the statement holds for k = 2.

Let it hold for k = m. If vertices ni1 , . . . , nim ∈ VGT,UR
form a clique of size m,

then there is a host tree vertex v ∈ VT common to all the corresponding subtrees, i.e.,
v ∈

⋂m
j=1 VURij

.

Now we consider the case when k = m+1, i.e., the vertex set C = {ni1 , . . . , nim+1}
⊆ VG

T,UR
forms a clique of size m + 1. Let Cj = C \ {nij} for j ∈ {1, . . . ,m + 1}.

Clearly, for every j, Cj forms a clique of size m in the conflict graph. By inductive
assumption, there is a host tree vertex common to all the subtrees corresponding to
the vertices in clique Cj . Let vj ∈ VT be a host tree vertex that is common to all the
subtrees corresponding to the vertices in clique Cj . Note that if vj ∈ VURij

for some

j, then this means vj ∈
⋂m+1
j=1 VURij

and hence the statement of the lemma holds for

k = m + 1. Let us assume the alternative case, i.e., for every j, vj /∈ VURij
. Now

consider the host tree vertices v1, vl, vm+1 where 1 < l < m+1. Since nil lies in cliques
C1 and Cm+1; v1, vm+1 ∈ VURil

. Also, by assumption, vl /∈ VURil

. Therefore, there

is a path in host tree T (using edges from the set EURil

) between vertices v1, vm+1

that does not contain vertex vl. Using similar arguments we can find a path between
vertices v1, vl not containing vertex vm+1 and a path between vertices vl, vm+1 not
containing vertex v1. This shows the presence of a cycle in the host tree T , which is
a contradiction. Hence, the statement of the lemma holds for k = m+ 1.

An immediate implication of Lemma 3.3 is that the size of maximum clique in
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conflict graph GT,UR is equal to largest of the size of maximum cliques in the conflict
graphs of subtrees containing various host tree vertices, i.e.,

ωG
T,UR

= max
v∈VT

ωG
T,UR[v]

, (3.1)

where ωG denotes the clique number of graph G (which is the size of maximum clique
in G) and UR[v] denotes the set of subtrees that contain host tree vertex v ∈ VT .

Lemma 3.4. If subtrees URi
, URj

∈ UR[v] do not share any host tree edge adjacent
to v, then they do not share any host tree edge.

Proof. Subtrees URi
, URj

∈ UR[v] imply that host tree vertex v ∈ VT lies in both
the vertex sets VURi

and VURj
. Let subtrees URi

, URj
share some host tree edge that

is not adjacent to v. Let one of its end vertices be w. Therefore, host tree vertex w
lies in both the vertex sets VURi

and VURj
. Now since vertices v, w ∈ VURi

and URi
is

a subtree of host tree T , all the host tree edges on the path between vertices v, w are
in the set EURi

. Let uv ∈ ET be the first edge on the path starting from vertex v.
Therefore, host tree edge uv ∈ EURi

. Following similar arguments we can show that
host tree uv ∈ EURj

as well.

One of the implications of Lemma 3.4 is that if two subtrees URi
, URj

∈ UR[v]

do not share any host tree edge adjacent to vertex v, then there is no corresponding
edge in the conflict graph, i.e., ninj /∈ EG

T,UR
.

Now that we have established Lemmas 3.3 and 3.4, we try to study the sets of
subtrees containing a common host tree vertex in more detail. Consider a host tree
vertex v ∈ VT . Two subtrees URi

, URj
∈ UR[v] are said to be equivalent (with respect

to v) if there is no host tree edge adjacent to v such that URi
is present on the edge

but URj
is not. For any host tree vertex v ∈ VT , we can partition UR[v], the set of

subtrees that contain v, into equivalence classes based on their presence or absence
on the tree edges adjacent to vertex v. In case when the host tree degree ∆T = 4,
for any host tree vertex v ∈ VT , there are 15 such equivalence classes. Let these be

U
R[v]
1 , . . . ,U

R[v]
15 . Figure 3.1 shows a sample subtree from each of these classes in the

neighborhood of vertex v. In the figure, vertex v is depicted as black dot. Note that
there are host tree vertices for which some of the equivalence classes may be empty,
e.g. for a vertex v ∈ VT having degree δv < 4.

Now in Lemmas 3.5 and 3.6, we shall determine an upperbound for the size of
maximum clique in the conflict graph. Lemma 3.5 is another useful result pertaining
to the cliques in conflict graph GT,UR[v] , and is independent of the degree of host tree
T . Finally in Lemma 3.6 we specifically look at the maximal cliques in the conflict
graphs of subtrees of host tree of degree 4.

Lemma 3.5. Let the vertex set C ⊆ VG
T,UR[v]

form a clique of size k. If there

are two equivalent subtrees URi
, URj

∈ UR[v] such that, of the corresponding vertices
in the conflict graph, ni ∈ C but nj /∈ C, then the vertex set C

⋃

{nj} forms a clique
of size k + 1.

Proof. Note that if a subtree UR ∈ UR[v] then it must be present on at least one
of the host tree edges adjacent to v. This is simply because we assume that there are
at least two vertices in UR, |VUR

| ≥ 2. The reason for this assumption is that if a
(rooted) subtree is singleton, then it cannot collide with any other (rooted) subtree
and therefore is not interesting for coloring. Now since UR is a subtree and therefore
connected, the host tree edges on the paths from v to every other vertex in the set
VUR

must belong to the set EUR
. At least one of these paths must necessarily contain

some host tree edge adjacent to v. Now we begin the proof of the lemma.
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Fig. 3.1. We can partition UR[v], the set of subtrees of host tree T with degree ∆T = 4, that
contain vertex v ∈ VT , into 15 equivalence classes depending on the presence or absence of the

subtree on host tree edges adjacent to vertex v. Let these be U
R[v]
1 , . . . ,U

R[v]
15 as presented above.

