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In this dissertation, we study the problem of (i) routing and wavelength as-

signment, and (ii) traffic grooming for multicast traffic in Wavelength Division Mul-

tiplexing (WDM) based all-optical networks.

We focus on the static case where the set of multicast traffic requests is assumed

to be known in advance. For the routing and wavelength assignment problem, we

study the objective of minimizing the number of wavelengths required; and for the

traffic grooming problem, we study the objectives of minimizing (i) the number of

wavelengths required, and (ii) the number of electronic components required.

Both the problems are known to be hard for general fiber network topolo-

gies. Hence, it makes sense to study the problems under some restrictions on the

network topology. We study the routing and wavelength assignment problem for

bidirected trees, and the traffic grooming problem for unidirectional rings. The se-

lected topologies are simple in the sense that the routing for any multicast traffic

request is trivially determined, yet complex in the sense that the overall problems

still remain hard. A motivation for selecting these topologies is that they are of

practical interest since most of the deployed optical networks can be decomposed

into these elemental topologies.

In the first part of the thesis, we study the the problem of multicast routing and

wavelength assignment in all-optical bidirected trees with the objective of minimiz-



ing the number of wavelengths required in the network. We give a 5
2
-approximation

algorithm for the case when the degree of the bidirected tree is at most 3. We give

another algorithm with approximation ratio 10
3
, 3 and 2 for the case when the de-

gree of the bidirected tree is equal to 4, 3 and 2, respectively. The time complexity

analysis for both these algorithms is also presented. Next we prove that the problem

is hard even for the two restricted cases when the bidirected tree has (i) depth 2,

and (ii) degree 2. Finally, we present another hardness result for a related problem

of finding the clique number for a class for intersection graphs.

In the second part of the thesis, we study the problem of multicast traf-

fic grooming in all-optical unidirectional rings. For the case when the objective

is to minimize the number of wavelengths required in the network, given an α-

approximation algorithm for the circular arc coloring problem, we give an algorithm

having asymptotic approximation ratio α for the multicast traffic grooming problem.

We develop an easy to calculate lower bound on the minimum number of electronic

components required to support a given set of multicast traffic requests on a given

unidirectional ring network. We use this lower bound to analyze the worst case

performance of a pair of simple grooming schemes. We also study the case when

no grooming is carried out in order to get an estimate on the maximum number of

electronic components that can be saved by applying intelligent grooming. Finally,

we present a new grooming scheme and compare its average performance against

other grooming schemes via simulations. The time complexity analysis for all the

grooming schemes is also presented.
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Chapter 1

Introduction

The defining characteristic of optical networks is that the data transmission is

carried out in optical domain, over directed fiber-optic links. Although the idea of

employing fiber optic cables for transmitting data is not new in itself, the develop-

ment of Wavelength Division Multiplexing (WDM) [1, p.208-210] technology proved

decisive in the wide scale deployment of optical networks that we see today.

WDM is a technique which allows simultaneous transmission of multiple data

streams over a single optical fiber by using a different wavelength of light for each

individual signal. Hence, in a WDM based optical network, an optical fiber can be

treated as a set of parallel optical channels, each operating at a different wavelength.

The extremely high data transfer rate achievable by employing WDM, along with

the low bit error rate and delay characteristics of the optical fiber has made WDM

based optical networks the obvious contender for the next generation high speed

data transport networks.

1.1 Optical Networks: Concepts

In this section, we present some basic concepts and definitions pertaining to

optical networking. First we introduce the concept of all-optical networking, followed
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by the problems of routing and wavelength assignment, and traffic grooming in all-

optical networks. Finally, we discuss the concept of multicasting and how to support

multicast traffic in all-optical networks. For a more detailed review, the reader is

referred to the excellent tutorial by Rouskas et al. [2].

1.1.1 All-Optical Networking

In WDM based optical networks, each node is equipped with an Optical Cross

Connect (OXC) to switch the optical signals on the incoming fibers onto the outgoing

fibers. OXC first demultiplexes the light on the incoming fibers into its constituent

wavelengths, then carries out the required switching operation in either electronic

or optical domain before multiplexing the switched wavelengths onto the outgoing

fibers. In case of electronic (or opaque) switching, the optical signals are converted

to electronic domain for switching and then back to optical domain. Thus, it involves

Optical-Electronic-Optical (OEO) operations. The drawback of this approach is that

with the current technology, it is difficult to perform electronic processing at the high

data transfer rates supported by the optical fibers. On the other hand, in optical

(or transparent) switching, the wavelength signals obtained after demultiplexing

the incoming light, are switched using optical switch modules. Thus, there is no

OEO operation and the switching is carried out entirely in the optical domain. The

drawback of this approach is that the control over the switching is not as fine as

with electronic switching. This is because in optical switching, the data traffic on

each individual wavelength is preserved whereas in electronic switching even the

sub-wavelength traffic can be switched independently.

The important special case when all the switching in the network is carried out

in the optical domain is called all-optical networking. With the current technology

trends, it seems likely that the mismatch between the data rates supported by

optical and electronic components in the network shall continue to grow for some
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time. Therefore, in this work we restrict ourselves to the case of all-optical networks.

1.1.2 Routing and Wavelength Assignment

The optical switching capability of the network nodes allow us to setup light-

paths between any given pair of nodes. A lightpath between two network nodes is a

clear optical channel from the start node to the end node, possibly spanning several

fiber links. Here by clear we mean that there is no OEO operation on any of the

intermediate nodes, i.e., the signal remains in the optical domain throughout the

length of the path and the conversion of data between the optical and electronic

domains takes place at the start and the end nodes only. Since optical switching is

carried out at the granularity of wavelength channels, lightpaths are also setup at

the same granularity. Setting up a lightpath requires determining its routing over

the fiber links and assigning it a wavelength on each of the links in its path. The

resulting problem is referred to as the routing and wavelength assignment problem.

Clearly, wavelengths assigned to different lightpaths on a common fiber link must

be distinct. Also, an implication of employing optical switching at the intermediate

nodes is that the wavelength assigned to a lightpath must be the same on all its

links. This is known as the wavelength-continuity constraint. This constraint can be

relaxed if the network nodes are equipped with special optical devices called wave-

length converters. But due to their prohibitive cost, in this work we assume that

there are no such devices in the network.

The routing and wavelength assignment problem comes in two flavors: static

and dynamic. In the static problem, it is assumed that the set of traffic requests, for

which the routing and wavelength assignment problem needs to be solved, is known

in advance. On the other hand the dynamic routing and wavelength assignment

refers to the case in which traffic requests arrive in real time. In this work, we only

study the static routing and wavelength assignment problem.
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The most widely studied objective function for the problem of static routing

and wavelength assignment in all-optical networks is to minimize the number of

wavelengths required per fiber in order to support a given set of traffic requests. The

justification for employing this as the objective function is that due to technological

constraints, the number of wavelengths that can be placed on a single optical fiber

is a limiting resource. Although, over the years other cost functions have been

suggested and studied for the routing and wavelength assignment problem, in this

work we try to find routing and wavelength assignments that minimize the number

of wavelengths required.

The interested reader is referred to [3] for a review of the routing and wave-

length assignment problem.

1.1.3 Traffic Grooming

As described before, in an all-optical network a traffic request must be routed

on a single lightpath. One obvious strategy would be to setup a new lightpath

for each individual traffic request. A problem with this approach is that since the

maximum number of wavelengths of light that can be multiplexed over an optical

fiber is limited by the current WDM technology, it might not be possible to set up

a new lightpath for every traffic request. Hence, setting up dedicated lightpaths for

each traffic request might not be a very attractive approach. Recent advances in the

fiber-optic technology has pushed the transport capacities of individual wavelength

channels on the optical fiber into gigabit range. Consequently, in many scenarios

the bandwidth requirements of individual traffic requests are much lower than the

transport capacity of individual wavelength channel. This observation suggests the

possibility of packing several low rate traffic streams carrying data from individual

requests, onto each available wavelength channel. This is referred to as traffic groom-

ing. Usually the low rate data streams are groomed onto the wavelength channel
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using Time Division Multiplexing. Each individual wavelength channel is parti-

tioned in time into fixed length timeslots. An individual low rate traffic stream can

be assigned a set of timeslots on a wavelength channel. We refer to these timeslots

on individual wavelengths as the sub-wavelength channels. The actual packing of low

rate traffic on wavelength channels is carried out by using electronic devices known

as Add-Drop Multiplexers (ADMs). An ADM is a device required to add (retrieve)

sub-wavelength traffic onto (from) a particular wavelength channel. On receiving

a wavelength channel, the ADM corresponding to that particular wavelength, can

add/drop timeslots on the wavelength channel without disrupting the onward trans-

mission of the other timeslots on the wavelength. Obviously for a lightpath routed

on a particular wavelength, ADMs corresponding to that wavelength are required

at both the start and the end nodes of the lightpath. Usually the network nodes do

not have the ability to rearrange the timeslots on a wavelength channel. As a result,

in case of optical switching, a sub-wavelength-continuity constraint (similar to the

wavelength-continuity constraint desribed in Section 1.1.2) must be respected while

implementing traffic grooming.

Analogous to the two flavors of the routing and wavelength assignment prob-

lem, the traffic grooming problem also has static and dynamic variants. As before,

we only study the static traffic grooming problem, i.e., we assume that the set of

traffic requests is known in advance.

For the problem of static traffic grooming in all-optical networks, usually the

objective is to minimize the network cost which includes both the cost of optics

and the cost of electronics. As stated before, the number of wavelengths that can

be placed on a single optical fiber is a limiting resource. Hence, the number of

wavelengths required per fiber is a fair measure of the cost of optics in the network.

The cost of electronics is usually estimated by the number of Add-Drop Multiplexers

(ADMs) required in the network.
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The interested reader is referred to [4] and [5] for a review of the problem of

grooming sub-wavelength traffic in WDM networks.

1.1.4 Multicasting in All-Optical WDM Networks

Most of the early work on both routing and wavelength assignment, and traf-

fic grooming in WDM based all-optical networks, has concentrated on the scenario

where the given traffic requests are unicast (single source-single destination) in na-

ture. But multicasting (single source-multiple destinations) is an important tech-

nology which is tailor made for catering to several upcoming applications such as

multimedia conferencing, video distribution, collaborative processing, etc. There-

fore, studying both the problems of routing and wavelength assignment, and traffic

grooming for multicast traffic in WDM based all-optical networks is of extreme

importance.

Multicasting in WDM based all-optical networks involves setting up of light-

trees, which are an obvious extension of the concept of lightpaths. A light tree

can be viewed as a clear optical tree rooted at the source node and spanning the

set of destinations. To support multicasting in all-optical networks via light-trees,

the network nodes must be equipped with optical splitters and must have tap-and-

continue capability [6]. As the name suggests, network nodes equipped with optical

splitters can split any incoming wavelength channel onto multiple outgoing ports.

This is required at nodes on the light-tree where there is a bifurcation. On the other

hand, tap-and-continue capability at a network node means the ability to tap a

small amount of light from a wavelength channel and use it for electronic processing

while the rest of the light is switched in optical domain. This capability is required

at the intermediate nodes of a light-tree which are also in the destination set of

the multicast request being serviced by the light-tree. Obviously the number of

times a particular wavelength channel can be tapped or split is upper bounded due
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to various phenomena such as power loss, distortion, etc., introduced by each such

operation. These considerations require the placement of devices such as optical

regenerators in the network that are used to boost the power of the optical signal.

In this work, we ignore such restrictions.

The interested reader is referred to [7] for a review of the problem of multicas-

ting in WDM networks.

1.2 Contributions

In this work, we develop and analyze algorithms for the problems of multicast

routing and wavelength assignment, and multicast traffic grooming in all-optical

WDM networks. We restrict our study to the static case, i.e., we assume that the

set of multicast traffic requests is known in advance.

For the problem of routing and wavelength assignment of multicast traffic in

all-optical WDM networks, we consider the objective of minimizing the total number

of wavelengths required in the network. With this objective function, the problem

is known to be hard in general topologies [8], even when the traffic requests are

restricted to being unicast.

For the problem of multicast traffic grooming in all-optical WDM networks,

we consider two different cost functions: (i) number of wavelengths required in the

network (cost of optics), and (ii) number of ADMs required in the network (cost

of electronics). We put an additional restriction that the bandwidth requirement

of the individual multicast traffic requests are identical and are an integral fraction

of the bandwidth available on individual wavelength channels. As a consequence

of this assumption, without loss of any generality, we can further assume that the

bandwidth requirement of the individual multicast traffic requests is equal to the

capacity of the sub-wavelength channel. Observe that traffic grooming is a general-

ization of the routing and wavelength assignment problem. It is hardly surprising
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that for both the cost functions, even the unicast traffic grooming problem is hard

in general topologies [5].

Since both the routing and wavelength assignment, and the traffic grooming

problems are hard for general network topologies, in this work, we put restrictions

on the network topologies. In particular, we study the multicast routing and wave-

length assignment in all-optical bidirected trees, and the multicast traffic grooming

problem in all-optical unidirectional rings. The motivation for selecting bidirected

trees and unidirectional rings is that these simple structures are almost pervasive in

the currently deployed fiber-optic networks. Moreover, there is a hope that analyz-

ing the problems in these simple topologies could give insights into the problem for

more general network topologies.

1.2.1 Multicast Wavelength Assignment in Bidirected Trees

A bidirected tree is the directed graph generated from a tree by replacing each

edge of the tree by a pair of anti-parallel directed edges. We study the problem of

routing and wavelength assignment for a given set of multicast traffic requests when

the underlying fiber network is a bidirected tree and all-optical networking paradigm

is employed. As stated before, we try to minimize the number of wavelengths

required.

In Chapter 5, we prove that the problem is hard even for the cases when the

bidirected tree is restricted to being (i) a bidirected path (i.e., the degree of the

bidirected tree is restricted to being 2), and (ii) a bidirected star (i.e, the depth of

the bidirected tree is restricted to being 2). Since the problem is hard even when

the degree of the bidirected tree is 2, we restrict our study to the case when the

degree of the bidirected tree is bounded. In particular, in Chapter 3, we present

GREEDY-WA, an algorithm for the multicast routing and wavelength assignment

problem in all-optical bidirected trees restricted to the case when the degree of the
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given bidirected tree is at most 3. We analyze the worst case performance guaranty

and the time complexity for GREEDY-WA and prove that it is a 5
2
-approximation

algorithm. In Chapter 4, we present SUBTREE-BASED-WA, an algorithm for the

multicast routing and wavelength assignment problem in all-optical bidirected trees

restricted to the case when the degree of the given bidirected tree is at most 4. Again,

we analyze the worst case performance guaranty and the time complexity and prove

that SUBTREE-BASED-WA is an approximation algorithm with approximation

ratio 10
3
, 3 and 2 for the case when the degree of the given bidirected tree is equal to

4, 3 and 2, respectively. Finally, in Chapter 5, we prove that the problem of finding

the clique number of conflict graphs of rooted subtrees of bidirected trees having

degree 3 is hard. This result is interesting because the problem of determining the

clique number of such conflict graphs arise when we try to establish a ‘good’ lower

bound on the number of wavelengths required for various instances of the multicast

routing and wavelength assignment problem of interest.

The work presented in Chapters 3 and 4 was published as [9], and parts of the

work discussed in Chapter 5 was presented as [10].

1.2.2 Multicast Traffic Grooming in Unidirectional Rings

A unidirectional ring is the directed graph generated from a cycle by replacing

each edge of the cycle by a directed edge such that the in-degree and the out-degree

of every vertex is unity. We study the problem of grooming a given set of multicast

traffic requests when the underlying fiber network is a unidirectional ring and all-

optical networking paradigm is employed. As stated before, we study two objective

functions: (i) minimizing the number of wavelengths required in the network, and

(ii) minimizing the number of ADMs required in the network. In Chapter 7, we

present three traffic grooming algorithms for this problem: ARC-COL-BASED-TG,

RANDOM-TG, ITER-IMPROVE-TG. We prove that, given any α-approximation
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algorithm for the problem of coloring circular arc graphs, ARC-COL-BASED-TG

has an asymptotic approximation ratio of α for the grooming problem of interest with

the objective of minimizing the number of wavelengths required in the network. We

also develop an easy to calculate lower bound on the number of ADMs required by

any traffic grooming solution for a given instance of the problem. We use this lower

bound to analyze the worst case performance of both RANDOM-TG and ARC-COL-

BASED-TG, as measured in terms of the number of ADMs required in the network.