Note that, as explained above, since subtrees URi
, URj

∈ UR[v] are equivalent,
they share at least one host tree edge (adjacent to v). Therefore, there is an edge in
the conflict graph between vertices corresponding to subtrees URi

, URj
, i.e., ninj ∈

EG
T,UR[v]

. Now for every vertex nl ∈ C (other than vertex ni), since edge ninl ∈

EG
T,UR[v]

, by Lemma 3.4, subtrees URi
, URl

share some host tree edge adjacent to

vertex v. Also, since subtrees URi
, URj

are equivalent (w.r.t. v), every host tree edge
adjacent to vertex v is either in both the sets EURi

, EURj
, or is in neither of the two.

Therefore, for every vertex nl ∈ C, the edge njnl exists in the conflict graph GT,UR .
This proves that the vertex set C

⋃

{nj} forms a clique of size k + 1 in the conflict
graph.

An immediate implication of Lemma 3.5 is that if the vertex set C ⊆ VG
T,UR[v]

forms a maximal clique in GT,UR[v] , then for every equivalence class U
R[v]
l of the

subtree set UR[v] exactly one of the following holds:

(i) For every subtree in the equivalence class, the corresponding vertex in the

conflict graph is in the maximal clique, i.e, for every URi
∈ U

R[v]
l , ni ∈ C.

(ii) For every subtree in the equivalence class, the corresponding vertex in the

conflict graph is not in the maximal clique, i.e, for every URi
∈ U

R[v]
l , ni /∈ C.

Using this observation we determine an upper bound on the size of maximum clique
in the conflict graph GT,UR[v] .

Lemma 3.6. The size of maximum clique in conflict graph GT,UR[v] is bounded

as ωG
T,UR

≤ 10
3 l
T,R, where lT,R is the load of the set of rooted subtrees R on the host

tree T as defined in section 2.

Proof. Using Lemmas 3.4 and 3.5, we can determine the maximal cliques in
conflict graph GT,UR[v] . It turns out that it is much easier to observe the maximal
independent sets in the complementary conflict graph ḠT,UR[v] . These are exactly the
same as the maximal cliques in conflict graph GT,UR[v] . Figure 3.2 depicts the struc-
ture of complementary conflict graph ḠT,UR[v] . Each vertex in the figure represents a
set of independent vertices in ḠT,UR[v] . And, an edge in the figure represents an edge
between every vertex in one set and every vertex in the other set.

We observe that the only possible maximal cliques in conflict graph GT,UR[v]

correspond to the subtrees in the following equivalence classes.
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UR[v]
8

UR[v]
6

UR[v]
9

UR[v]
5

UR[v]
10

UR[v]
7UR[v]

4

UR[v]
2

UR[v]
1

UR[v]
3

UR[v]
14

UR[v]
13

UR[v]
11

UR[v]
12

UR[v]
15

Fig. 3.2. Structure of complementary conflict graph Ḡ
T,UR[v] in the case when ∆T = 4. Each

vertex in the figure represents a set of independent vertices. An edge between two vertices represents
an edge between every vertex in one set and every vertex in the other set. Cliques in graph G

T,UR[v]

correspond to independent sets in graph Ḡ
T,UR[v] .

(i) U
R[v]
1 ,U

R[v]
5 ,U

R[v]
6 ,U

R[v]
7 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
15

(ii) U
R[v]
2 ,U

R[v]
5 ,U

R[v]
8 ,U

R[v]
9 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
14 ,U

R[v]
15

(iii) U
R[v]
3 ,U

R[v]
6 ,U

R[v]
8 ,U

R[v]
10 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(iv) U
R[v]
4 ,U

R[v]
7 ,U

R[v]
9 ,U

R[v]
10 ,U

R[v]
11 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(v) U
R[v]
5 ,U

R[v]
6 ,U

R[v]
7 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(vi) U
R[v]
5 ,U

R[v]
8 ,U

R[v]
9 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(vii) U
R[v]
6 ,U

R[v]
8 ,U

R[v]
10 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(viii) U
R[v]
7 ,U

R[v]
9 ,U

R[v]
10 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(ix) U
R[v]
5 ,U

R[v]
7 ,U

R[v]
9 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(x) U
R[v]
5 ,U

R[v]
6 ,U

R[v]
8 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(xi) U
R[v]
6 ,U

R[v]
7 ,U

R[v]
10 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

(xii) U
R[v]
8 ,U

R[v]
9 ,U

R[v]
10 ,U

R[v]
11 ,U

R[v]
12 ,U

R[v]
13 ,U

R[v]
14 ,U

R[v]
15

As discussed in section 2, we assume that the load of the set of rooted subtrees
R on the host tree T is lT,R. Therefore, the number of subtrees present on any host
tree edge is upper bounded by 2lT,R. For any host tree vertex v ∈ VT , this leads to
the following inequalities.

|U
R[v]
1 |+ |U

R[v]
5 |+ |U

R[v]
6 |+ |U

R[v]
7 |+ |U

R[v]
11 |

+ |U
R[v]
12 |+ |U

R[v]
13 |+ |U

R[v]
15 | ≤ 2lT,R (3.2)

|U
R[v]
2 |+ |U

R[v]
5 |+ |U

R[v]
8 |+ |U

R[v]
9 |+ |U

R[v]
11 |

+ |U
R[v]
12 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤ 2lT,R (3.3)

|U
R[v]
3 |+ |U

R[v]
6 |+ |U

R[v]
8 |+ |U

R[v]
10 |+ |U

R[v]
12 |

+ |U
R[v]
13 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤ 2lT,R (3.4)

|U
R[v]
4 |+ |U

R[v]
7 |+ |U

R[v]
9 |+ |U

R[v]
10 |+ |U

R[v]
11 |

+ |U
R[v]
13 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤ 2lT,R (3.5)
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Note that inequalities (3.2), (3.3), (3.4) and (3.5) actually bound the size of maximal
cliques listed as (i), (ii), (iii) and (iv), respectively, by 2lT,R.

Adding inequalities (3.3), (3.4), (3.5) and 2×(3.2), we get

2|U
R[v]
1 |+ |U

R[v]
2 |+ |U

R[v]
3 |+ |U

R[v]
4 |+ 3|U

R[v]
5 |

+ 3|U
R[v]
6 |+ 3|U

R[v]
7 |+ 2|U

R[v]
8 |+ 2|U

R[v]
9 |+ 2|U

R[v]
10 |

+ 4|U
R[v]
11 |+ 4|U

R[v]
12 |+ 4|U

R[v]
13 |+ 3|U

R[v]
14 |+ 5|U

R[v]
15 | ≤ 10lT,R

⇒ 3|U
R[v]
5 |+ |U

R[v]
6 |+ |U

R[v]
7 |+ |U

R[v]
11 |

+ |U
R[v]
12 |+ |U

R[v]
13 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤ 10lT,R

⇒ |U
R[v]
5 |+ |U

R[v]
6 |+ |U

R[v]
7 |+ |U

R[v]
11 |+ |U

R[v]
12 |

+ |U
R[v]
13 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤

10

3
lT,R. (3.6)

Inequality (3.6) bounds the size of maximal clique listed as (v) above. We can similarly
show that the size of maximal cliques listed as (vi), (vii) and (viii) are also bounded
by 10

3 l
T,R.

Adding inequalities (3.2), (3.3) and (3.5), we get

|U
R[v]
1 |+ |U

R[v]
2 |+ |U

R[v]
4 |+ 2|U

R[v]
5 |+ |U

R[v]
6 |

+ 2|U
R[v]
7 |+ |U

R[v]
8 |+ 2|U

R[v]
9 |+ |U

R[v]
10 |+ 3|U

R[v]
11 |

+ 3|U
R[v]
12 |+ 3|U

R[v]
13 |+ 3|U

R[v]
14 |+ 3|U

R[v]
15 | ≤ 6lT,R

⇒ 2|U
R[v]
5 |+ |U

R[v]
7 |+ |U

R[v]
9 |+ |U

R[v]
11 |

+ |U
R[v]
12 |+ |U

R[v]
13 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤ 6lT,R

⇒ |U
R[v]
5 |+ |U

R[v]
7 |+ |U

R[v]
9 |+ |U

R[v]
11 |+ |U

R[v]
12 |

+ |U
R[v]
13 |+ |U

R[v]
14 |+ |U

R[v]
15 | ≤ 3lT,R. (3.7)

Inequality (3.7) bounds the size of maximal clique listed as (ix ) above. We can
similarly show that the size of maximal cliques listed as (x ), (xi) and (xii) are also
bounded by 3lT,R.

This tells us that for any host tree vertex v ∈ VT , the size of maximum clique
in conflict graph GT,UR[v] is bounded by 10

3 l
T,R, i.e., ωG

T,UR[v]
≤ 10

3 l
T,R. Therefore,

from equation (3.1), the size of maximum clique in conflict graph GT,UR is bounded
as ωG

T,UR
≤ 10

3 l
T,R.

Now we prove the main theorem of this section.

Theorem 3.7. Algorithm 5 is a 10
3 -approximation algorithm for the problem

when the degree of the host tree T is 4.

Proof. As stated before, Algorithm 5 assigns the rooted subtrees in the set R, the
same colors as determined by coloring GT,UR , the conflict graph of their underlying
subtrees. When ∆T = 4, conflict graph GT,UR is weakly chordal, and the following
hold.

(i) Coloring GT,UR is easy. Therefore, the total number of colors required by
Algorithm 5 is equal to χG

T,UR
.

(ii) Conflict graph GT,UR is perfect [3, p.146]. Therefore, its chromatic number
is equal to its clique number, i.e., χG

T,UR
= ωG

T,UR
.
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(a) We can partition UR[v], the set of subtrees of
host tree T that contain vertex v ∈ VT , into 7
equivalence classes depending on the presence or
absence of the subtree on host tree edges adjacent

to vertex v. Let these be U
R[v]
1 , . . . ,U

R[v]
7 as pre-

sented above.

UR[v]
1

UR[v]
7

UR[v]
2 UR[v]

6 UR[v]
3

UR[v]
5UR[v]

4

(b) Structure of conflict graph
G

T,UR[v] . Each vertex in the fig-

ure represents a clique. An edge
between two vertices represents an
edge between every vertex in one
set and every vertex in the other
set.

Fig. 3.3. Equivalence classes and structure of the conflict graph of subtrees UR[v] in the case
when host tree degree ∆T = 3

So by Lemma 3.6 we get the upper bound on the number of colors required by the
algorithm as

|ψ(5)(R)| = χG
T,UR

= ωG
T,UR

≤
10

3
lT,R. (3.8)

Note that the minimum number of colors required for coloring the rooted subtrees
in the set R is lower bounded by lT,R, i.e.,

χGT,R ≥ l
T,R. (3.9)