Finally, via extensive simulations, we compare the average performance of the three

grooming schemes as well as the behavior of the developed lower bound. During

the simulations, we also compare the average performance of CIRCLE-BASED-TG,

which is a multicast extension of the unicast traffic grooming scheme developed in

[11] for all-optical unidirectional ring networks. We analyze the time complexities

of the various grooming schemes and discuss simulation results in detail.

The work presented in Chapter 7 was published as [12].

1.3 A Word on Notation

In this section we state the recurring notations, concepts and assumptions

that are used in this work. This is not a comprehensive list and we introduce more

notations in the text as and when required.

1.3.1 Basic Notation

We use ‘:=’ to signify ‘is defined to be equal to’. We denote the cardinality

of a finite set S by |S|. For real valued x, [x]+ := max{x, 0}. We denote the

image of any mapping f : D −→ R, restricted to some set S ⊆ D, by f(S), i.e.,

f(S) := {r ∈ R : r = f(s) for some s ∈ S}.

Unless otherwise specified, all the graphs (both undirected and directed) are
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assumed to be simple. For a given graph G, we denote the edge set by EG and the

vertex set by VG. An edge between vertices u, v ∈ VG is denoted by the binary set

{u, v}. Similarly, for a given directed graph ~G, we denote the set of directed edges

by E ~G and the set of vertices by V ~G. For a pair of vertices u, v ∈ V ~G, a directed edge

from u to v is denoted by the ordered pair (u, v). We denote the degree of a vertex

v of graph G by δG(v) and the degree of the graph by ∆G := maxv∈VGδG(v). We

denote the in-degree of a vertex v of directed graph ~G by δi
~G
(v) and the in-degree of

the directed graph by ∆i
~G

:= maxv∈V~G δ
i
~G
(v). Similarly, we denote the out-degree of

a vertex v of directed graph ~G by δo
~G
(v), and the out-degree of the directed graph

by ∆o
~G

:= maxv∈V~G δ
o
~G
(v).

The undirected multigraph obtained by replacing all the directed edges of

directed graph ~G by undirected edges is denoted by ‖ ~G‖ and is referred to as the

skeleton of ~G. Hence, V‖ ~G‖ := V ~G, and corresponding to every directed edge (u, v) in

E ~G, there is an undirected edge {u, v} in E‖ ~G‖. Observe that in general the skeleton

of a simple directed graph is a multigraph and not a simple graph, i.e., in general

E‖ ~G‖ is a multiset. This is because a simple directed graph ~G is allowed to have a

pair of anti-parallel edges (u, v) and (v, u), but in that case its skeleton ‖ ~G‖ has a

pair of undirected edges between vertices u and v.

We denote the complement of a graph G by Ḡ, i.e., VḠ := VG and EḠ :=

{{u, v} : u, v ∈ VG and {u, v} /∈ EG}. A subgraph of a graph G is any graph S

with vertex set VS ⊆ VG and edge set ES ⊆ {{u, v} ∈ EG : u, v ∈ VS}. Similarly,

a subgraph of a directed graph ~G is any directed graph ~S with vertex set V~S ⊆ V ~G

and directed edge set E~S ⊆ {(u, v) ∈ E ~G : u, v ∈ V~S}. The subgraph of graph G

induced by vertex set W ⊆ VG is denoted by G[W ], and is defined as having vertex

set VG[W ] := W and edge set EG[W ] := {{u, v} ∈ EG : u, v ∈ W}. Similarly, the

subgraph of graph G induced by edge set F ⊆ EG is denoted by G[F ], and is defined

as having edge set EG[F ] := F and vertex set VG[F ] := {v : ∃ {u, v} ∈ F}.
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A directed graph ~R is said to be a rooted tree if (i) its skeleton ‖~R‖ is a tree,

and (ii) there is a unique vertex r ∈ V~R with in-degree 0, and every other vertex has

in-degree 1, i.e.,

δi
~R
(v) =











1 if v ∈ V~R \ {r},

0 if v = r.

In this case, r is said to be the root of ~R, and ~R is said to be a tree rooted at r.

Any vertex of the rooted tree ~R with out-degree 0 is said to be a leaf of ~R. Given

two directed graphs ~R and ~G, ~R is said to be a rooted subtree of ~G with root r (or

equivalently, rooted at r) if it is a rooted tree with r as the root, and it is a subgraph

of ~G.

Let R be a set of rooted subtrees of directed graph ~G. We denote the set of

all the rooted subtrees in R that contain directed edge (u, v) ∈ E ~G by R[(u, v)],

i.e., R[(u, v)] := {~R ∈ R : (u, v) ∈ E~R}. If a rooted subtree ~R contains directed

edge (u, v), i.e., if ~R ∈ R[(u, v)], we say that it is present on the directed edge

(u, v). Moreover, the set R of rooted subtrees of the directed graph ~G collide on

some directed edge (u, v) ∈ E ~G, if for every rooted subtree ~R ∈ R, (u, v) ∈ E~R. If

the directed edge on which the collision occurs is not important for the subsequent

discussion, we simply say that the set of rooted subtrees collide. If the set of leaves

of a rooted subtree ~R of a directed tree ~G, rooted at vertex r ∈ V ~G, is singleton

{l} ⊆ V ~G \ {r},
~R is called a directed path on ~G with start vertex r and end vertex

l. All the terminology described above for rooted subtrees, is extended in obvious

manner for directed paths as well.

1.3.2 Independence, Cliques, Matching, Coloring

Given a graph G, a set of vertices I ∈ VG is said to be independent if there

is no edge {u, v} in the graph such that both the vertices u, v ∈ I, i.e., EG[I] = ∅.

In general, largest independent set of vertices in a graph is not unique. Any largest
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independent set of vertices of the graph G is said to be a maximum independent set

of G; and its size is said to be the independence number of G, and is denoted by αG.

A set of vertices I ∈ VG is said to be a clique in the graph G, if for every pair of

vertices u, v ∈ C, there is an edge {u, v} in the graph, i.e., G[C] is a complete graph.

In general, largest clique in a graph is not unique. Any largest clique of the graph

G is said to be a maximum clique of G; and its size is said to the clique number of

G, and is denoted by ωG. A set of edges M ∈ EG is said to be a matching in the

graph G, if the degree of every vertex in the graph G[M ] is unity, i.e., δG[M ](v) = 1

for every v ∈ VG[M ]. In general, largest matching in a graph is not unique. Any

largest matching of the graph G is called a maximum matching of G.

A vertex coloring of graph G is a map ψ : VG −→ N := {1, 2, . . .} such that

for any pair of vertices u, v ∈ VG, if {u, v} ∈ EG then ψ(u) 6= ψ(v). The color of

vertex v of graph G according to the coloring ψ is given by ψ(v). According to the

notation described above, the set of colors assigned to vertex set W ⊆ VG according

to coloring ψ, is denoted by ψ(W ). Hence, the total number of colors used by vertex

coloring ψ is |ψ(VG)|. We denote the set of all the vertex colorings of graph G by

ΨG. A minimum vertex coloring of graph G is any vertex coloring that uses at most

as few colors as any other vertex coloring of the graph. In general, minimum vertex

coloring of a graph is not unique. The number of colors used in any minimum vertex

coloring of the graph G is called the chromatic number of G and is denoted by χG,

i.e., χG := minψ∈ΨG |ψ(VG)|.

1.3.3 Conflict Graphs

Consider a set of objects J = {J1, J2, . . . , J|J |} such that associated with every

object J ∈ J , there is a set SJ . The conflict graph of the set J is formed by creating

a vertex corresponding to each object in the set J , and creating an edge between

two vertices whenever the sets associated with the corresponding objects have a
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nonempty intersection. We denote the conflict graph of the set J by GJ . For ease

of exposition, we reuse the labels of the objects in the set J for the corresponding

vertices of the conflict graph GJ . In other words, VGJ
:= J and EGJ

:= {{Ji, Jj} :

Ji, Jj ∈ J and SJi∩SJj 6= ∅}. Observe that for any subset I ⊆ J of the objects, the

conflict graph GI is the subgraph of the conflict graph GJ induced by the vertices

corresponding to the objects in the set I, i.e., GI = GJ [I].

As an example, consider a graph G and a set H = {H1, . . . , H|H|} of subgraphs

of G. For any subgraphH ∈ H, consider its edge set EH to be the set associated with

H . In this case, the conflict graph GH has edges between pairs of the subgraph in

the set H that share some common edge in the graph G. Observe that the definition

of the conflict graph depends on the associated sets that we select. For instance if

instead of selecting the edge set, we had selected the vertex set of subgraphs as

the associated sets, we would have ended up with a different conflict graph. The

selection of the associated sets depends on exactly what we want to model with the

conflict graph.

The concept of conflict graphs as defined here is borrowed from the well known

concept of intersection graphs [13]. We use a different terminology to facilitate the

idea that for most of the time we would be looking at sets of traffic requests, and

the set associated with any traffic request would be the resources (such as the

wavelength or the subwavelength channel) that it requires. In this sense, the edges

of the generated conflict graph model the pairwise conflicts for common resources

among the traffic requests.

1.4 Modeling Multicasting in All-Optical Networks

In this section, we first discuss the models that we use for modeling optical

networks and multicast traffic requests. Next, we apply these models to describe

the routing and wavelength assignment problem, and the traffic grooming problem
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in general network topologies.

1.4.1 Fiber Network and Multicast Traffic Requests

We represent an optical fiber network as a directed graph where the vertices

model the network nodes and the directed edges model the fiber links. For the pur-

pose of illustration, let the directed graph ~G represent a fiber network. A multicast

traffic request on this network is modeled as a pair {s,D}, where s is the source

node and D is the set of destination nodes corresponding to the traffic request. It

is clear that s ∈ V ~G and D ⊆ V ~G \ {s}.

1.4.2 Routing and Wavelength Assignment

As described in Section 1.1.4, under the all-optical networking paradigm, a

multicast traffic request {s,D} is supported on the fiber network ~G by constructing

a light-tree with the source node s as the root and the set of destination nodes D as

leaves. Technically, any possible routing solution for the light-tree corresponding to

the multicast traffic request {s,D} is nothing but a subgraph ~S of the fiber network

~G satisfying the property that it contains a directed path from the source node s

to every node in the destination set D. Observe that any such subgraph ~S must

necessarily contain some rooted subtree ~R satisfying the following:

(i) It is rooted at the source node s, i.e., δi
~R
(s) = 0.

(ii) It spans the set of destination nodes D, i.e., D ⊆ V~R.

(iii) Every leaf vertex is a destination node, i.e., {v ∈ V~R : δo
~R
(v) = 0} ⊆ D.

Moreover, observe that the rooted subtree ~R of the fiber network ~G can also be

viewed as a possible routing solution for the light-tree corresponding to the multi-

cast traffic request {s,D}. Since ~R is a subgraph of ~S, in terms of the resources
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(wavelength channels, fibers, etc.) required, using the rooted subtree ~R as the

routing solution is no worse than using ~S. Hence, for routing the light-tree corre-

sponding to any multicast traffic request {s,D}, it is justified to only consider the

rooted subtrees of the fiber network that satisfy the above listed properties. We

denote this set of interesting rooted subtrees of the given directed graph ~G for a

given multicast traffic request {s,D} by R{ ~G,{s,D}}. In light of this observation, the

problem of routing and wavelength assignment for a given set of multicast traffic

requests M = {{s1, D1}, {s2, D2}, . . . , {s|M|, D|M|}} on the given fiber network ~G

under all-optical networking paradigm, can be defined as follows.

Problem 1.1 (MIN-MC-RWA). Given a pair { ~G,M}, where ~G is a directed graph

and M is a set of multicast traffic requests on ~G, determine a pair of mappings

{π, λ} as described next.

(i) Mapping π solves the routing problem in the sense that it maps each multicast

traffic request {s,D} ∈ M to a rooted subtree π({s,D}) := ~R{s,D} of the

directed tree ~G that determines the routing for the multicast traffic request

{s,D}.

(ii) Mapping λ :M−→ N solves the wavelength assignment problem in the sense

that it maps each multicast traffic request {s,D} ∈ M to a wavelength (de-

scribed as a positive integer).

(iii) Jointly the two mappings should satisfy the constraint that for every pair of

multicast traffic requests {si, Di}, {sj, Dj} ∈ M, if the rooted subtrees ~R{si,Di}

and ~R{sj ,Dj} collide, then λ({si, Di}) 6= λ({sj, Dj}).

The objective is to minimize |λ(M)|, the total number of wavelengths required.
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1.4.3 Traffic Grooming

As described in Section 1.2.2, in the traffic grooming problem we assume that

the given traffic requests have sub-wavelength bandwidth requirements. Moreover,

we assume that the traffic is homogeneous in the sense that the bandwidth require-

ments of all the traffic requests are the same, and are equal to an integral fraction

of the bandwidth capacity of a single wavelength channel. In particular, we assume

that at most g of these low rate traffic requests can be simultaneously placed on a

single wavelength channel. We refer to g as the grooming ratio.

Based on the discussions in sections 1.1.3, 1.1.4 and 1.4.2, grooming a given

set of multicast traffic requests can be modeled as follows.

Definition 1.2 (MC-TG). Given a triple { ~G,M, g}, where ~G is a directed graph,

M is a set of multicast traffic requests on ~G, and g is a positive integer; a traffic

grooming solution is a triple of mappings {π, λ, ω} as described next.

(i) Mapping π solves the routing problem in the sense that it maps each multi-

cast traffic request {s,D} ∈ M to a rooted subtree π({s,D}) := ~R{s,D} of

the directed tree ~G that determines the routing of the multicast traffic request

{s,D}.

(ii) Mapping λ :M−→ N solves the wavelength assignment problem in the sense

that it maps each multicast traffic request {s,D} ∈ M to a wavelength (de-

scribed as a positive integer).

(iii) Mapping ω :M−→ N solves the sub-wavelength channel assignment problem

in the sense that it maps each multicast traffic request {s,D} ∈ M to a sub-

wavelength channel (described as a positive integer).

(iv) Jointly the three mappings should satisfy the constraints that for every pair of

multicast traffic requests {si, Di}, {sj, Dj} ∈ M, if the rooted subtrees ~R{si,Di}
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and ~R{sj ,Dj} collide, then (λ({si, Di}), ω({si, Di})) 6= (λ({sj, Dj}), ω({sj, Dj}));

and the number of sub-wavelength channels in any wavelength must not exceed

g, i.e., maxk∈λ(M)|ω({{s,D} ∈ M : λ({s,D}) = k})| ≤ g.

In particular, we define the problem of grooming multicast traffic with the

objective of minimizing the total number of wavelengths required as follows.

Problem 1.3 (MIN-WAVE-MC-TG). Given a triple { ~G,M, g}, where ~G is a di-

rected graph, M is a set of multicast traffic requests on ~G, and g is a positive

integer; determine a traffic grooming solution {π, λ, ω} as defined in MC-TG, with

the objective of minimizing |λ(M)|, the total number of wavelengths required.

Similarly, we define the problem of grooming multicast traffic with the objec-

tive of minimizing the total number of ADMs required as follows.