From equations (3.8) and (3.9), we obtain

|ψ(5)(R)|

χGT,R

≤
10

3
,

which gives the required approximation ratio for Algorithm 5.
As already stated, Lemmas 3.3, 3.4 and 3.5 are independent of the degree of the

host tree T . So they hold for ∆T = 2, 3 as well. It is much easier to determine the
upper bound on the size of maximum clique in conflict graph GT,UR for the case when
∆T = 2, 3 compared to the case when ∆T = 4 (Lemma 3.6). These bounds are 2lT,R

and 3lT,R for the case when the degree of the host tree is 2 and 3, respectively. When
∆T = 3, Figure 3.3(a) shows a sample subtree from each of the equivalence classes (as
defined before) in the set UR[v] in the neighborhood of vertex v. Figure 3.3(b) depicts
the structure of the conflict graph GT,UR[v] . The corresponding figures for the case
when ∆T = 2 are presented as Figures 3.4(a) and 3.4(b). The reader is encouraged
to use Figures 3.3(b) and 3.4(b) and determine (analogous to Lemma 3.6) the upper
bound on the size of maximum clique in the conflict graph GT,UR when ∆T = 3, 2
respectively. The arguments presented in the proof of Theorem 3.7 also hold and we
get the approximation ratio of 2 and 3 when ∆T = 2 and 3, respectively.
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(a) We can partition UR[v], the set
of subtrees of host tree T that con-
tain vertex v ∈ VT , into 3 equiva-
lence classes depending on the pres-
ence or absence of the subtree on host
tree edges adjacent to vertex v. Let

these be U
R[v]
1 , . . . ,U

R[v]
3 as presented

above.

UR[v]
3

UR[v]
2UR[v]

1

(b) Structure of conflict graph
G

T,UR[v] . Each vertex in the fig-

ure represents a clique. An edge
between two vertices represents an
edge between every vertex in one
set and every vertex in the other
set.

Fig. 3.4. Equivalence classes and structure of the conflict graph of subtrees UR[v] in the case
when host tree degree ∆T = 2

3.3. Complexity. The time complexity of the coloring scheme presented as Al-
gorithm 5 depends on the complexity of the algorithm employed for coloring the
conflict graph GT,UR . When ∆T ≤ 4, the scheme has a polynomial running time. In
particular, we have the following result.

Proposition 3.8. The running time complexity of Algorithm 5 is:

(i) O
(

|R|2 (|ET |+ |R|)
)

when ∆T = 4.

(ii) O
(

|ET ||R|2
)

when ∆T = 3.
(iii) O (|R| log |R|) when ∆T = 2.

Proof. First note that in Algorithm 5, for constructing conflict graph GT,UR we
need to decide for every pair of subtrees in the set UR, whether the subtrees in that
pair collide or not. For each pair we have to check for collision on a maximum of |ET |
edges. Therefore, the conflict graph can be constructed in O

(

|ET ||R|2
)

time.

The complexity of minimum vertex coloring in a weakly chordal graph W is
O

(

|VW |3
)

[18]. Also as stated before, for the case when ∆T = 4 the conflict graph
GT,UR is a weakly chordal graph. Therefore, in this case the complexity of Algorithm
5 is O

(

|R|2 (|ET |+ |R|)
)

.

Minimum vertex coloring in a chordal graph C is solvable in O (|VC |+ |EC |) time
[32]. Also as stated before, for the case when ∆T = 3 the conflict graph GT,UR is a
chordal graph. Therefore, in this case the complexity of Algorithm 5 is determined by
the complexity of constructing the conflict graph, i.e., the complexity of Algorithm 5
is O

(

|ET ||R|2
)

.

As stated before, when ∆T = 2 the conflict graph GT,UR is an interval graph. In
fact, in this case compared to first constructing and then coloring conflict graph
GT,UR , it is much more efficient to treat the subtrees as intervals and straight-
away assign colors to them. The complexity of coloring a given set I of intervals is
O (|I| log |I|) [30]. Therefore the complexity of Algorithm 5 in the case when ∆T = 2
is O (|R| log |R|).

4. Concluding Remarks. In this work, motivated by the problem of assigning
wavelengths to multicast traffic requests in all-optical tree networks, we presented two
schemes (Algorithms 1 and 5) for coloring a given set of rooted subtrees of a given
host tree with the objective of minimizing the total number of colors required. We
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proved that Algorithm 1 is a 5
2 -approximation algorithm for the problem for the case

when the degree of the host tree is restricted to 3 and Algorithm 5 is an approximation
algorithm for the problem with approximation ratio 10

3 , 3 and 2 for the cases when
the degree of the host tree is restricted to 4, 3 and 2, respectively.

Although the problem is related to the problem of directed path coloring in trees,
the coloring strategy used in that problem is not directly applicable here. An im-
portant difference between the two problems is that if directed paths P1, P2 collide
on some host tree edge, then they must collide on every host tree edge they share,
whereas for rooted subtrees R1, R2, it is possible for both to be present on a host tree
edge without colliding on that edge but colliding on some other edge. The implication
of this difference is that while in the case of directed paths, the subproblem of coloring
all the paths that share a host tree vertex is equivalent to edge coloring in a bipartite
graph, there is no such simple equivalence in the case of rooted subtrees. Moreover,
the load of a set of directed paths, which is usually used as the lower bound on the
chromatic number of the corresponding conflict graph, is equal to the clique number.
This is not true in the case of rooted subtrees. In fact, the lower bound that we
employ to determine the approximation ratio for Algorithm 1, although better than
the load of the set of the rooted subtrees, is still worse than the clique number of
the corresponding conflict graph. In future, if the clique number of the conflict graph
corresponding to the set of rooted subtrees is used in the analysis, as the lower bound
for chromatic number, it may be possible to achieve a better approximation ratio for
the problem.
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Appendix A. Proof of Lemma 2.7.

Proof. Let Q , Qi and P , Pi−1. In order to limit |ψ(1)(P [uw]
⋃

Q)| −
|ψ(1)(P [uw])|, Subroutine 2 finds the maximum number of disjoint pairs (R,S) of
rooted subtrees such that one of the following is true:

(i) R,S ∈ Q, and in this case they are assigned the same (possibly new) color.
(ii) R ∈ Q, S ∈ P [uv], and in this case R is assigned the same color as S.

Note that some rooted subtrees in the set Q may remain unpaired.

Subroutine 2 finds such pairs of rooted subtrees by studying graph H1. First note
that the sets P [uv] and Q partition the set R[uv], therefore by Lemma 2.1, graph
ḠT,P[uv]

S

Q is bipartite. This, along with the fact that EGT,P[uv]
S

Q
⊆ EH1 , implies

that H̄1 is also bipartite. Hence it is easy to find a maximum matching in H̄1. Let
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M ⊆ EH̄1
be any matching in H̄1. Observe that the edges are added to H1 (lines 2-6)

in such a way that if edge ninj ∈M , then for the corresponding rooted subtrees, one
of the following holds:

(i) Ri, Rj ∈ Q.
(ii) Ri ∈ P , Rj ∈ Q, there is no Rk ∈ P that collides with Rj , and ψ(1)(Ri) =

ψ(1)(Rk).
(iii) Ri, Rj ∈ P and ψ(1)(Ri) = ψ(1)(Rj).

This means that if edge ninj ∈M , then Ri, Rj can be assigned the same color without
violating partial coloring ψ(1)|P . Note that the matched edges of type (i) and (ii)
correspond to the rooted subtree pairs of type (i) and (ii), respectively. A matched
edge of type (iii) does not provide any additional knowledge; it simply lists all the
pairs of rooted subtrees in the set P [uv] that have already been assigned the same
colors. Since the number of edges of type (iii) is already fixed, a maximum matching in
H̄1 determines the maximum number of edges of types (i) and (ii), i.e., it determines
the maximum number of rooted subtree pairs described above.

First assume that the rooted subtrees in the set P [uv] do not share colors with
any rooted subtree in the set P [uw] \ P [uv], although they may share colors amongst
themselves. Note that as a consequence of Lemma 2.1, more than two rooted subtrees
in the set P [uv] cannot have the same color. Starting from any maximum matching
MḠT,P[uv]

⊆ EḠT,P[uv]
in graph ḠT,P[uv], we can construct a matching M ⊆ EH̄1

in

graph H̄1 by first removing and then adding some edges. We remove every matched
edge ninj ∈MḠT,P[uv]

belonging one of the following two types:

(i) Both the corresponding rooted subtrees Ri, Rj ∈ P [uv] and ψ(1)(Ri) 6=
ψ(1)(Rj).

(ii) The corresponding rooted subtrees are such that Ri ∈ Q, Rj ∈ P [uv] and
there is a rooted subtree Rk ∈ P such that ψ(1)(Rk) = ψ(1)(Rj).
Now consider rooted subtrees Ri, Rj ∈ P [uv] with ψ(1)(Ri) = ψ(1)(Rj). Since
MḠT,P[uv]

is a maximum matching in ḠT,P[uv], either edge ninj ∈ MḠT,P[uv]
, or at

least one of the vertices ni, nj is matched to some other vertex in MḠT,P[uv]
.4 In

the case when ni, nj are not already matched to each other in MḠT,P[uv]
, the edge(s)

adjacent to ni or nj (or both) in MḠT,P[uv]
is (are) either of type (i) or of type (ii)

and is (are) therefore removed from the matching. Now we can safely add edge ninj
to the matching. Let the set of removed edges of type (i) and type (ii) be Er(i), Er(ii)
respectively, and the set of added edges be Ea. Observe that for every removed edge
in the set Er(ii), there is a corresponding edge in the set Ea added to the matching
(this is not necessarily true for all removed edges in the set Er(i)). Also, for at most
two removed edges in the set Er(ii), the corresponding added edge in the set Ea can

be the same; therefore |Ea| ≥
1
2 |Er(ii)|. Now we can lower bound the size of maxi-

mum matching MH̄1
∈ EH̄1

in graph H̄1 by the size of M , a valid matching in the
graph. Note that |M | is equal to |MḠT,P[uv]

| = mT
P[uv]

S

Q minus the number of edges
removed plus the number of edges added. Thus

|MH̄1
| ≥ |M | = mT

P[uv]
S

Q −
(

|Er(i)|+ |Er(ii)| − |Ea|
)

≥ mT
P[uv]

S

Q −
(

|Er(i)|+ |Ea|
)

≥ mT
P[uv]

S

Q −m
T
P[uv], (A.1)

where we are using the fact that Ea
⋃

Er(i), the set of removed edges of type (i) and
the set of added edges form a matching in the bipartite graph ḠT,P[uv]. To see this,

4It may happen that both ni, nj are matched in MḠT,P[uv]
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note that Ea
⋃

Er(i) ⊆ EḠT,P[uv]
, and the end vertices of edges in the sets Ea, Er(i)

are distinct.
Note that the vertex set VH̄1

corresponds to all the rooted subtrees in the set
P [uv]

⋃

Q, and an edge in matching MH̄1
determines two rooted subtrees which share

their color after this round of coloring. Therefore, using inequality (A.1) and the fact
that the subsets P [uv] and Q partition the set R[uv],

|ψ(1)(P [uv]
⋃

Q)| ≤ |P [uv]
⋃

Q| − |MH̄1
|

≤ |P [uv]|+ |Q| −
(

mT
P[uv]

S

Q −m
T
P[uv]

)

. (A.2)

Thus using inequality (A.2), the number of colors required for coloring all the
rooted subtrees in the set P [uw]

⋃

Q is

|ψ(1)(P [uw]
⋃

Q)| = |ψ(1)(P [uw]
⋃

Q)| − |ψ(1)(P [uv]
⋃

Q)|+ |ψ(1)(P [uv]
⋃

Q)|

≤ |P [uw] \ P [uv]|+ |P [uv]|+ |Q| −
(

mT
P[uv]

S

Q −m
T
P[uv]

)

≤ 2lT,R + |Q| −
(

mT
R[uv] −m

T
P[uv]

)

. (A.3)

For the first inequality we use the fact that |ψ(1)(P [uw]
⋃

Q)|−|ψ(1)(P [uv]
⋃

Q)| is the
number of colors used for coloring all the rooted subtrees in the set P [uw]\P [uv] that
are different from the colors used for coloring rooted subtrees in the set P [uv]

⋃

Q;
therefore, this number is clearly upper bounded by |P [uw] \ P [uv]|. For the final
inequality, we use the fact that the subsets P [uv] and P [uw] \ P [uv] partition the set
P [uw] = R[uw].