Problem 1.4 (MIN-ADM-MC-TG). Given a triple { ~G,M, g}, where ~G is a directed

graph, M is a set of multicast traffic requests on ~G, and g is a positive integer; de-

termine a traffic grooming solution {π, λ, ω} as defined in MC-TG, with the objective

of minimizing the total number of ADMs required. The number of ADMs required by

the traffic grooming solution {π, λ, ω} can be determined as
∑

v∈V~G
|λ(Mv)|, where

for any vertex v ∈ V ~G, Mv is defined to be the set of all the multicast traffic re-

quests that have vertex v as the source node or as one of the destination nodes, i.e.,

Mv := {{s,D} ∈ M : v ∈ {s} ∪D}.

In the MIN-ADM-MC-TG problem, we are calculating the total number of

ADMs required at each network node and then summing this for all the nodes of

the network. Since we assume all-optical networking paradigm, the number of ADMs

required at any network node by a traffic grooming solution is simply the number

of wavelengths required by the set of multicast traffic requests for which that node

acts as either the source node or as one of the destination nodes.

18



1.5 Organization

The rest of the thesis is organized as follows. Chapters 2-5 are dedicated to

the problem of routing and wavelength assignment for multicast traffic in all-optical

bidirected trees. In Chapter 2, we define and model the exact routing and wavelength

assignment problem that we study, and review the work that is most closely related

to this problem. In Chapter 3, we present a greedy scheme for the problem. We

analyze its worst case performance as well as its time complexity. In Chapter 4,

we present another, simpler strategy for the problem. Again, we analyze worst case

performance as well as the time complexity. In Chapter 5, we state and prove some

NP completeness results for various restricted versions of the problem. Chapters

6 and 7 are dedicated to the problem of grooming multicast traffic in all-optical

unidirectional rings. In Chapter 6, we define and model the exact problem, and

review the related work. In Chapter 7, we present several schemes for the problem.

We analyze the performance of these schemes, either analytically or by simulations.

The time complexity of various schemes is also studied. Finally, in Chapter 8 we

provide a short conclusion of this work and list some interesting directions for future

research.
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Chapter 2

Multicast Wavelength Assignment in Bidirected

Trees

As stated in Section 1.2.1, we are interested in the problem of routing and

wavelength assignment for multicast traffic in all-optical bidirected tree networks.

In this chapter, we define the exact problem that we wish to study. We also present

the work that is closely related to our problem of interest.

2.1 Model

As described in Section 1.2.1, a bidirected tree is a directed graph that is

generated from some given tree H by replacing all the edges of H by pairs of anti-

parallel directed edges. The bidirected tree thus generated is denoted by ~TH and the

tree H is referred to as its host tree. The degree of the bidirected tree ~TH , denoted

by ∆~TH
, is defined to be equal to the degree of the host tree H , i.e., ∆~TH

:= ∆H .

Let R be a set of rooted subtrees of bidirected tree ~TH . With a slight abuse of the

notation introduced in Section 1.3, for any host tree edge {u, v} ∈ E~TH
, we denote

the set of all the rooted subtrees in R that contain directed edges (u, v) or (v, u)

by R[{u, v}], i.e., R[{u, v}] := {~R ∈ R : {u, v} ∈ E‖~R‖}. Observe that for any
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host tree edge {u, v}, sets R[(u, v)] and R[(v, u)] partition1 the set R[{u, v}]. Again

extending the terminology introduced in Section 1.3, if a rooted subtree ~R contains

directed edges (u, v) or (v, u), i.e., if ~R ∈ R[{u, v}], we say that it is present on the

host tree edge {u, v}.

Consider a restricted instance {~TH ,M} of the MIN-MC-RWA problem stated

in Section 1.4, where the fiber network ~TH is a bidirected tree, and M is a set of

multicast traffic requests on ~TH . Observe that for a given multicast traffic request

{s,D} on the bidirected tree ~TH , there is a unique rooted subtree of the bidirected

tree that satisfies the properties stated in Section 1.4.2, i.e, the set R{~TH ,{s,D}} of

interesting rooted subtrees contains exactly one rooted subtree. As a consequence,

the routing of the light-tree corresponding to any give multicast traffic request in

the set M is fixed, i.e., the mapping π described in MIN-MC-RWA is trivially

determined. Hence, the routing and wavelength assignment problem MIN-MC-RWA

simply reduces to a problem of assigning wavelengths to the set of rooted subtrees of

the given bidirected tree, corresponding to the given set of multicast traffic requests.

2.2 Problem Statement

As discussed in Section 2.1, the MIN-MC-RWA problem when restricted to a

bidirected tree network, simply reduces to the problem of assigning wavelengths to

a set of rooted subtrees of the bidirected tree. More precisely, we can define the

exact problem as follows.

Problem 2.1 (MIN-MC-WA-BT). Given a pair {~TH ,R}, where ~TH is a bidirected

tree and R is a set of rooted subtrees on ~TH ; consider a set of mappings Λ{~TH ,R}

from R to N, such that for any mapping λ ∈ Λ{~TH ,R}, if a pair of rooted subtrees

~Ri, ~Rj ∈ R collide, then λ(~Ri) 6= λ(~Rj).

1Sets A0, . . . , AK are said to partition set A if
⋃K

i=0 Ai = A and Ai ∩ Aj = ∅ for every i 6= j

where i, j ∈ {0, . . . ,K}. In this case sets A0, . . . , AK are referred to as the partitions of set A.
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Determine a mapping λ∗ ∈ Λ{~TH ,R} that uses the minimum number of wave-

lengths, i.e., λ∗ ∈ argmin
λ∈Λ

{~T,R}

|λ(R)|.

Given an instance {~TH ,R} of the MIN-MC-WA-BT problem described above,

consider the conflict graph GR of the set R of rooted subtrees of the bidirected tree

~TH . The conflicts modeled in this graph correspond to all the pairwise collisions

between the rooted subtrees in the setR, i.e., for any pair of rooted subtrees ~Ri, ~Rj ∈

R, there is an edge {~Ri, ~Rj} ∈ EGR
in the conflict graph if and only if they collide

and therefore, cannot be assigned the same wavelength. It is straightforward to

argue that assigning wavelengths to the set R of rooted subtrees of the bidirected

tree ~TH is equivalent to coloring the vertices of the conflict graph GR, where each

color signifies a wavelength. In particular, solving the MIN-MC-WA-BT problem

for the instance {~TH ,R} is equivalent to the problem of finding a minimum vertex

coloring of the corresponding conflict graph GR.

In this work we shall look at the MIN-MC-WA-BT problem restricted to the

case where the bidirected tree ~TH has bounded degree, i.e., ∆~TH
≤ d for some fixed

value of d. In particular, we shall study the problem when d ∈ {2, 3, 4}. We shall

see in Section 2.3 that the problem is known to be hard for all values of d ≥ 3.

Later, in Section 5.3, we prove that the problem is hard even for d = 2.

2.3 Related Work

As described in Section 2.2, any given instance of the problem MIN-MC-WA-

BT can be recast as the problem of coloring the given set of rooted subtrees on

the given bidirected tree.2 The work that is most closely related to the problem

of coloring a given set of rooted subtrees of a bidirected tree, and hence to the

2By coloring a set of rooted subtrees, we mean the vertex coloring of the corresponding conflict

graph. Similar notation is used for coloring subtrees, paths, directed paths, arcs, etc.
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MIN-MC-WA-BT problem, consists of the following:

(i) Coloring a given set of paths on a tree.

(ii) Coloring a given set of directed paths on a bidirected tree.

(iii) Coloring and characterization of a given set of subtrees of a tree.

Since, the MIN-MC-WA-BT problem is equivalent to the problem of coloring a

given set of rooted subtrees of a bidirected tree, from an theoretical perspective, our

contribution can be viewed as the next logical step in this series of works.

In [14], Golumbic et al. proved that coloring a given set of paths on a tree is

NP complete in general. They showed that path coloring in stars is equivalent to

edge coloring in multigraphs. Since edge coloring is NP complete [15], path coloring

in stars is also NP complete. In fact, as observed in [16], this equivalence result has

several important implications:

(i) Path coloring is solvable in polynomial time in bounded degree trees.

(ii) Path coloring is NP complete for trees of arbitrary degrees (even with diameter

2, i.e., even for stars).

(iii) Any approximation algorithm for edge coloring in multigraphs can be trans-

formed into an approximation algorithm for path coloring in trees and vice

versa with the same approximation ratio.

(iv) For path coloring in trees of arbitrary degree, there is no polynomial time

algorithm with approximation ratio 4
3
− ǫ for any ǫ > 0 unless P=NP.

In [17], Tarjan introduced a 3
2
-approximation algorithm for coloring a given set of

paths in a tree. Later, this ratio was rediscovered by Raghavan and Upfal [18] in the

context of optical networks. Mihail et al. [19] presented a coloring scheme with an

asymptotic approximation ratio of 9
8
. Nishizeki et al. [20] presented an algorithm

23



for edge coloring multigraphs with an asymptotic approximation ratio of 1.1 and an

absolute approximation ratio of 4
3
. This improves the asymptotic and the absolute

approximation ratio of path coloring in trees to 1.1 and 4
3
, respectively. Recently in

[21], Sanders et al. have developed an algorithm that can achieve arbitrarily good

asymptotic approximation ratios for the problem of edge coloring in multigraphs.

In [22], Erlebach et al. proved that coloring a given set of directed paths in

bidirected trees is NP complete. The result holds even when we restrict instances

to arbitrary bidirected trees and sets of directed paths of load 3 or to bidirected

trees with arbitrary degree and depth 3 [23]. Here by load of a set of directed paths,

we mean the maximum number of directed paths in the set that share a directed

edge. For this problem, Mihail et al. [19] gave a 15
8
-approximation algorithm. This

ratio was improved to 7
4

in [24] and [25], and finally to 5
3

in [26]. All these are

greedy, deterministic algorithms and use the load of the given set of directed paths

as the lower bound on the number of colors required. In [26], Kaklamanis et al. also

proved that no greedy, deterministic algorithm can achieve a better approximation

ratio than 5
3
. Later, in [16], Erlebach et al. proved that there is no polynomial time

algorithm for directed path coloring with approximation ratio 4
3
− ǫ for any ǫ > 0

unless P=NP.

Unlike its undirected counterpart, Erlebach et al. [27] proved by a reduction

from circular arc coloring that the problem of coloring directed paths is NP complete

even in binary bidirected trees. In [25], Kumar et al. gave a problem instance where

the given set of directed paths on a binary bidirected tree of depth 3 having load

l requires at least 5
4
l colors. Caragiannis et al. [28] and Jansen [29] gave simple

algorithms for the directed path coloring problem in binary bidirected trees having

approximation ratio 5
3

(the same as the approximation ratio for problem on general

bidirected trees). In [30], Auletta et al. presented a randomized greedy algorithm for

coloring a given set of directed paths of maximum load l in binary bidirected trees
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of depth O(l
1
3
−ǫ) that uses at most 7

5
l+ o(l) colors. They also proved that with high

probability, randomized greedy algorithms cannot achieve an approximation ratio

better than 3
2

when applied for binary bidirected trees of depth Ω(l), and 1.293−o(1)

when applied for binary bidirected trees of constant depth. Moreover, they proved

that an existential upper bound of 7
5
l + o(l) holds on any binary bidirected tree.

In [31], Jamison et al. proved that the conflict graphs of subtrees in a binary

tree are chordal [32], and therefore easily colorable [33]. In [34], Golumbic et al.

proved that the conflict graphs of paths on trees having degree at most 4 are weakly

chordal [35], therefore coloring them is easy [36]. Later, in [37], they extended the

result to the conflict graph of subtrees on trees having degree at most 4.

For an extensive compilation of complexity results on coloring paths in trees

and directed paths in bidirected trees from the perspective of optical networks, the

reader is referred to [23] and [16]. And for a survey of algorithmic results, the reader

is referred to [38], [39] and [40].

We should mention that ours is the first work to study the problem of coloring

rooted subtrees of a bidirected tree (which may be seen as the directed counterpart

of the problem of coloring subtrees of a tree).

25



Chapter 3

Greedy Multicast Wavelength Assignment in

Bidirected Trees

In this chapter, we present and analyze a greedy strategy for a restricted

version of the MIN-MC-WA-BT problem described in Section 2.2. The additional

restriction that we place on the problem is to limit the degree of the bidirected

tree to be at most 3. In other words, the problem under consideration is the MIN-

MC-WA-BT problem represented as a pair {~TH ,R}, where ~TH is a bidirected tree

with degree ∆~TH
≤ 3 and R is a set of rooted subtrees on ~TH . We prove that the

presented greedy scheme is a 5
2
-approximation algorithm.

3.1 Greedy Wavelength Assignment

The algorithm proceeds in rounds. In each round we select and process a host

tree edge which has not been selected in any of the previous rounds. Processing a

host tree edge means assigning wavelengths to all the unassigned rooted subtrees

present on that edge, where by unassigned rooted subtrees we refer to the set of

rooted subtrees that have not yet been assigned any wavelengths. The key steps are

the order in which the host tree edges are traversed for processing and the policy

used to assign wavelengths to the set of unassigned rooted subtrees present on the
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edge being processed.

The complete scheme is given as Algorithm 1 (GREEDY-WA). We denote the

wavelength assignment generated by the scheme by λGDY.

Algorithm 1 GREEDY-WA

Require: MIN-MC-WA-BT problem instance {~TH ,R}, where ∆~TH
≤ 3.

Ensure: A wavelength assignment λGDY ∈ Λ{~TH ,R}.

1: Perform a BFS on host tree H starting with an arbitrary vertex as the root and enumerate the

tree edges in the order of their discovery. Let {e1, . . . , e|EH |} be the ordered set of edges EH .

2: P0 ← ∅

3: for i = 1 to |EH | do

4: Qi ←R[ei] \ Pi−1

5: if edge ei = {u, v} is of type (iv) as defined in Lemma 3.3 then

6: Let λ1, λ2 ∈ Λ{~TH ,Qi∪Pi−1}

7: λ1(~R), λ2(~R)← λGDY(~R) for every ~Rj ∈ Pi−1 (unassigned otherwise).

8: PROCESS-EDGE-1(~TH, {u, v},Pi−1,Qi, λ1)

9: PROCESS-EDGE-2(~TH, {{u, v}, {u,w}, {u, x}},Pi−1,Qi, λ2)

10: if |λ1(Pi−1 ∪ Qi)| ≤ |λ2(Pi−1 ∪ Qi)| then

11: λGDY(~R)← λ1(~R) for every ~R ∈ Qi

12: else

13: λGDY(~R)← λ2(~R) for every ~R ∈ Qi

14: end if

15: else

16: while ∃ some unassigned ~R ∈ Qi do

17: λGDY(~R)← min{l ∈ N : ∄ ~S∈Pi−1∪Qi such that ~R, ~S collide and λGDY(~S)= l}

18: end while

19: end if

20: Pi ← Pi−1 ∪ Qi

21: end for
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3.1.1 Edge Order

We traverse the edges of the host tree in a breadth-first manner, i.e., starting

with an arbitrary vertex r ∈ VH as root, we perform a Breadth First Search (BFS)

on the host tree H and rank its edges in the order of their discovery, and then

process the edges in this order. Let us assume that the set of edges EH in the

order of enumeration is {e1, . . . , e|EH |}. Note that this edge ordering is not unique,

but the wavelength assignment scheme relies only on the fact that the ordering is

obtained via some BFS. In the i-th round of GREEDY-WA, edge ei is processed,

i.e., wavelengths are assigned to all the unassigned rooted subtrees present on ei.

Clearly, the algorithm involves exactly |EH | rounds of wavelength assignment.1

3.1.2 Wavelength Assignment Strategy

We denote the set of rooted subtrees that are assigned wavelengths in the first

i rounds in GREEDY-WA by Pi. We define P0 := ∅. The set of rooted subtrees

present on edge ei but not in the set Pi is denoted by Qi, i.e., Qi := R[ei]\Pi. Note

that Qi is the set of rooted subtrees that are assigned wavelengths in the i-th round

of GREEDY-WA.

The basic idea is to be greedy in each round of wavelength assignment in the

sense that we try to use as few new wavelengths as possible while processing each

host tree edge, i.e., in i-th round we try to assign wavelengths to the rooted subtrees

in the set Qi using as few new wavelengths as possible. Note that the algorithm is

constructive in the sense that once a wavelength has been assigned to any rooted

subtree, it is never changed.