Now suppose some rooted subtree Ri ∈ P [uv] shares its color with another rooted
subtree Rj ∈ P [uw] \ P [uv]. In this case, the worst that can happen is that some
rooted subtrees in the set Q, that could have shared color with rooted subtree Ri, can
no longer do so since they collide with rooted subtree Rj . Hence the size of maximum
matching MH̄1

reduces by 1. The unit reduction is independent of the number of
affected rooted subtrees in the setQ, since inMH̄1

rooted subtree Ri can be potentially
matched to only one of them. On the other hand, the rooted subtreesRi ∈ P [uv], Rj ∈
P [uw] \ P [uv] sharing color means that |ψ(1)(P [uw]

⋃

Q)| − |ψ(1)(P [uv]
⋃

Q)|, the
number of colors used for coloring all the rooted subtrees in the set P [uw]\P [uv] that
are different from the colors used for coloring rooted subtrees in the set P [uv]

⋃

Q,
also reduces by 1. Applying both the observations, we note that final inequality in
(A.3) still holds.

Appendix B. Proof of Lemma 2.8.
Proof. First observe (from the call to Subroutine 3 in Algorithm 1) that Q ≡

Qi and P ≡ Pi−1. Note that R[uw] = P [uw] can be partitioned into P [uv] and
P [uw] \ P [uv]; therefore,

|P [uv]|+ |P [uw] \ P [uv]| = |P [uw]| = |R[uw]| = 2lT,R.

Also, R[uv] can be partitioned into P [uv] and Q; therefore,

|P [uv]|+ |Q| = |R[uv]| = 2lT,R.

From above two equations, it follows that

|P [uw] \ P [uv]| = |Q|. (B.1)
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Since Q can be partitioned into Q[ux] and Q \ Q[ux] and P [uw] \ P [uv] can be
partitioned into P [ux] \ P [uv] and P [uw] \ (P [uv]

⋃

P [ux]), from equation (B.1), it
follows that

|P [uw] \
(

P [uv]
⋃

P [ux]
)

|+ |P [ux] \ P [uv]| = |Q \ Q[ux]|+ |Q[ux]| = |Q|. (B.2)

In Subroutine 3, first we find the maximum number of disjoint pairs (R,S) of
rooted subtrees such that one of the following is true:

(i) Both R,S ∈ Q[ux]. In this case, both R and S are assigned the same color
(we shall describe which color is assigned in a moment).

(ii) R ∈ Q[ux] and S ∈ P [ux] \ P [uv] such that R can be assigned the same
color as S. In this case R is indeed assigned the same color as S.

We find such pairs of rooted subtrees by studying the graph H2. First note that
the sets Q[ux] and P [ux] \ P [uv] are disjoint subsets of the set R[ux]; therefore by
Lemma 2.1, the graph ḠT,(P[ux]\P[uv])

S

Q[ux] is bipartite. This, along with the fact
that EGT,(P[ux]\P[uv])

S

Q[ux]
⊆ EH2 , implies that H̄2 is also bipartite. Hence it is easy

to find a maximum matching in H̄2. Let M ⊆ EH̄2
be any matching in H̄2. Observe

that the edges are added to H2 in such a way that if edge njnk ∈ M , then for the
corresponding rooted subtrees, one of the following holds:

(i) Rj , Rk ∈ Q[ux].
(ii) Rj ∈ Q[ux], Rk ∈ P [ux] \ P [uv], and there is no Rl ∈ P that collides with

Rj and ψ(1)(Rl) = ψ(1)(Rk).
(iii) Rj , Rk ∈ P [ux] \ P [uv] and ψ(1)(Rj) = ψ(1)(Rk).

This means that if edge njnk ∈ M , then Rj , Rk can be assigned the same color.
Note that the matched edges of type (i) and (ii) correspond to the rooted subtree
pairs of type (i) and (ii), respectively. A matched edge of type (iii) does not provide
any additional knowledge; it simply lists all the pairs of rooted subtrees in the set
P [ux] \ P [uv] that have already been assigned the same colors. Since the number
of edges of type (iii) is already fixed, a maximum matching in H̄2 determines the
maximum number of edges of types (i) and (ii), i.e., it determines the maximum
number of rooted subtree pairs described above.

We start by assuming that the rooted subtrees in the set P [uw] \ P [uv] do not
share colors with any rooted subtree in the set P [uv], although they may share colors
amongst themselves. Let MH̄2

⊆ EH̄2
be a maximum matching in H̄2. Let the number

of type (i), (ii) and (iii) edges in the matching be t1, t2, t3, respectively. In this case
the size of the maximum matching in H̄2 is lower bounded as

|MH̄2
| = t1 + t2 + t3 ≥ m

T
Q[ux]

S

(P[ux]\P[uv]) −m
T
P[ux]\P[uv]

≥

[

mT
Q[ux]

S

(P[ux]\P[uv]) −
|P [ux] \ P [uv]|

2

]+

, (B.3)

where mT
Q[ux]

S

(P[ux]\P[uv]) and mT
P[ux]\P[uv] are the size of maximum matchings in

the bipartite graphs ḠT,Q[ux]
S

(P[ux]\P[uv]) and ḠT,P[ux]\P[uv], respectively. The rea-
soning for the initial inequality follows exactly as the reasoning for inequality (A.1)
presented in the proof of Lemma 2.7. For the final inequality, we use the facts that
the size of any matching in the bipartite graph ḠT,P[ux]\P[uv] must be smaller than
half of the size of its vertex set, and the size of a matching cannot be negative. Note
that ḠT,Q[ux]

S

(P[ux]\P[uv]) is a subgraph of ḠT,R[ux] induced by the vertex set cor-
responding to the rooted subtrees in the set Q[ux]

⋃

(P [ux] \ P [uv]). If the size of a
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maximum matching in ḠT,R[ux] is mT
R[ux], then the size of a maximum matching in

ḠT,Q[ux]
S

(P[ux]\P[uv]) is bounded as

mT
Q[ux]

S

(P[ux]\P[uv]) ≥
[

mT
R[ux] −

(

|R[ux]| − |Q[ux]
⋃

(P [ux] \ P [uv]) |
)]+

=
[

|Q[ux]|+ |P [ux] \ P [uv]|+mT
R[ux] − 2lT,R

]+

. (B.4)

This is because if we consider a maximum matching MḠT,R[ux]
⊆ EḠT,R[ux]

in the

graph ḠT,R[ux], any edge ninj ∈MḠT,R[ux]
(corresponding to rooted subtrees Ri, Rj)

can be classified into one of the following three types:
(i) Ri, Rj ∈ Q[ux]

⋃

(P [ux] \ P [uv]).
(ii) Ri ∈ Q[ux]

⋃

(P [ux] \ P [uv]) , Rj ∈ R[ux] \ (Q[ux]
⋃

(P [ux] \ P [uv])).
(iii) Ri, Rj ∈ R[ux] \ (Q[ux]

⋃

(P [ux] \ P [uv])).
Let the set of edges of type (i), (ii) and (iii) be E(i), E(ii), E(iii) respectively. Clearly,
E(i) is a valid matching in the graph ḠT,Q[ux]

S

(P[ux]\P[uv]), therefore a lower bound for
|E(i)| can be treated as a lower bound for mT

Q[ux]
S

(P[ux]\P[uv]). Also, since maximum
matching MḠT,R[ux]

can be partitioned into sets E(i), E(ii), E(iii), we get

mT
Q[ux]

S

(P[ux]\P[uv]) ≥ |E(i)| ≥ m
T
R[ux] −

(

|E(ii)|+ |E(iii)|
)

. (B.5)

Since an edge in the set E(ii) requires one of its end vertices to correspond to some
rooted subtree from the set R[ux] \ (Q[ux]

⋃

(P [ux] \ P [uv])) and an edge in the set
E(iii) requires both of its end vertices to correspond to rooted subtrees from the same
set, we have

|E(ii)|+ 2|E(iii)| ≤ |R[ux] \
(

Q[ux]
⋃

(P [ux] \ P [uv])
)

|

= |R[ux]| − |Q[ux]
⋃

(P [ux] \ P [uv]) |. (B.6)

From inequalities (B.5), (B.6) and the fact that the size of a matching cannot be
negative, we obtain the required inequality (B.4).

From equations (B.3) and (B.4),

|MH̄2
| = t1 + t2 + t3

≥

[

[

|Q[ux]|+ |P [ux] \ P [uv]|+mT
R[ux] − 2lT,R

]+

−
|P [ux] \ P [uv]|

2

]+

=

[

|Q[ux]|+
|P [ux] \ P [uv]|

2
+mT

R[ux] − 2lT,R
]+

= h. (B.7)

Note that each of these h edges is of type (i), (ii) or (iii) described before.
Observe that Subroutine 3 colors the uncolored rooted subtrees in the set Q in

the following order:
(i) First, among the rooted subtrees in the set Q[ux], all the subtrees that have

been matched to already colored subtrees from the set P [ux] \ P [uv] are colored.
For every such matched pair, the uncolored subtree is assigned the same color as
its already colored partner. Note that the number of such rooted subtrees in the
matching MH̄2

is equal to t2.
(ii) Next, the remaining rooted subtrees from the set Q[ux] are randomly se-

lected one-at-a-time for coloring. If the selected rooted subtree R was not matched,
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and if there is a color that has already been used in the coloring that can be safely as-
signed to R, then that color is used; otherwise, a new color is used. On the other hand,
if the selected rooted subtree R was matched to another rooted subtree S, then clearly
S is also uncolored. In this case both R and S are assigned the same color. Again,
preference is given to the colors that are already in use over the use of new colors.
Note that according to Lemma 2.4, rooted subtrees in the set P [uw]\ (P [uv]

⋃

P [ux])
can never collide with any rooted subtree in the set Q. So any color used for rooted
subtrees in the set P [uw] \ (P [uv]

⋃

P [ux]) that is not used by any other rooted
subtree in the set P [ux] \ P [uv], can be assigned to any of the rooted subtrees in
the set Q. Let z1 be the number colors assigned to the rooted subtrees in the set
P [uw] \ (P [uv]

⋃

P [ux]) that are reused for coloring rooted subtrees in the set Q[ux]
during this step of the subroutine. We can bound z1 as

z1 ≥ min
{

|Q[ux]| − t1 − t2,

|ψ(1)(P [uw] \ P [uv])| − |ψ(1)(P [ux] \ P [uv])|
}

. (B.8)

Here the first term in min is the maximum number of colors required for coloring
all the rooted subtrees in the set Q[ux] that remain uncolored after step (i) of the
subroutine described above. The second term is the number of colors used for coloring
rooted subtrees in the set P [uw] \ (P [uv]

⋃

P [ux]) that are not used for coloring any
rooted subtree in the set P [ux] \ P [uv].