The actual wavelength assignment scheme followed in the i-th round of GREEDY-

WA depends on the type of edge ei being processed. According to Lemma 3.3 below,

tree edge ei encountered during the i-th round of GREEDY-WA can be classified

1It may happen that in some rounds no rooted subtrees are assigned wavelengths.
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into one of the four types (defined in the lemma) based on the status (whether

already processed or not) of its adjacent tree edges. If edge ei is of type (i), (ii)

or (iii) as defined in Lemma 3.3, then unassigned rooted subtrees are randomly se-

lected from the set Qi one at a time and are assigned wavelengths greedily. In more

detail, suppose rooted subtree ~R has been selected from the set Qi for wavelength

assignment. If there is a wavelength that has already been assigned to some rooted

subtree(s) and can also be assigned to ~R, then that wavelength is assigned to ~R,

otherwise a new wavelength (not assigned to any other rooted subtree previously)

is assigned to ~R. In case there are several such used wavelengths, any one of them

can be assigned to ~R, e.g., according to line 17 of GREEDY-WA. On the other

hand, if edge ei is of type (iv) as defined in Lemma 3.3, then we assign wavelengths

to the rooted subtrees in the set Qi according to the better of the two different

wavelength assignment schemes presented as Subroutine 2 (PROCESS-EDGE-1)

and Subroutine 3 (PROCESS-EDGE-2).

As we shall see in Lemma 3.3, edge ei = {u, v} being a type (iv) edge means

that none of the tree edges adjacent to vertex v have yet been processed and there

are two edges adjacent to vertex u (besides edge ei = {u, v}), namely {u, w} and

{u, x}, of which edge {u, w} has already been processed and edge {u, x} has not

yet been processed. The two schemes employed for assigning wavelengths while

processing a type (iv) edge ei = {u, v} differ in the way they go about reusing

the wavelengths. In PROCESS-EDGE-1 we prefer to reuse wavelengths from the

set λGDY(Pi−1[{u, v}]) (set of wavelengths assigned to the rooted subtree(s) present

on host tree edge ei = {u, v} that were assigned wavelengths in the first i − 1

rounds), whereas in PROCESS-EDGE-2 we prefer to reuse wavelengths from the set

λGDY(Pi−1[{u, x}]\Pi−1[{u, v}]) (set of wavelengths assigned to the rooted subtree(s)

present on host tree edge {u, x}, but not on tree edge ei = {u, v}, that were assigned

wavelengths in the first i−1 rounds). Note that the two sets of wavelengths are not
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Subroutine 2 PROCESS-EDGE-1
Require: {~TH , {u, v} ∈ EH ,P ,Q, λ} such that the degree of the bidirected tree ~TH is at most 3,

P is the set of rooted subtrees of ~TH that have already been assigned wavelengths according

to the mapping λ : P −→ N and Q is the set of all the unassigned rooted subtrees of ~TH that

are present on host tree edge {u, v}.

Ensure: Complete the given mapping λ to λ : P ∪Q −→ N such that λ ∈ Λ{~TH ,P∪Q}.

1: B1 ← GP[{u,v}]∪Q

2: for all pairs ~R, ~S ∈ P [{u, v}] ∪Q such that ~R, ~S do not collide do

3: if any one of the following is true:

(i) ~R, ~S ∈ P and λ(~R) 6= λ(~S).

(ii) ~R ∈ Q, ~S ∈ P and ∃ ~U ∈ P such that λ(~S) = λ(~U ) and ~R, ~U collide.

then

4: EB1 ← EB1 ∪ {{ ~R, ~S}}

5: end if

6: end for

7: Determine a maximum matching MB̄1
⊆ EB̄1

. {B̄1 is bipartite.}

8: for all matched edges { ~R, ~S} ∈MB̄1
such that ~R ∈ Q and ~S ∈ P do

9: λ(~R)← λ(~S)

10: end for

11: while ∃ some unassigned ~R ∈ Q do

12: if ∃ matched edge { ~R, ~S} ∈MB̄1
then

13: λ(~R),λ(~S)←min{m∈N :∄ ~U ∈P∪Q such that ~R,~U or ~S,~U collide and λ(~U)=m}

14: else

15: λ(~R)← min{m ∈ N : ∄ ~U ∈ P ∪ Q such that ~R, ~U collide and λ(~U ) = m}

16: end if

17: end while
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Subroutine 3 PROCESS-EDGE-2
Require: {~TH , {{u, v}, {u,w}, {u, x}} ⊆ EH ,P ,Q, λ} such that the degree of the bidirected tree

~TH is 3, P is the set of rooted subtrees of ~TH that have already been assigned wavelengths

according to the mapping λ : P −→ N and Q is the set of all the unassigned rooted subtrees

of ~TH that are present on host tree edge {v, u}.

Ensure: Complete the given mapping λ to λ : P ∪Q −→ N such that λ ∈ Λ~TH ,P∪Q.

1: B2 ← G(P[{u,x}]\P[{u,v}])∪Q[{u,x}]

2: for all pairs ~R, ~S∈(P [{u, x}]\P [{u, v}])∪ Q[{u, x}] such that ~R, ~S do not collide do

3: if any one of the following is true:

(i) ~R, ~S ∈ P and λ(~R) 6= λ(~S).

(ii) ~R ∈ Q, ~S ∈ P and ∃ ~U ∈ P such that λ(~S) = λ(~U ) and ~R, ~U collide.

then

4: EB2 ← EB2 ∪ {{ ~R, ~S}}

5: end if

6: end for

7: Determine a maximum matching MB̄2
⊆ EB̄2

. {B̄2 is bipartite.}

8: for all matched edges { ~R, ~S} ∈MB̄2
such that ~R ∈ Q and ~S ∈ P do

9: λ(~R)← λ(~S)

10: end for

11: while ∃ some unassigned ~R ∈ Q[{u, x}] do

12: if ∃ matched edge { ~R, ~S} ∈MB̄2
then

13: λ(~R),λ(~S)←min{m∈N :∄ ~U ∈P∪Q such that ~R,~U or ~S,~U collide and λ(~U)=m}

14: else

15: λ(~R)← min{m ∈ N : ∄ ~U ∈ P ∪ Q such that ~R, ~U collide and λ(~U ) = m}

16: end if

17: end while

18: while ∃ some unassigned ~R ∈ Q do

19: λ(~R)← min{m ∈ N : ∄ ~U ∈ P ∪Q such that ~R, ~U collide and λ(~U) = m}

20: end while
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necessarily mutually exclusive. The two schemes also differ in the order in which

unassigned rooted subtrees in the set Qi are selected for wavelength assignment.

More specifically, in PROCESS-EDGE-2, first wavelengths are assigned to all the

rooted subtrees in the set Qi[{u, x}] and then to the rest of the unassigned rooted

subtrees.

In PROCESS-EDGE-1 (line 7), we determine the maximum number of mutu-

ally exclusive pairs of rooted subtrees such that in each matched pair (say ~R, ~S) at

least one of the rooted subtrees (say ~R) is an unassigned rooted subtree from the

set Qi (i.e., ~R ∈ Qi) and the second rooted subtree (~S in this case) may either be

(i) another unassigned rooted subtree from the set Qi (i.e., ~S ∈ Qi) or (ii) a rooted

subtree from the set Pi−1[ei] such that the unassigned rooted subtree in the pair

can be safely assigned its wavelength (i.e., ~S ∈ Pi−1 such that ~R does not collide

with any rooted subtree that has already been assigned the same wavelength as ~S).

If the pair is of type (ii), then the unassigned rooted subtree is assigned the same

wavelength as the other rooted subtree (line 9). If the pair is of type (i), then both

the rooted subtrees of the pair are assigned the same wavelength (line 13). In this

case, preference is given to the wavelengths that have already been assigned to some

rooted subtree(s). If there is no such suitable wavelength, a new wavelength is used.

In PROCESS-EDGE-2 (line 7), we determine the maximum number of mu-

tually exclusive pairs of rooted subtrees such that in each matched pair (say ~R, ~S)

at least one of the rooted subtrees (say ~R) is an unassigned rooted subtree from

the set Qi and is present on tree edge {u, x} (i.e., ~R ∈ Qi[{u, x}]) and the second

rooted subtree (~S in this case) may either be (i) another unassigned rooted subtree

from the set Qi present on edge {u, x} (i.e., ~S ∈ Qi[{u, x}]) or (ii) a rooted subtree

from the set Pi−1[{u, x}] \ Pi−1[{u, v}] such that the unassigned rooted subtree in

the pair can be safely assigned its wavelength (i.e., ~S ∈ Pi−1[{u, x}] \ Pi−1[{u, v}]

such that ~R does not collide with any rooted subtree that has already been assigned
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the same wavelength as ~S). If the pair is of type (ii), then the unassigned rooted

subtree is assigned the same wavelength as the other rooted subtree (line 9). If the

pair is of type (i), then both the rooted subtrees of the pair are assigned the same

wavelength (line 13). Again preference is given to the wavelengths that have already

been assigned to some rooted subtree(s). If there is no such suitable wavelength, a

new wavelength is used. After this all the remaining unassigned rooted subtrees (all

the rooted subtree in the set Qi \ Qi[{u, x}] and possibly some rooted subtrees still

unassigned in the set Qi[{u, x}]) are assigned wavelengths one at a time (lines 15,

19). Again preference is given to the wavelengths that have already been assigned

to some rooted subtree(s).

The exact steps of PROCESS-EDGE-1 and PROCESS-EDGE-2 are explained

in detail in Lemmas 3.7 and 3.8, respectively.

3.2 Approximation Analysis

In this section, we shall prove that the number of wavelengths required by

GREEDY-WA is within 5
2

times the minimum number of wavelengths required to

support the given set of rooted subtrees R on the given bidirected tree ~TH , i.e., we

shall prove that

|λGDY(R)|

minλ∈Λ
{~TH,R}

|λ(R)|
=
|λGDY(R)|

χGR

≤
5

2
.

3.2.1 Some Local Properties

We start off by proving the following pair of useful results about the local

structure of the problem at hand.

(i) In Lemma 3.1, we characterize the conflict graph of the rooted subtrees present

on a single host tree edge as the complement of a bipartite graph [41, p.6]. This

is because the rooted subtrees on a single host tree edge are actually the rooted
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subtrees present on the corresponding pair of anti-parallel directed edges of

the bidirected tree. Therefore, they can be partitioned into two subsets based

on the directed edge of the corresponding pair of anti-parallel directed edges

on which they are present, and the conflict graph of each of these sets is a

clique [41, p.112]. This result is important since most of the graphs that we

encounter during the analysis of GREEDY-WA are of this type and therefore

have nice properties (coloring etc.).

(ii) Lemma 3.2 allows us to study only those instances {~TH ,R} of the MIN-MC-

WA-BT problem where the given set of rooted subtrees R is such that the

number of rooted subtrees present on any directed edge of the given bidirected

tree ~TH is the same, i.e, for any pair of directed edges (u, v), (w, x) ∈ E~TH
,

|R[(u, v)]| = |R[(w, x)]|.

Lemma 3.1. The complement of the conflict graph of any subset of rooted subtrees

present on a single host tree edge is bipartite.

Proof. Let S ⊆ R[{u, v}], i.e., S is a subset of rooted subtrees present on host tree

edge {u, v} ∈ EH . We have to show that ḠS , the complement of the conflict graph

of rooted subtrees in the set S, is bipartite. Observe that S can be partitioned into

S[(u, v)] and S[(v, u)]. Since all the rooted subtrees in partition S[(u, v)] collide

on the directed edge (u, v), there is no edge {~Ri, ~Rj} in EḠS
such that the rooted

subtrees ~Ri, ~Rj ∈ S[(u, v)]. Hence, S[(u, v)] is an independent set in ḠS . By sim-

ilar reasoning, S[(v, u)] is also an independent set in ḠS . This implies that ḠS is

bipartite.

The load of a set R of rooted subtrees on a bidirected tree ~TH is defined to be

l{~TH ,R} := max(u,v)∈E~TH
|R[(u, v)]|.

Lemma 3.2. If the load of the set R of rooted subtrees on the bidirected tree ~TH is

l{~TH ,R} and the chromatic number of the corresponding conflict graph is χGR
, then
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there exists a set S ⊇ R of rooted subtrees on the bidirected tree ~TH such that the

following hold:

(i) The chromatic number of the new conflict graph is the same as that of the

original conflict graph, i.e., χGS
= χGR

.

(ii) For every directed edge (u, v) ∈ E~TH
, |S[(u, v)]| = l{~TH ,S} = l{~TH ,R}.

Moreover, S can be constructed in polynomial time.

Proof. Corresponding to the bidirected tree ~TH and the set R of rooted subtrees

on ~TH , we generate a set S ⊇ R of rooted subtrees on ~TH via Algorithm 4 (ADD-

DUMMY-RS). Condition (ii) of the lemma is satisfied by construction of the set S

in ADD-DUMMY-RS.

Algorithm 4 ADD-DUMMY-RS

Require: MIN-MC-WA-BT problem instance {~TH ,R}.

Ensure: MIN-MC-WA-BT problem instance {~TH ,S}, where S ⊇ R and for every directed edge

(u, v) ∈ E~TH
, |S[(u, v)]| = l{

~TH ,R}.

1: S ← R

2: for all edges (u, v) ∈ E~TH
do

3: while |S[(u, v)]| < l{
~TH ,R} do

4: Let directed graph ~D be such that V~D
= {u, v} and E~D

= {(u, v)}.

{ ~D is a rooted subtree of bidirected tree ~TH , having vertex u ∈ V~TH
as the root.}

5: S ← S ∪ { ~D}

6: end while

7: end for

Let ψ∗ ∈ ΨGR
be a minimum vertex coloring of the conflict graph GR. Con-

sider the vertex coloring ψ ∈ ΨGS
of the conflict graph GS such that for each rooted

subtree ~R ∈ R ⊆ S, ψ(~R) = ψ∗(~R). For any host tree edge {u, v} ∈ EH , the set

of subtrees added by ADD-DUMMY-RS that are rooted at vertex u is S[(u, v)] \

R[(u, v)] and the set of subtrees added by ADD-DUMMY-RS that are rooted at
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vertex v is S[(v, u)]\R[(v, u)]. Note that |S[(u, v)]\R[(u, v)]| = l{~TH ,R}−|R[(u, v)]|

and |S[(v, u)]\R[(v, u)]| = l{~TH ,R}−|R[(v, u)]|. The number of colors used by all the

rooted subtrees in the set R[{u, v}] in coloring ψ is |ψ(R[{u, v}])| = |ψ∗(R[{u, v}])|.

According to Lemma 3.1, ḠR[{u,v}] is bipartite. Therefore, in any vertex coloring

of graph GR[{u,v}], a rooted subtree can share its color with at most one other

rooted subtree. Consequently, the number of rooted subtrees in the set R[{u, v}]

that do not share their assigned colors with any other rooted subtree in the set

R[{u, v}] is 2|ψ(R[{u, v}])| − |R[{u, v}]|. Observe that a rooted subtree in the set

S[(u, v)] \ R[(u, v)] collides with every other rooted subtree in the set S[(u, v)] and

does not collide with any other rooted subtree in the set S. Similarly, a rooted sub-

tree in the set S[(v, u)] \R[(v, u)] collides with every other rooted subtree in the set

S[(v, u)] and does not collide with any other rooted subtree in the set S. Therefore,

we can color min {2|ψ(R[{u, v}])|, |S[{u, v}]|}−|R[{u, v}]| rooted subtrees in the set

S[{u, v}] \ R[{u, v}] using the colors already assigned to some other rooted subtree

in the set R[{u, v}]. Hence, the number of remaining uncolored rooted subtrees in

the set S[{u, v}] \ R[{u, v}] is

|S[{u, v}] \ R[{u, v}]| − (min {2|ψ(R[{u, v}])|, |S[{u, v}]|} − |R[{u, v}]|)

= [|S[{u, v}]| − 2|ψ(R[{u, v}])|]+ = 2
[

l{~TH ,R} − |ψ(R[{u, v}])|
]+

.

Note that half of the remaining uncolored rooted subtrees are in the set S[(u, v)] \

R[(u, v)] and the other half are in the set S[(v, u)] \ R[(v, u)]. Employing these

insights for generating the coloring ψ, we need
[

l{~TH ,R} − |ψ(R[{u, v}])|
]+

additional

colors that have not been assigned to any rooted subtree in the set R[{u, v}] in order

to color all the rooted subtrees in the set S[{u, v}]. Thus, the total number of colors

required by the mapping ψ for coloring all the rooted subtrees in the set S[{u, v}] is

|ψ(R[{u, v}])|+
[

l{~TH ,R} − |ψ(R[{u, v}])|
]+

= max
{

l{~TH ,R}, |ψ(R[{u, v}])|
}

.
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Therefore,

χGS
≤ |ψ(S)| = max

{u,v}∈EH
max

{

l{~TH ,R}, |ψ(R[{u, v}])|
}

= max
{u,v}∈EH

|ψ(R[{u, v}])| ≤ χGR
,

where the last equality is due to the fact that

max
{u,v}∈EH

|ψ(R[{u, v}])| ≥ l{~TH ,R}.

Also since conflict graph GR is a subgraph of the conflict graph GS , χGR
≤ χGS

.

This gives us χGR
= χGS

, which proves condition (i) of the lemma.

Recall that any given instance {~TH ,R} of the MIN-MC-WA-BT problem is

equivalent to the minimum vertex coloring problem for the conflict graph GR. Using

this equivalence along with Lemma 3.2 allows us to assume, without loss of general-

ity, that the given instance {~TH ,R} of the MIN-MC-WA-BT problem is such that

for every directed edge (u, v) ∈ E~TH
, |R[(u, v)]| = l{~TH ,R}. As a consequence, for

any host tree {u, v} ∈ EH , |R[{u, v}]| = 2l{~TH ,R}. From now onwards we shall make

the said assumption.

3.2.2 Roadmap

Next, we give a brief plan-of-action that we shall follow for the rest of this

section for proving the approximation ratio of 5
2

for GREEDY-WA. The analysis

proceeds according to the following steps.

(i) First we characterize the types of host tree edges that we might encounter

during any round of wavelength assignment in GREEDY-WA. This is done in

Lemmas 3.3 and 3.4.

(ii) Next we prove that if the edge to be processed in i-th round of wavelength

assignment is of type (i), (ii) or (iii) as defined in Lemma 3.3, then either
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no new wavelengths are required in the i-th round or the total number of

wavelengths in use at the end of the i-th round is less than or equal to 2l{~TH ,R}.

This is proved in Lemma 3.5.

(iii) We prove a similar result for the case when the edge to be processed in the i-th

round of wavelength assignment is of type (iv) as defined in Lemma 3.3. In this

case we first show that either no new wavelength is required in the i-th round

or λGDY(Qi ∪ Pi−1[{u, w}]) = λGDY(Pi). The set Qi ∪ Pi−1[{u, w}] consists of

all the rooted subtrees that are assigned wavelengths in the i-th round (Qi)

and all the rooted subtrees that are present on host tree edge {u, w} which

is adjacent to the edge being processed in the i-th round and has already

been processed (Pi−1[{u, w}]). This is shown in Lemma 3.6. Next, we present

bounds on the number of wavelengths required after the i-th round for assign-

ing wavelengths to all the rooted subtrees in the set Qi ∪Pi−1[{u, w}] by sub-

routines PROCESS-EDGE-1 (Lemma 3.7) and PROCESS-EDGE-2 (Lemma

3.8). Note that in GREEDY-WA (line 10), of the two wavelength assignments

generated by PROCESS-EDGE-1 and PROCESS-EDGE-2, the assignment

requiring fewer wavelengths at the end of the i-th round is used.

(iv) Based on the previous lemmas, we determine the approximation ratio of

GREEDY-WA in a parameterized form in Lemma 3.9. In Lemma 3.10, we

determine the worst case (maximum) value of the parameterized fraction ob-

tained in Lemma 3.9. This proves Theorem 3.11 that the approximation ratio

of GREEDY-WA is 5
2
.

3.2.3 Host Tree Edge Types

Next, we start the actual analysis of our greedy wavelength assignment scheme.

First, we note that as GREEDY-WA proceeds, the host tree edge that is processed in
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Figure 3.1: Status of host tree edges during the 5-th round of GREEDY-WA.

any round of wavelength assignment is from one of the four possible types defined in

Lemma 3.3. The edge type is characterized by the status (whether already processed

or not) of its adjacent edges. The scheme employed for assigning wavelengths to

the unassigned rooted subtrees present on the edge being processed depends on the

type of the edge. In Lemma 3.4, we characterize the set of rooted subtrees that have

already been assigned wavelengths and can collide with the rooted subtrees that are

being assigned wavelengths in the next round of GREEDY-WA.

Both these results mainly rely on the BFS ordering of the edges in GREEDY-

WA and the fact that the bidirected tree ~TH has degree ∆~TH
≤ 3 .

Lemma 3.3. In GREEDY-WA, when a host tree edge {u, v} ∈ EH (where u was

discovered before v in the BFS) is being processed, then all the edges adjacent to

vertex v are unprocessed, and for the edges adjacent to vertex u exactly one of the

following is satisfied:

(i) None of the edges adjacent to u has been processed. In this case edge {u, v} is

the first edge to be processed among all host tree edges.

(ii) Host tree vertex u has degree δH(u) = 2 with adjacent edges {u, v}, {u, w} of

which edge {u, w} has already been processed.
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(iii) Host tree vertex u has degree δH(u) = 3 with adjacent edges {u, v}, {u, w}, {u, x}

of which edges {u, w}, {u, x} have already been processed.

(iv) Host tree vertex u has degree δH(u) = 3 with adjacent edges {u, v}, {u, w}, {u, x}

of which edge {u, w} has already been processed while edge {u, x} has not yet

been processed.

Proof. To motivate the intuition behind this lemma, observe Figure 3.1. Consider

the host tree and the BFS ordering of its edges as shown in the figure. In this case

edge 1 is of type (i), edge 2 is of type (ii), edge 4 is of type (iii) and edge 3 is of type

(iv). Similarly, note that all the host tree edges can be classified as being of one of

the four types described in the lemma. Next, we present the actual proof.

GREEDY-WA selects an arbitrary host tree vertex r ∈ VH and ranks the edges

of the host tree according to their order of discovery in a BFS with r as the root.

The edges are then processed according to this ordering. We denote the set of host

tree edges that are processed in the first i rounds of wavelength assignment by E
(i)
H .

According to the notation defined in Section 3.1.1, E
(i)
H := {e1, . . . , ei}. Observe

that due to the BFS ordering, H [E
(i)
H ] is a connected subgraph of H . Moreover,

since H is a tree, H [E
(i)
H ] must be its subtree. Also note that the root of the BFS

lies in this subtree, i.e., r ∈ V
H[E

(i)
H ]

for every i > 0. This is because r has to be an

end vertex of e1, the first processed edge.

Let ek = {u, v} ∈ EH be the host tree edge being processed in the k-th round

of wavelength assignment. Observe that H [EH \ {{u, v}}], the subgraph of the host

tree induced by all the edges of the host tree except edge {u, v} is a forest [41, p.6]

containing two trees. Let us denote the two trees as Hu and Hv such that u ∈ VHu

and v ∈ VHv . This is shown in Figure 3.2(a). Since the vertex u was discovered

before the vertex v in the BFS, the path from root r to v should contain the edge

{u, v}. This observation, along with the fact that H is a tree, implies that r ∈ VHu .

Hence, every edge in the set EHv must have been discovered after the discovery of
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the edge ek = {u, v}. Consequently, none of the edges in the set EHv were processed

in the first k rounds of wavelength assignment. Since every edge adjacent to the

vertex v is in the set EHv ∪ {{u, v}}, it must be unprocessed at the end of k − 1

rounds of wavelength assignment.

Consider the edges adjacent to the vertex u. If none of the edges adjacent to

u are processed in the first k− 1 rounds, then we claim that k is equal to 1. This is

because H [E
(k)
H ] is a tree (therefore connected) and none of the edges adjacent to v

were assigned wavelengths in the first k − 1 rounds. Thus, the only scenario when

H [E
(k)
H ] is connected is when E

(k−1)
H = ∅, which implies that ek = {u, v} is indeed

the first edge being processed. This corresponds to case (i) of the lemma. Next, we

consider the alternative scenario when there is an edge {u, w} ∈ E(k−1)
H , i.e., there is

an edge {u, w} adjacent to the vertex u that has already been processed in the first

k−1 rounds. If the vertices v and w are the only neighbors of u, then δH(u) = 2 and

this corresponds to case (ii) of the lemma. On the other hand if δH(u) = 3 then let

the vertices w, v and x be the three neighbors of u in the host tree. As previously

discussed, the edge {u, w} has already been processed in the first k − 1 rounds and

the edge {u, v} is the current edge being processed in the k-th round. Depending

on whether the edge {u, x} has already been processed in the first k − 1 rounds or

not, we obtain cases (iv) and (iii) respectively of the lemma.

Since δH(u) ≤ ∆H ≤ 3, there are no other possible cases.

Lemma 3.4. In the i-th round of wavelength assignment in GREEDY-WA (while

processing host tree edge ei = {u, v} ∈ EH), if a rooted subtree ~P ∈ Pi−1, that

has already been assigned a wavelength, collides with any unassigned rooted subtree

~Q ∈ Qi, then exactly one of the following is satisfied:

(i) Edge ei = {u, v} is of type (i), (ii) or (iii) defined in Lemma 3.3, and rooted

subtree ~P ∈ Pi−1[{u, v}].
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(a) Subgraph H [EH \ {{u, v}}] is

a forest containing trees Hu and

Hv.

u

v
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(b) SubgraphH [VH \{u}] is a forest con-

taining δH(u) trees. If δT (u) = 3 and

w, v, x are the neighbors of u, the forest

contains trees Hw, Hv, and Hx.

Figure 3.2: Graphs obtained by removing an edge ({u, v}) or a vertex (u) from the

host tree H are forests.

(ii) Edge ei = {u, v} is of type (iv) defined in Lemma 3.3, and rooted subtree

~P ∈ Pi−1[{u, v}] ∪ Pi−1[{u, x}] (where the vertex x and the edge {u, x} are as

defined in Lemma 3.3).

Proof. If the edge ei = {u, v} ∈ EH being processed is of type (i) defined in Lemma

3.3, then it is the first edge being processed. Therefore, there are no rooted subtrees

that have already been assigned some wavelength before processing edge ei = {u, v},

i.e., Pi−1 = ∅. Consequently, the set of rooted subtrees that collide with any of the

rooted subtrees in the set Qi and have already been assigned wavelength before the

processing of edge ei = {u, v}, which is a subset of the set Pi−1, is also empty. This

is exactly what the lemma states for edges of type (i).

Next, we assume that the edge ei = {u, v} ∈ EH being processed is of type (ii).

As observed during the proof of Lemma 3.3, H [EH \ {{u, v}}] is a forest containing

two trees Hu and Hv where u ∈ VHu and v ∈ VHv . In this case the following hold:
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(i) No edges in the set EHv are processed in the first i rounds of wavelength

assignment.

(ii) No rooted subtree in the set Qi is present on any host tree edge in the set

EHu , i.e., for every rooted subtree ~R ∈ Qi, E‖~R‖ ∩ EHu = ∅.

We have already shown (i) in the proof of Lemma 3.3 and the reasoning for (ii) is

as follows. Let there be a rooted subtree ~R ∈ Qi and an edge {a, b} ∈ EHu such

that {a, b} ∈ E‖~R‖. First, note that since ~R ∈ Qi, ei = {u, v} ∈ E‖~R‖. Next, observe

that in this case edge {u, w} (the only other edge adjacent to u except {u, v}) has

already been processed, so {u, w} /∈ E|~R‖. Also note that {u, w} is the only edge

adjacent to u in the set EHu . Therefore, the facts that ‖~R‖ is a subtree of H and ~R

is present on edges {a, b} ∈ EHu and {u, v} imply that it must be present on edge

{u, w}. This is a contradiction, which proves (ii). Coming back to the proof of the

lemma, let rooted subtree ~S ∈ Pi−1 collide with some rooted subtree in the set Qi.

Since ~S has been assigned some wavelength in the first i− 1 rounds of wavelength

assignment, it must be present on some already processed edge. Therefore, by (i)

it must be present on some edge in the set EHu . Also, since it collides with some

rooted subtree from the set Qi, due to (ii) it must be present on some edge in the

set EHv ∪ {{u, v}}. The above two observations, combined with the fact that ‖~S‖

is a subtree of the host tree, prove that ‖~S‖ is present on the edge ei = {u, v}. This

is exactly what the lemma states for edges of type (ii).

The case when the edge being processed in the i-th round of wavelength as-

signment is of type (iii) is exactly analogous to the above case and the proof follows

the same lines.

Next we assume that the edge ei = {u, v} ∈ ET being processed is of type (iv).

Hence, {u, w}, {u, v} and {u, x} are the three edges adjacent to u, and in the first

i− 1 rounds of wavelength assignment, {u, w} has already been processed whereas

{u, x} has not been processed. In this case observe that H [VH \ {u}], the subgraph

43



of the host tree induced by all the vertices of the host tree except the vertex u, is a

forest containing three trees. Let us denote the three trees as Hw, Hv and Hx such

that w ∈ VHw , v ∈ VHv and x ∈ VHx . This is shown in Figure 3.2(b). We claim that

in this case, the following hold:

(i) No edges in the set EHv ∪EHx ∪{{u, x}} are processed in the first i rounds of

wavelength assignment.

(ii) No rooted subtree in the set Qi is present on any host tree edge in the set

EHw ∪ {{u, w}}.

Note that we have already shown in the proof of Lemma 3.3 that no edges in the

set EHv are processed in the first i rounds of wavelength assignment. Also note that

in this case we assume that {u, x} is unprocessed in the first i rounds of wavelength

assignment. Suppose there is an edge {a, b} ∈ EHx which is processed in the first i

rounds of wavelength assignment. Since {u, v} is a type (iv) edge, the edge {u, w}

has already been processed in the first i rounds of wavelength assignment. Also, we

have shown in the proof of Lemma 3.3 that H [E
(i)
H ], the subgraph of host tree H

induced by the set E
(i)
H of edges processed during the first i rounds of wavelength

assignment, is a subtree of the host tree. Thus, the fact that edges {a, b} ∈ EHx

and {u, w} both lie in the set E
(i)
H requires that the edge {u, x} also lie in the set

E
(i)
H . This is a contradiction. Therefore, no edges in the set EHx are processed in the

first i rounds of wavelength assignment. This proves (i). The reasoning for (ii) is as

follows. Since edge {u, v} is of type (iv), edge {u, w} has already been processed in

the first i− 1 rounds of wavelength assignment. Therefore, any rooted subtree that

is unassigned after the first i−1 rounds of wavelength assignment cannot be present

on the edge {u, w}. Let there be a rooted subtree ~R ∈ Qi and an edge {a, b} ∈ EHw

such that {a, b} ∈ E‖~R‖. First note that since ~R ∈ Qi, ei = {u, v} ∈ E‖~R‖. The facts

that ‖~R‖ is a subtree of the host tree H , and ~R is present on edges {a, b} ∈ EHw
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and {u, v} imply that it must be present on the edge {u, w}. Since we have already

shown that this is not possible, we have a contradiction. This proves (ii). Coming

back to the proof of the lemma, let rooted subtree ~S ∈ Pi−1 collide with some rooted

subtree in the set Qi. Since ~S has been assigned some wavelength in the first i− 1

rounds of wavelength assignment, it must be present on some already processed

edge. Therefore, by (i) it must be present on some edge in the set EHw ∪ {{u, w}}.