(iii) Now the remaining uncolored rooted subtrees (all the subtrees in the set
Q \ Q[ux]) are assigned colors one-at-a-time. Again preference is given to the colors
that are already in use over the use of new colors. Note that rooted subtrees in the set
Q \Q[ux] can never collide with any rooted subtree in the set P [uw] \ P [uv]. So any
color used for rooted subtrees in the set P [uw] \ P [uv] that has not yet been reused
for coloring any rooted subtree in the set Q[ux], can be assigned to any of the rooted
subtrees in the set Q \ Q[ux]. Let z2 be the number colors assigned to the rooted
subtrees in the set P [uw] \ P [uv] that are reused for coloring rooted subtrees in the
set Q \ Q[ux] during this step of the subroutine. We can bound z2 as

z2 ≥ min
{

|Q \ Q[ux]|, |ψ(1)(P [uw] \ P [uv])| − t2 − z1
}

. (B.9)

Here the first term in min is the maximum number of colors required for coloring
all the rooted subtrees in the set Q \ Q[ux] and the second term is the number of
colors used for coloring rooted subtrees in the set P [uw] \ P [uv] that have not yet
been reused in the first two steps of the subroutine.

Let z3 be the number of colors used for coloring a pair of rooted subtrees in the set
P [uw]\(P [uv]

⋃

P [ux]) or a rooted subtree in the set P [ux]\P [uv] and another rooted
subtree in the set P [uw] \ (P [uv]

⋃

P [ux]). We can determine z3 by subtracting the
total number of colors used for coloring all the rooted subtrees in the set P [uw]\P [uv]
from the sum of total number of rooted subtrees in the set P [uw] \ (P [uv]

⋃

P [ux])
and the total number of colors used for coloring all the rooted subtrees in the set
P [ux] \ P [uv]. So using equation (B.2),

z3 = |P [uw] \
(

P [uv]
⋃

P [ux]
)

|+ |P [ux] \ P [uv]| − t3 − |ψ
(1)(P [uw] \ P [uv])|

= |Q| − t3 − |ψ
(1)(P [uw] \ P [uv])|. (B.10)
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Now we note that the total number of colors required for coloring all the rooted
subtrees in the set Q

⋃

(P [uw] \ P [uv]) can be bounded as

|ψ(1)(Q
⋃

(P [uw] \ P [uv]))| = |Q
⋃

(P [uw] \ P [uv]) | − |MH̄2
| − z1 − z2 − z3

≤ |Q
⋃

(P [uw] \ P [uv]) | − |Q|

+ max
{

|ψ(1)(P [uw] \ P [uv])| − |P [uw] \ P [uv]|,

|ψ(1)(P [ux] \ P [uv])| − |Q \ Q[ux]| − t1 − t2,−t1
}

≤ |P [uw] \ P [uv]|

+ [|P [ux] \ P [uv]| − |Q \ Q[ux]| − t1 − t2 − t3]
+

≤ |P [uw] \ P [uv]|+ [g − h]+ . (B.11)

To get the first inequality we need to perform some algebra (that we have omitted
here) using equations (B.8), (B.9), (B.10), (B.2) and the fact that |MH̄2

| = t1+t2+t3.
For getting the second inequality we again use equation (B.2) along with the fact that
the sets Q and P [uw] \ P [uv] are mutually exclusive. For this step we also use the
observation that the first and the third terms in max are always less than or equal
to zero and in the second term |ψ(1)(P [ux] \ P [uv])| = |P [ux] \ P [uv]| − t3. Final
inequality uses equations (B.2) and (B.7).

Now using inequality (B.11), the number of colors required for coloring all the
rooted subtrees in the set P [uw]

⋃

Q is

|ψ(1)(P [uw]
⋃

Q)| = |ψ(1)(P [uw]
⋃

Q)| − |ψ(1)(Q
⋃

(P [uw] \ P [uv]))|

+ |ψ(1)(Q
⋃

(P [uw] \ P [uv]))|

≤ |P [uv]|+ |P [uw] \ P [uv]|+ [g − h]+

= 2lT,R + [g − h]+ . (B.12)

The inequality uses the fact that |ψ(1)(P [uw]
⋃

Q)|−|ψ(1)(Q
⋃

(P [uw] \ P [uv]))| is the
number of colors used for coloring all the rooted subtrees in the set P [uv] that are dif-
ferent from the colors used for coloring rooted subtrees in the set Q

⋃

(P [uw] \ P [uv]).
Therefore it is upper bounded by |P [uv]|. And for the final equality, we use the fact
that the subsets P [uv] and P [uw] \ P [uv] partition the set P [uw] = R[uw].

Now suppose some rooted subtree Ri ∈ P [uw]\P [uv] shares its color with another
rooted subtree Rj ∈ P [uv]. In this case the worst that can happen is that some we
may have to add a single new color for coloring all the rooted subtrees in the set
Q. On the other hand rooted subtrees Ri ∈ P [uw] \ P [uv], Rj ∈ P [uv] sharing color
means that |ψ(1)(P [uw]

⋃

Q)|−|ψ(1)(Q
⋃

(P [uw] \ P [uv]))| the number of colors used
for coloring all the rooted subtrees in the set P [uv] that are different from the colors
used for coloring rooted subtrees in the set Q

⋃

(P [uw] \ P [uv]), also reduces by 1.
So applying both the observations we note that final inequality in (B.12) still holds.

The worst that can happen is that we have to add a single new color for coloring
all the rooted subtrees in the set Q. But in this case |ψ(1)(P [uw])| ≤ |P [uw]| − 1 =
2lT,R − 1. Therefore

|ψ(1)(P [uw]
⋃

Q)| = |ψ(1)(P [uw])|+ [g − h]+ + 1 ≤ 2lT,R + [g − h]+,

and the result still holds.
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