Also, since it collides with some rooted subtree from the set Qi, due to (ii) it must

be present on some edge in the set EHv ∪ EHx ∪ {{u, v}, {u, x}}. Let us suppose

that ~S is present on some edge in the set EHv ∪ {{u, v}}. This along with the facts

that ~S must be present on some edge in the set EHw ∪{{u, w}} and ‖~S‖ is a subtree

of the host tree H , imply that ~S is present on the edge {u, v}. Alternatively, if we

let ~S to be present on some edge in the set EHx ∪ {{u, x}}, then following similar

reasoning we can show that it must be present on the edge {u, x}. Therefore, we

conclude that ~S must be present on either edge {u, v} or edge {u, x} or both. This

is exactly what the lemma states for edges of type (iv).

According to Lemma 3.3, these are the only possible types of edges that are

encountered in GREEDY-WA. This observation completes the proof.

3.2.4 Type (i), (ii) and (iii) Edges

According to our notation, λGDY(Pi) is the set of wavelengths used by GREEDY-

WA for assigning wavelengths to all the rooted subtrees present on host tree edges

that are processed in the first i rounds of wavelength assignment. Hence, the

number of wavelengths used by GREEDY-WA after i rounds of wavelength as-

signment is given by |λGDY(Pi)|. By this convention |λGDY(P0)| = |λGDY(∅)| = 0

and |λGDY(P|EH |)| = |λGDY(R)|.

First we study the case when the edge ei = {u, v} being processed during the

i-th round of GREEDY-WA is of type (i), (ii) or (iii) defined in Lemma 3.3.
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Lemma 3.5. If edge ei = {u, v} being processed in the i-th round of GREEDY-WA

is of type (i), (ii) or (iii) defined in Lemma 3.3, then

|λGDY(Pi)| ≤ max
{

2l{~TH ,R}, |λ
GDY(Pi−1)|

}

.

Proof. First note that the set R[{u, v}] of all the rooted subtrees present on host

tree edge ei = {u, v}, can be partitioned into sets Qi and Pi−1[{u, v}]. Therefore

|Qi| = |R[{u, v}]| − |Pi−1[{u, v}]| ≤ 2l{~T ,R} − |λ
GDY(Pi−1[{u, v}])|, (3.1)

where the last inequality is due to the fact that for any wavelength assignment, the

number of wavelengths required in order to assign wavelengths to a set of rooted

subtrees can never exceed the cardinality of the set of rooted subtrees.

Since the edge ei = {u, v} being processed in the i-th round of wavelength

assignment is of type (i), (ii) or (iii) defined in Lemma 3.3, according to Lemma 3.4,

if a rooted subtree ~P ∈ Pi−1 that has already been assigned some wavelength in the

first i − 1 rounds of GREEDY-WA, collides with any rooted subtree ~Q ∈ Qi that

is to be assigned wavelength in the i-th round, then ~P ∈ Pi−1[{u, v}]. Hence, any

wavelength present in the set λGDY(Pi−1) but absent in the set λGDY(Pi−1[{u, v}])

can be safely assigned to any rooted subtree in the set Qi. There are |λGDY(Pi−1)|−

|λGDY(Pi−1[{u, v}])| such wavelengths. GREEDY-WA tries to reuse these wave-

lengths first and if there are still unassigned rooted subtrees left in Qi, it starts to

assign new wavelengths to those rooted subtrees. In the worst case we need |Qi|

wavelengths during the i-th round of wavelength assignment. Therefore, the number

of new wavelengths required in the i-th round is given by

|λGDY(Pi)| − |λ
GDY(Pi−1)| ≤

[

|Qi| −
(

|λGDY(Pi−1)| − |λ
GDY(Pi−1[{u, v}])|

)

]+

≤

[

(

2l{~TH ,R} − |λ
GDY(Pi−1[{u, v}])|

)

−
(

|λGDY(Pi−1)| − |λ
GDY(Pi−1[{u, v}])|

)

]+

=
[

2l{~TH ,R} − |λ
GDY(Pi−1)|

]+

, (3.2)
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Figure 3.3: Sets of interesting rooted subtrees encountered while processing edge

{u, v} of type (iv) defined in Lemma 3.3

where the second inequality is by equation (3.1).

From equation (3.2), we obtain

|λGDY(Pi)| ≤ |λGDY(Pi−1)|+
[

2l{~TH ,R} − |λ
GDY(Pi−1)|

]+

= max
{

2l{~TH ,R}, |λ
GDY(Pi−1)|

}

.

3.2.5 Type (iv) Edges

Next we consider the case when edge ei = {u, v} being processed during the

i-th round of GREEDY-WA is of type (iv) defined in Lemma 3.3. As stated in

Lemma 3.3, we assume that edge ei = {u, v} is such that (i) vertex u was discovered

before vertex v in the BFS; (ii) all the edges adjacent to vertex v are unprocessed

after the first i− 1 rounds of wavelength assignment; and (iii) vertex u has degree 3

with adjacent edges {u, v}, {u, w} and {u, x} of which edge {u, w} has already been

processed while edge {u, x} has not yet been processed.

As we shall discuss later in Lemma 3.6, in this case the set of relevant rooted

subtrees consist of Pi−1[{u, w}], the set of rooted subtrees that have been assigned
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wavelengths in the first i − 1 rounds of wavelength assignment and are present on

the host tree edge {u, w}, and Qi, the set of rooted subtrees that are to be assigned

wavelengths in the i-th round. These rooted subtrees are shown in more detail in

Figure 3.3.

More specifically, we can partition the sets Pi−1[{u, w}] and Qi of the relevant

subtrees based on whether they are present or absent on the three host tree edges

{u, v}, {u, w}, {u, x}. In Figure 3.3, we show representative rooted subtrees from the

relevant partitions. The presence of a solid line in a representative rooted subtree

on an edge implies that every rooted subtree of that set must be present on that

edge. Similarly, the absence of a line in a representative rooted subtree on an edge

implies that no rooted subtree of that set can be present on that edge. If some

rooted subtrees of a set may be present on an edge, then the representative rooted

subtree for that set has a dotted line on that edge in the figure.

As already stated, GREEDY-WA assigns wavelengths to the rooted subtrees in

the set Qi using two different schemes (PROCESS-EDGE-1 and PROCESS-EDGE-

2) and then selects the better (the one using fewer new wavelengths) of the two. The

basic difference between the two schemes is that of all the wavelengths in the set

λGDY(Pi−1[{u, w}]), PROCESS-EDGE-1 focuses on maximizing the reuse of wave-

lengths from the set λGDY(Pi−1[{u, v}]), whereas PROCESS-EDGE-2 focuses on

maximizing the reuse of wavelengths from the set λGDY(Pi−1[{u, x}] \ Pi−1[{u, v}]).

Lemma 3.6. If edge ei = {u, v} being processed in the i-th round of GREEDY-WA

is of type (iv) defined in Lemma 3.3, then

|λGDY(Pi)| = max
{
∣

∣λGDY(Qi ∪ Pi−1[{u, w}])
∣

∣, |λGDY(Pi−1)|
}

,

where the edge {u, w} ∈ EH is as defined in Lemma 3.3.

Proof. Since the edge ei = {u, v} being processed in the i-th round of wavelength

assignment is of type (iv) defined in Lemma 3.3, according to Lemma 3.4, if a rooted
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subtree that has already been assigned some wavelength in the first i− 1 rounds of

GREEDY-WA, collides with any rooted subtree that is to be assigned wavelength

in the i-th round, then it must belong to the set Pi−1[{u, v}] ∪ Pi−1[{u, x}]. Since

Pi−1[{u, v}] ∪ Pi−1[{u, x}] ⊆ Pi−1[{u, w}], this implies that any rooted subtree in

the set Pi−1 \ Pi−1[{u, w}] cannot collide with any rooted subtree in the set Qi.

Therefore, any wavelength already assigned to some rooted subtree in the set Pi−1 \

Pi−1[{u, w}], but not to any rooted subtree in the set Pi−1[{u, w}], can be assigned

to any rooted subtree in the set Qi. There are |λGDY(Pi−1)| − |λ
GDY(Pi−1[{u, w}])|

such wavelengths. During the i-th round of wavelength assignment, let Ni ⊆ Qi

be the set of rooted subtrees which do not share wavelengths with rooted subtrees

in the set Pi−1[{u, w}], i.e, Qi \ Ni is the largest subset of the set Qi such that

|λGDY((Qi \ Ni) ∪ Pi−1[{u, w}])| = |λGDY(Pi−1[{u, w}])|. We need |λGDY(Ni)| addi-

tional wavelengths for assigning wavelengths to all the rooted subtrees in the set Ni

and there are |λGDY(Pi−1)|−|λGDY(Pi−1[{u, w}])| available wavelengths that can be

used without adding any new wavelength in the i-th round of wavelength assign-

ment. In GREEDY-WA, we always try to reuse these available wavelengths before

adding any new wavelengths. Therefore, the total number of wavelengths required

at the end of i-th round of wavelength assignment is

|λGDY(Pi)| =

[

|λGDY(Ni)| −
(

|λGDY(Pi−1)| − |λ
GDY(Pi−1[{u, w}])|

)

]+

+ |λGDY(Pi−1)|

=
[

|λGDY(Ni)|+
∣

∣λGDY((Qi \ Ni) ∪ Pi−1[{u, w}])
∣

∣− |λGDY(Pi−1)|
]+

+ |λGDY(Pi−1)|

=
[

∣

∣λGDY(Qi ∪ Pi−1[{u, w}])
∣

∣− |λGDY(Pi−1)|
]+

+ |λGDY(Pi−1)|

= max
{
∣

∣λGDY(Qi ∪ Pi−1[{u, w}])
∣

∣, |λGDY(Pi−1)|
}

,

where the third equality is due to the fact that the rooted subtrees in the set Ni do

not share any wavelength with the rooted subtrees in the set (Qi \ Ni)∪Pi−1[{u, w}].
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In light of Lemma 3.6, we see that it makes sense to evaluate bounds for

|λGDY(Qi ∪Pi−1[{u, w}])|. Using the notation of the lemma, if Ni ⊆ Qi is the set of

rooted subtrees that do not share wavelengths with any rooted subtrees in the set

Pi−1[{u, w}], then

∣

∣λGDY(Qi ∪ Pi−1[{u, w}])
∣

∣ = |λGDY(Ni)|+
∣

∣λGDY((Qi \ Ni) ∪ Pi−1[{u, w}])
∣

∣

= |λGDY(Ni)|+ |λ
GDY(Pi−1[{u, w}])|.

Hence, in order to limit the use of new wavelengths in the i-th round of wavelength

assignment, we try to minimize |λGDY(Ni)|, the number of wavelengths used in the i-

th round of wavelength assignment that are different from the wavelengths assigned

to the rooted subtrees in the set Pi−1[{u, w}].

For any set S of rooted subtrees on the given bidirected tree ~TH such that the

complement of their conflict graph is bipartite, i.e., ḠS is bipartite, we denote the

size of maximum matching [41, p.67] in ḠS by m{~TH ,S}
.

Lemma 3.7. If the edge ei = {u, v} is of type (iv) defined in Lemma 3.3, and the

wavelength assignment generated by PROCESS-EDGE-1 is used in the i-th round

of GREEDY-WA, then

∣

∣λGDY(Qi ∪ Pi−1[{u, w}])
∣

∣ ≤ 2l{~TH ,R} + |Qi| −m{~TH ,R[{u,v}]} +m{~TH ,Pi−1[{u,v}]}
.

Proof. In order to limit |λGDY(Pi−1[{u, w}]∪Qi)|−|λGDY(Pi−1[{u, w}])|, PROCESS-

EDGE-1 finds the maximum number of disjoint pairs ~R, ~S of rooted subtrees such

that one of the following is true:

(i) Both ~R, ~S ∈ Qi, and in this case they are assigned the same (possibly new)

wavelength.

(ii) ~R ∈ Qi, ~S ∈ Pi−1[{u, v}], and in this case ~R is assigned the same wavelength

as ~S.
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Note that some rooted subtrees in the set Qi may remain unpaired.

PROCESS-EDGE-1 finds such pairs of rooted subtrees by studying graph B1.

First note that the sets Pi−1[{u, v}] and Qi partition the set R[{u, v}], therefore

by Lemma 3.1, graph ḠPi−1[{u,v}]∪Qi is bipartite. This, along with the fact that

EGPi−1[{u,v}]∪Qi
⊆ EB1 , implies that B̄1 is also bipartite. Hence, it is easy to find a

maximum matching in B̄1. Let M ⊆ EB̄1
be any matching in B̄1. Observe that the

edges are added to B1 (lines 2-6) in such a way that if edge {~R, ~S} ∈ M , then one

of the following holds:

(i) Both ~R, ~S ∈ Qi.

(ii) ~R ∈ Pi−1, ~S ∈ Qi, and there is no ~U ∈ Pi−1 such that ~S, ~U collide and

λGDY(~R) = λGDY(~U).

(iii) Both ~R, ~S ∈ Pi−1 and λGDY(~R) = λGDY(~S).

This means that if edge {~R, ~S} ∈M , then rooted subtrees ~R and ~S can be assigned

the same wavelength. Note that the matched edges of type (i) and (ii) correspond

to the rooted subtree pairs of type (i) and (ii), respectively. A matched edge of

type (iii) does not provide any additional information; it simply lists all the pairs

of rooted subtrees in the set Pi−1[{u, v}] that have already been assigned the same

wavelengths. Since the number of edges of type (iii) is already fixed, a maximum

matching in B̄1 determines the maximum number of edges of types (i) and (ii), i.e.,

it determines the maximum number of rooted subtree pairs described above.

First assume that the rooted subtrees in the set Pi−1[{u, v}] do not share wave-

lengths with any of the rooted subtree in the set Pi−1[{u, w}]\Pi−1[{u, v}], although

they may share wavelengths amongst themselves. As a consequence of Lemma 3.1,

more than two rooted subtrees in the set Pi−1[{u, v}] cannot have the same wave-

length. Starting from any maximum matching MḠPi−1[{u,v}]∪Qi
⊆ EḠPi−1[{u,v}]∪Qi

in

graph ḠPi−1[{u,v}]∪Qi, we can construct a matching M ⊆ EB̄1
in graph B̄1 by first
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removing and then adding the edges described next. We remove every matched edge

{~R, ~S} ∈MḠPi−1[{u,v}]∪Qi
for which one of the following is true:

(i) Both ~R, ~S ∈ Pi−1[{u, v}] such that λGDY(~R) 6= λGDY(~S), and there is no rooted

subtree ~U ∈ Pi−1[{u, v}] such that λGDY(~U) /∈ {λGDY(~R), λGDY(~S)}.

(ii) Both ~R, ~S ∈ Pi−1[{u, v}] such that λGDY(~R) 6= λGDY(~S), and there is a rooted

subtree ~U ∈ Pi−1[{u, v}] such that λGDY(~U) ∈ {λGDY(~R), λGDY(~S)}.

(iii) ~R ∈ Qi, ~S ∈ Pi−1[{u, v}], and there is a rooted subtree ~U ∈ Pi−1 such that

λGDY(~U) = λGDY(~S).

Consider rooted subtrees ~R, ~S ∈ Pi−1[{u, v}] with λGDY(~R) = λGDY(~S). Since

MḠPi−1[{u,v}]∪Qi
is a maximum matching in ḠPi−1[{u,v}]∪Qi, either edge {~R, ~S} ∈

MḠPi−1[{u,v}]∪Qi
, or at least one of the rooted subtrees ~R, ~S is matched to some other

rooted subtree in MḠPi−1[{u,v}]∪Qi
.2 In the case when rooted subtrees ~R, ~S are not

already matched to each other in MḠPi−1[{u,v}]∪Qi
, the edge(s) adjacent to ~R or ~S (or

both) inMḠPi−1[{u,v}]∪Qi
is (are) either of type (ii) or of type (iii) and is (are) therefore

removed from the matching. Hence, we can safely add edge {~R, ~S} to the matching.

Let the set of removed edges of type (i), (ii) and (iii) be Er(i), Er(ii) and Er(iii), respec-

tively, and the set of added edges be Ea. Observe that for every removed edge in the

set Er(ii) ∪Er(iii), there is a corresponding edge in the set Ea added to the matching

such that for at most two removed edges in the set Er(ii) ∪Er(iii), the corresponding

added edge in the set Ea can be the same; therefore |Ea| ≥
1
2
(|Er(ii)| + |Er(iii)|).

Hence, we can lower bound the size of maximum matching MB̄1
⊆ EB̄1

in graph

B̄1 by the size of M , a valid matching in the graph. Note that |M | is equal to

|MḠPi−1[{u,v}]∪Qi
| = m{~TH ,Pi−1[{u,v}]∪Qi}

minus the number of edges removed plus the

2It may happen that both the rooted subtrees ~R, ~S are matched to different vertices in

MḠPi−1[{u,v}]∪Qi
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number of edges added. Thus

|MB̄1
| ≥ |M | = m{~TH ,Pi−1[{u,v}]∪Qi}

−
(

|Er(i)|+ |Er(ii)|+ |Er(iii)| − |Ea|
)

≥ m{~TH ,Pi−1[{u,v}]∪Qi}
−
(

|Er(i)|+ |Ea|
)

≥ m{~TH ,Pi−1[{u,v}]∪Qi}
−m{~TH ,Pi−1[{u,v}]}, (3.3)

where we are using the fact that Ea ∪Er(i), the set of removed edges of type (i) and

the set of added edges form a matching in the bipartite graph ḠPi−1[{u,v}]. To see

this, note that Ea ∪ Er(i) ⊆ EḠPi−1[{u,v}]
, and the end vertices of edges in the sets

Ea, Er(i) are distinct.

Note that the vertex set VB̄1
corresponds to all the rooted subtrees in the set

Pi−1[{u, v}] ∪ Qi, and an edge in matching MB̄1
determines two rooted subtrees

which share their wavelength after this round of wavelength assignment. Therefore,

using inequality (3.3) and the fact that the subsets Pi−1[{u, v}] and Qi partition the

set R[{u, v}],

∣

∣λGDY(Pi−1[{u, v}] ∪ Qi)
∣

∣ ≤
∣

∣Pi−1[{u, v}] ∪Qi
∣

∣− |MB̄1
|

≤ |Pi−1[{u, v}]|+ |Qi| −m{~TH ,Pi−1[{u,v}]∪Qi}

+m{~TH ,Pi−1[{u,v}]}
. (3.4)

Thus, using inequality (3.4), the number of wavelengths required for assigning

wavelengths to all the rooted subtrees in the set Pi−1[{u, w}]∪ Qi is

∣

∣λGDY(Pi−1[{u, w}]∪ Qi)
∣

∣ =
∣

∣λGDY(Pi−1[{u, w}]∪ Qi)
∣

∣

−
∣

∣λGDY(Pi−1[{u, v}] ∪Qi)
∣

∣

+
∣

∣λGDY(Pi−1[{u, v}] ∪Qi)
∣

∣

≤ |Pi−1[{u, w}] \ Pi−1[{u, v}]|+ |Pi−1[{u, v}]|+ |Qi|

−m{~TH ,Pi−1[{u,v}]∪Qi}
+m{~TH ,Pi−1[{u,v}]}

≤ 2l{~TH ,R} + |Qi| −m{~TH ,R[{u,v}]}

+m{~TH ,Pi−1[{u,v}]}
. (3.5)
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For the first inequality, we are using the fact that |λGDY(Pi−1[{u, w}] ∪ Qi)| −

|λGDY(Pi−1[{u, v}] ∪ Qi)| is the number of wavelengths used for assigning wave-

lengths to all the rooted subtrees in the set Pi−1[{u, w}] \ Pi−1[{u, v}] that are

different from the wavelengths used for assigning the wavelengths to rooted sub-

trees in the set Pi−1[{u, v}] ∪ Qi; therefore, this number is upper bounded by

|Pi−1[{u, w}] \ Pi−1[{u, v}]|. For the final inequality, we use the fact that the sub-

sets Pi−1[{u, v}] and Pi−1[{u, w}] \ Pi−1[{u, v}] partition the set Pi−1[{u, w}] =

R[{u, w}].

Next, suppose some rooted subtree ~R ∈ Pi−1[{u, v}] shares its wavelength

with another rooted subtree ~S ∈ Pi−1[{u, w}] \ Pi−1[{u, v}]. In this case, the worst

that can happen is that some rooted subtrees in the set Qi, that could have shared

wavelength with rooted subtree ~R, can no longer do so since they collide with rooted

subtree ~S. Hence the size of maximum matching MB̄1
reduces by 1. The unit

reduction is independent of the number of affected rooted subtrees in the set Qi,

since in MB̄1
rooted subtree ~R can be potentially matched to only one of them. On

the other hand, the rooted subtrees ~R ∈ Pi−1[{u, v}], ~S ∈ Pi−1[{u, w}]\Pi−1[{u, v}]

sharing wavelength means that |λGDY(Pi−1[{u, w}]∪Qi)|−|λGDY(Pi−1[{u, v}]∪Qi)|,

the number of wavelengths used for assigning wavelengths to all the rooted subtrees

in the set Pi−1[{u, w}] \ Pi−1[{u, v}] that are different from the wavelengths used

for assigning wavelengths to the rooted subtrees in the set Pi−1[{u, v}] ∪ Qi, also

reduces by 1. Applying both the observations, we note that the final inequality in

(3.5) still holds.

Lemma 3.8. If the edge ei = {u, v} is of type (iv) defined in Lemma 3.3, and the

wavelength assignment generated by PROCESS-EDGE-2 is used in the i-th round

of GREEDY-WA, then

∣

∣λGDY(Pi−1[{u, w}]∪ Qi)
∣

∣ ≤ 2l{~TH ,R} + [g − h]+ ,
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where

g = |Qi[{u, x}]|+ |Pi−1[{u, x}] \ Pi−1[{u, v}]| − |Qi|,

h =

[

|Qi[{u, x}]|+
|Pi−1[{u, x}] \ Pi−1[{u, v}]|

2
+m{~TH ,R[{u,x}]} − 2l{~TH ,R}

]+

.

Proof. Since R[{u, w}] = Pi−1[{u, w}] can be partitioned into Pi−1[{u, v}] and

Pi−1[{u, w}] \ Pi−1[{u, v}],

|Pi−1[{u, v}]|+ |Pi−1[{u, w}] \ Pi−1[{u, v}]| = |Pi−1[{u, w}]|

= |R[{u, w}]| = 2l{~TH ,R}.

Also, R[{u, v}] can be partitioned into Pi−1[{u, v}] and Qi, therefore

|Pi−1[{u, v}]|+ |Qi| = |R[{u, v}]| = 2l{~TH ,R}.

From the above two equations, it follows that

|Pi−1[{u, w}] \ Pi−1[{u, v}]| = |Qi|. (3.6)

Since Qi can be partitioned into Qi[{u, x}] and Qi \ Qi[{u, x}], and Pi−1[{u, w}] \

Pi−1[{u, v}] can be partitioned into Pi−1[{u, x}] \ Pi−1[{u, v}] and Pi−1[{u, w}] \

(Pi−1[{u, v}] ∪ Pi−1[{u, x}]); from equation (3.6), it follows that

∣

∣Pi−1[{u, w}] \ (Pi−1[{u, v}] ∪ Pi−1[{u, x}])
∣

∣ + |Pi−1[{u, x}] \ Pi−1[{u, v}]|

= |Pi−1[{u, w}] \ Pi−1[{u, v}]| = |Qi \ Qi[{u, x}]|+ |Qi[{u, x}]| = |Qi|. (3.7)

In PROCESS-EDGE-2, first we find the maximum number of disjoint pairs

~R, ~S of rooted subtrees such that one of the following is true:

(i) Both ~R, ~S ∈ Qi[{u, x}]. In this case, both ~R and ~S are assigned the same

wavelength (we shall specify exactly which wavelength is assigned in a mo-

ment).
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(ii) ~R ∈ Qi[{u, x}] and ~S ∈ Pi−1[{u, x}] \ Pi−1[{u, v}] such that ~R can be as-

signed the same wavelength as ~S. In this case ~R is indeed assigned the same

wavelength as ~S.

We find such pairs of rooted subtrees by studying the graph B2. First note

that the sets Qi[{u, x}] and Pi−1[{u, x}] \ Pi−1[{u, v}] are disjoint subsets of the

set R[{u, x}]; therefore by Lemma 3.1, the graph Ḡ(Pi−1[{u,x}]\Pi−1[{u,v}])∪Qi[{u,x}] is

bipartite. This, along with the fact that EG(Pi−1[{u,x}]\Pi−1[{u,v}])∪Qi[{u,x}]
⊆ EB2 , implies

that B̄2 is also bipartite. Hence, it is easy to find a maximum matching in B̄2. Let

M ⊆ EB̄2
be any matching in B̄2. Observe that the edges are added to B2 in such

a way that if edge {~R, ~S} ∈M , then one of the following holds:

(i) Both ~R, ~S ∈ Qi[{u, x}].

(ii) ~R ∈ Qi[{u, x}], ~S ∈ Pi−1[{u, x}] \ Pi−1[{u, v}], and there is no ~U ∈ Pi−1 such

that ~R, ~U collide and λGDY(~S) = λGDY(~U).

(iii) Both ~R, ~S ∈ Pi−1[{u, x}] \ Pi−1[{u, v}] and λGDY(~R) = λGDY(~S).

This means that if edge {~R, ~S} ∈M , then the rooted subtrees ~R, ~S can be assigned

the same wavelength. Note that the matched edges of type (i) and (ii) correspond

to the rooted subtree pairs of type (i) and (ii), respectively. A matched edge of

type (iii) does not provide any additional information; it simply lists all the pairs of

rooted subtrees in the set Pi−1[{u, x}]\Pi−1[{u, v}] that have already been assigned

the same wavelengths. Since the number of edges of type (iii) is already fixed, a

maximum matching in B̄2 determines the maximum number of edges of types (i)

and (ii), i.e., it determines the maximum number of rooted subtree pairs described

above.

First, we assume that the rooted subtrees in the set Pi−1[{u, w}] \Pi−1[{u, v}]

do not share wavelengths with any rooted subtree in the set Pi−1[{u, v}], although
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they may share wavelengths amongst themselves. Let MB̄2
⊆ EB̄2

be a maximum

matching in B̄2. Let the number of type (i), (ii) and (iii) edges in the matching be

t1, t2, t3, respectively. In this case the size of the maximum matching in B̄2 is lower

bounded as

|MB̄2
| = t1 + t2 + t3 ≥ m{~TH ,Qi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])}

−m{~TH ,Pi−1[{u,x}]\Pi−1[{u,v}]}

≥

[

m{~TH ,Qi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])}

−
|Pi−1[{u, x}] \ Pi−1[{u, v}]|

2

]+

, (3.8)

where m{~TH ,Qi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])}
and m{~TH ,Pi−1[{u,x}]\Pi−1[{u,v}]} are the sizes

of maximum matchings in the bipartite graphs ḠQi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}]) and

ḠPi−1[{u,x}]\Pi−1[{u,v}], respectively. The reasoning for the initial inequality follows

exactly as the reasoning for inequality (3.3) presented in the proof of Lemma 3.7.

For the final inequality, we use the facts that the size of any matching in the bipartite

graph ḠPi−1[{u,x}]\Pi−1[{u,v}] must be smaller than half of the size of its vertex set, and

the size of a matching cannot be negative. Note that ḠQi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])

is a subgraph of ḠR[{u,x}] induced by the vertex set corresponding to the rooted

subtrees in the set Qi[{u, x}]∪(Pi−1[{u, x}] \ Pi−1[{u, v}]). If the size of a maximum

matching in ḠR[{u,x}] is m{~TH ,R[{u,x}]}, then the size of a maximum matching in

ḠQi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}]) is bounded as

m{~TH ,Qi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])}
≥

[

m{~TH ,R[{u,x}]} − |R[{u, x}]|

+
∣

∣Qi[{u, x}] ∪
(

Pi−1[{u, x}] \ Pi−1[{u, v}]
)

∣

∣

]+

=

[

|Qi[{u, x}]|+ |Pi−1[{u, x}] \ Pi−1[{u, v}]|

+m{~TH ,R[{u,x}]} − 2l{~TH ,R}

]+

. (3.9)

This is because if we consider a maximum matching MḠR[{u,x}]
⊆ EḠR[{u,x}]

in the
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graph ḠR[{u,x}], any edge {~R, ~S} ∈MḠR[{u,x}]
can be classified into one of the follow-

ing three types:

(i) Both ~R, ~S ∈ Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}]).

(ii) Rooted subtree ~R ∈ Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}]) whereas rooted

subtree ~S ∈ R[{u, x}] \ (Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}])).

(iii) Both ~R, ~S ∈ R[{u, x}] \ (Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}])).

Let the set of edges of type (i), (ii) and (iii) be E(i), E(ii), E(iii), respectively. Clearly,

E(i) is a valid matching in the graph ḠQi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}]), therefore a lower

bound for |E(i)| can be treated as a lower bound form{~TH ,Qi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])}
.

Also, since maximum matching MḠR[{u,x}]
can be partitioned into sets E(i), E(ii), E(iii),

we get

m{~TH ,Qi[{u,x}]∪(Pi−1[{u,x}]\Pi−1[{u,v}])} ≥ |E(i)|

≥ m{~TH ,R[{u,x}]} − |E(ii)| − |E(iii)|. (3.10)

Since an edge in the set E(ii) requires one of the rooted subtree from the set

R[{u, x}] \ (Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}])) and an edge in the set E(iii)

requires both of the rooted subtrees from the same set, we have

|E(ii)|+ 2|E(iii)| ≤
∣

∣R[{u, x}] \ (Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}]))
∣

∣

= |R[{u, x}]| −
∣

∣Qi[{u, x}] ∪ (Pi−1[{u, x}] \ Pi−1[{u, v}])
∣

∣. (3.11)

From inequalities (3.10), (3.11) and the fact that the size of a matching cannot be

negative, we obtain the required inequality (3.9).
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From equations (3.8) and (3.9),

|MB̄2
| = t1 + t2 + t3

≥

[

[

|Qi[{u, x}]|+ |Pi−1[{u, x}] \ Pi−1[{u, v}]|+m{~TH ,R[{u,x}]} − 2l{~TH ,R}

]+

−
|Pi−1[{u, x}] \ Pi−1[{u, v}]|

2

]+

=

[

|Qi[{u, x}]|+
|Pi−1[{u, x}] \ Pi−1[{u, v}]|

2
+m{~TH ,R[{u,x}]} − 2l{~TH ,R}

]+

= h. (3.12)

Note that each of these h edges is of type (i), (ii) or (iii) described before.

Observe that PROCESS-EDGE-2 assigns wavelengths to the unassigned rooted

subtrees in the set Qi in the following order:

(i) First, all those matched pairs of rooted subtree are considered in which one

of the rooted subtree is in the set Qi[{u, x}] and the other is in the set

Pi−1[{u, x}]\Pi−1[{u, v}]. For every such matched pair, the unassigned rooted

subtree is assigned the same wavelength that has already been assigned to its

matched partner during the first i− 1 rounds of GREEDY-WA. The number

of such rooted subtrees in the matching MB̄2
is equal to t2.

(ii) Next, the remaining rooted subtrees from the set Qi[{u, x}] are randomly se-

lected one-at-a-time for wavelength assignment. If the selected rooted subtree

~R was not matched, and if there is a wavelength that has already been used

previously that can be safely assigned to ~R, then that wavelength is used;

otherwise, a new wavelength is used. On the other hand, if the selected rooted

subtree ~R was matched to another rooted subtree ~S, then clearly ~S is also

unassigned. In this case both ~R and ~S are assigned the same wavelength.

Again, preference is given to the wavelengths that are already in use over the

use of new wavelengths. According to Lemma 3.4, rooted subtrees in the set

Pi−1[{u, w}] \ (Pi−1[{u, v}] ∪ Pi−1[{u, x}]) can never collide with any rooted
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subtree in the set Qi. Therefore, any wavelength used for rooted subtrees in

the set Pi−1[{u, w}]\(Pi−1[{u, v}] ∪ Pi−1[{u, x}]), that is not used by any other

rooted subtree in the set Pi−1[{u, x}] \ Pi−1[{u, v}], can be assigned to any of

the rooted subtrees in the set Qi. Let z1 be the number wavelengths assigned

to the rooted subtrees in the set Pi−1[{u, w}] \ (Pi−1[{u, v}] ∪ Pi−1[{u, x}])

that are reused for rooted subtrees in the set Qi[{u, x}] during this step of the

subroutine. We can bound z1 as

z1 ≥ min
{

|Qi[{u, x}]| − t1 − t2,

|λGDY(Pi−1[{u, w}] \ Pi−1[{u, v}])|

− |λGDY(Pi−1[{u, x}] \ Pi−1[{u, v}])|
}

. (3.13)

Here the first term in min is the maximum number of wavelengths required

for assigning wavelengths to all the rooted subtrees in the set Qi[{u, x}] that

remain unassigned after step (i) of the subroutine described above. The second

term is the number of wavelengths used for assigning wavelengths to the rooted

subtrees in the set Pi−1[{u, w}]\(Pi−1[{u, v}] ∪ Pi−1[{u, x}]) that are not used

for any rooted subtree in the set Pi−1[{u, x}] \ Pi−1[{u, v}].

(iii) Next, the remaining unassigned rooted subtrees (all the rooted subtrees in the

set Qi \ Qi[{u, x}]) are assigned wavelengths one-at-a-time. Again preference

is given to the wavelengths that are already in use over the use of new wave-

lengths. Since the rooted subtrees in the set Qi \ Qi[{u, x}] can never collide

with any rooted subtree in the set Pi−1[{u, w}] \ Pi−1[{u, v}], any wavelength

used for rooted subtrees in the set Pi−1[{u, w}] \ Pi−1[{u, v}] that has not yet

been reused for any rooted subtree in the set Qi[{u, x}], can be assigned to any

of the rooted subtrees in the set Qi \Qi[{u, x}]. Let z2 be the number of wave-

lengths assigned to the rooted subtrees in the set Pi−1[{u, w}] \ Pi−1[{u, v}]

that are reused for rooted subtrees in the set Qi \ Qi[{u, x}] during this step
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of the subroutine. We can bound z2 as

z2 ≥ min
{

|Qi \ Qi[{u, x}]|,

|λGDY(Pi−1[{u, w}] \ Pi−1[{u, v}])| − t2 − z1
}

. (3.14)

Here the first term in min is the maximum number of wavelengths required

for assigning wavelengths all the rooted subtrees in the set Qi \Qi[{u, x}] and

the second term is the number of wavelengths used for assigning wavelengths

to the rooted subtrees in the set Pi−1[{u, w}] \ Pi−1[{u, v}] that have not yet

been reused in the first two steps of the subroutine.

Let z3 be the number of wavelengths used for assigning wavelengths to pairs

of rooted subtrees in the set Pi−1[{u, w}] \ (Pi−1[{u, v}] ∪ Pi−1[{u, x}]), or to pairs

of rooted subtrees where one of the rooted subtree belongs to the set Pi−1[{u, x}] \

Pi−1[{u, v}] and the other belongs to the set Pi−1[{u, w}]\(Pi−1[{u, v}] ∪ Pi−1[{u, x}]).

We can determine z3 by subtracting the total number of wavelengths used for as-

signing wavelengths to all the rooted subtrees in the set Pi−1[{u, w}] \ Pi−1[{u, v}]

from the sum of the total number of wavelengths used for assigning wavelengths to

all the rooted subtrees in the set Pi−1[{u, x}] \ Pi−1[{u, v}] and the total number of

rooted subtrees in the set Pi−1[{u, w}] \ (Pi−1[{u, v}] ∪ Pi−1[{u, x}]). Hence, using

equation (3.7),

z3 =
∣

∣Pi−1[{u, w}] \ (Pi−1[{u, v}] ∪ Pi−1[{u, x}])
∣

∣+ |Pi−1[{u, x}] \ Pi−1[{u, v}]|

− t3 − |λ
GDY(Pi−1[{u, w}] \ Pi−1[{u, v}])|

= |Qi| − t3 − |λ
GDY(Pi−1[{u, w}] \ Pi−1[{u, v}])|. (3.15)

We note that the total number of wavelengths required for assigning wave-

lengths to all the rooted subtrees in the set Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]) can be
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bounded as

∣

∣λGDY(Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]))
∣

∣

= |Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]) | − |MB̄2
| − z1 − z2 − z3

≤
∣

∣Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}])
∣

∣− |Qi|

+ max
{

|λGDY(Pi−1[{u, w}] \ Pi−1[{u, v}])| − |Pi−1[{u, w}] \ Pi−1[{u, v}]|,

|λGDY(Pi−1[{u, x}] \ Pi−1[{u, v}])| − |Qi \ Qi[{u, x}]| − t1 − t2,−t1
}

≤ |Pi−1[{u, w}] \ Pi−1[{u, v}]|

+
[

|Pi−1[{u, x}] \ Pi−1[{u, v}]| − |Qi \ Qi[{u, x}]| − t1 − t2 − t3
]+

≤ |Pi−1[{u, w}] \ Pi−1[{u, v}]|+ [g − h]+ . (3.16)

To get the first inequality we need to perform some algebra (that we have omitted

here) using equations (3.7), (3.13), (3.14), (3.15) and the fact that |MB̄2
| = t1+t2+t3.

For getting the second inequality we again use equation (3.7) along with the fact

that the sets Qi and Pi−1[{u, w}]\Pi−1[{u, v}] are mutually exclusive. For this step

we also use the observation that the first and the third terms in max are always less

than or equal to zero and in the second term |λGDY(Pi−1[{u, x}] \ Pi−1[{u, v}])| =

|Pi−1[{u, x}] \ Pi−1[{u, v}]| − t3. Final inequality uses equations (3.7) and (3.12).

Using inequality (3.16), the number of wavelengths required for assigning wave-

lengths to all the rooted subtrees in the set Pi−1[{u, w}]∪ Qi is

∣

∣λGDY(Pi−1[{u, w}]∪ Qi)
∣

∣ =
∣

∣λGDY(Pi−1[{u, w}]∪ Qi)
∣

∣

−
∣

∣λGDY(Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]))
∣

∣

+
∣

∣λGDY(Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]))
∣

∣

≤ |Pi−1[{u, v}]|+ |Pi−1[{u, w}] \ Pi−1[{u, v}]|+ [g − h]+

= 2l{~TH ,R} + [g − h]+ . (3.17)

The inequality uses the fact that since the number of wavelengths used for assigning

wavelengths to all the rooted subtrees in the set Pi−1[{u, v}] that are different from
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the wavelengths used for assigning wavelengths to the rooted subtrees in the set

Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]) is equal to |λGDY(Pi−1[{u, w}]∪Qi)| − |λ
GDY(Qi ∪

(Pi−1[{u, w}] \ Pi−1[{u, v}]))|, it is upper bounded by |Pi−1[{u, v}]|. For the final

equality, we use the fact that the subsets Pi−1[{u, v}] and Pi−1[{u, w}]\Pi−1[{u, v}]

partition the set Pi−1[{u, w}] = R[{u, w}].

Suppose some rooted subtree ~R ∈ Pi−1[{u, w}] \ Pi−1[{u, v}] shares its wave-

length with another rooted subtree ~S ∈ Pi−1[{u, v}]. In this case, the worst that

can happen is that we may have to add a single new wavelength for assigning wave-

lengths to all the rooted subtrees in the set Qi. On the other hand, rooted subtrees

~R ∈ Pi−1[{u, w}] \ Pi−1[{u, v}], ~S ∈ Pi−1[{u, v}] sharing a wavelength means that

|λGDY(Pi−1[{u, w}] ∪ Qi)| − |λGDY(Qi ∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]))|, the number

of wavelengths used for assigning wavelengths to all the rooted subtrees in the set

Pi−1[{u, v}] that are different from the wavelengths used for assigning wavelengths

to the rooted subtrees in the set Qi∪ (Pi−1[{u, w}] \ Pi−1[{u, v}]), also reduces by 1.

Applying both the observations, we note that the inequality in (3.17) still holds.

3.2.6 Approximation Ratio

Using the bounds developed in Lemmas 3.5, 3.6, 3.7 and 3.8, we prove the

required approximation ratio for GREEDY-WA. We develop the approximation ratio

in the form of a parameterized inequality in Lemma 3.9 and then in Lemma 3.10,

using the ranges of the parameters, we show that the ratio is bounded by 5
2
.

Lemma 3.9. Given an instance {~TH ,R} of the MIN-MC-WA-BT problem, where

~TH is a bidirected tree of degree ∆~TH
≤ 3 and R is a set of rooted subtrees on

~TH ; the ratio of the number of wavelengths used by the mapping λGDY generated

by GREEDY-WA and the minimum number of wavelengths required for assigning
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wavelengths to all the rooted subtrees in the set R, satisfies

|λGDY(R)|

minλ∈Λ
{~TH,R}

|λ(R)|
≤ max

α,β,γ,δ,ǫ

2 + min
{

f1, [f2 − f3]
+}

2−min {β, γ}
,

where

f1 = α−
[

β +
α

2
− 1
]+

, f2 = δ + ǫ− α, f3 =
[

δ +
ǫ

2
+ γ − 2

]+

,

and the maximum is over α, β, γ, δ, ǫ satisfying

0 ≤ β, γ ≤ 1, 0 ≤ δ, ǫ ≤ α ≤ 2, δ + ǫ ≤ 2.

Proof. If in the i-th round of wavelength assignment, the host tree edge ei = {u, v} ∈

EH being processed is of type (i), (ii) or (iii) defined in Lemma 3.3, then according

to Lemma 3.5

|λGDY(Pi)| ≤ max
{

|λGDY(Pi−1)|, 2l{~TH ,R}

}

. (3.18)

On the other hand, if the edge ei = {u, v} ∈ EH being processed in the i-th round

of wavelength assignment is of type (iv) defined in Lemma 3.3, then according to

Lemmas 3.6, 3.7 and 3.8

|λGDY(Pi)| ≤ max
{

|λGDY(Pi−1)|, 2l{~TH ,R} + min
{

ai, [gi − hi]
+}
}

, (3.19)

where

ai = |Qi| −
(

m{~TH ,R[{u,v}]} −m{~TH ,Pi−1[{u,v}]}

)

, (3.20)

and as defined in Lemma 3.8,

gi = |Qi[{u, x}]|+ |Pi−1[{u, x}] \ Pi−1[{u, v}]| − |Qi|,

hi =

[

|Qi[{u, x}]|+
|Pi−1[{u, x}] \ Pi−1[{u, v}]|

2
+m{~TH ,R[{u,x}]} − 2l{~TH ,R}

]+

.

(3.21)
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Here we follow the naming convention of Lemma 3.3, i.e., edge ei = {u, v} is the edge

being processed in the i-th round of wavelength assignment and edges {u, w}, {u, x}

have the corresponding meanings as defined in Lemma 3.3 whenever ei = {u, v} is

of type (iv).

We claim that the number of wavelengths required by GREEDY-WA satisfies

|λGDY(R)| ≤ 2l{~TH ,R} + max
ei∈E

(iv)
H

min
{

ai, [gi − hi]
+} , (3.22)

where E
(iv)
H ⊆ EH is the set of all the host tree edges of type (iv) as defined in

Lemma 3.3, encountered in GREEDY-WA. The proof follows from equations (3.18)

and (3.19), and a straightforward induction argument.

Also, the minimum number of wavelengths required for assigning wavelengths

to all the rooted subtrees in the set R can be lower bounded as

min
λ∈Λ

{~TH,R}

|λ(R)| ≥ max
{a,b}∈EH

min
λ∈Λ

{~TH,R[{a,b}]}

|λ(R[{a, b}])|

= max
{a,b}∈EH

χGR[{a,b}]

= 2l{~TH ,R} − min
{a,b}∈EH

m{~TH ,R[{a,b}]}. (3.23)

The first inequality simply says that for every host tree edge {a, b} ∈ EH , the min-

imum number of wavelengths required for assigning wavelengths to all the rooted

subtrees in the set R[{a, b}] is less than or equal to the minimum number of wave-

lengths required for assigning wavelengths to all the rooted subtrees in the set R.

This is because for every host tree edge {a, b} ∈ EH , R[{a, b}] is a subset of R. The

first equality uses the equivalence of the MIN-MC-WA-BT problem {~TH ,R[{a, b}]}

and the problem of minimum vertex coloring of the corresponding conflict graph

GR[{a,b}]. The final equality is due to the fact that ḠR[{a,b}], the complement of

the conflict graph of rooted subtrees on host tree edge {a, b}, is bipartite with the

size of maximum matching being m{~TH ,R[{a,b}]} and the size of the vertex set being

|VḠR[{a,b}]
| = |VGR[{a,b}]

| = |R[{a, b}]| = 2l{~TH ,R}. Therefore, from equations (3.22)
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and (3.23) we have

|λGDY(R)|

minλ∈Λ
{~TH,R}

|λ(R)|
≤

2l{~TH ,R} + max
ei∈E

(iv)
H

min
{

ai, [gi − hi]
+}

2l{~TH ,R} −min{a,b}∈EH m{~TH ,R[{a,b}]}

= max
ei∈E

(iv)
H

{

2l{~TH ,R} + min
{

ai, [gi − hi]
+}

2l{~TH ,R} −min{a,b}∈EH m{~TH ,R[{a,b}]}

}

≤ max
ei∈E

(iv)
H







2l{~TH ,R} + min
{

ai, [gi − hi]
+}

2l{~TH ,R} −min
{

m{~TH ,R[{u,v}]}, m{~TH ,R[{u,x}]}

}







.

(3.24)

Observe that for any host tree edge ei = {u, v} of type (iv) as defined in

Lemma 3.3, we have the following.

(i) Since Qi ⊆ R[{u, v}],

|Qi| ≤ |R[{u, v}]| = 2l{~TH ,R}.

Let |Qi| = αil{~TH ,R}, where αi is a constant from the set [0, 2].

(ii) Since m{~TH ,R[{u,v}]} is the size of maximum matching in graph ḠR[{u,v}],

m{~TH ,R[{u,v}]} ≤
|VḠR[{u,v}]

|

2
=
|R[{u, v}]|

2
= l{~TH ,R}.

Let m{~TH ,R[{u,v}]} = βil{~TH ,R}, where βi is a constant from the set [0, 1].

(iii) R[{u, v}], the set of rooted subtrees present on the edge {u, v}, can be parti-

tioned into subsets Qi and Pi−1[{u, v}]; therefore

|Pi−1[{u, v}]| = |R[{u, v}]| − |Qi| = (2− αi) l{~TH ,R}.

Since m{~TH ,Pi−1[{u,v}]}
is the size of maximum matching in graph ḠPi−1[{u,v}],

we have

m{~TH ,Pi−1[{u,v}]} ≤
|VḠPi−1[{u,v}]

|

2
=
|Pi−1[{u, v}]|

2
=
(

1−
αi
2

)

l{~TH ,R}.
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Also, since ḠPi−1[{u,v}] is a subgraph of ḠR[{u,v}], we have

m{~TH ,Pi−1[{u,v}]}
≤ m{~TH ,R[{u,v}]}.

The above two inequalities imply that

m{~TH ,R[{u,v}]} −m{~TH ,Pi−1[{u,v}]} ≥
[

βi +
αi
2
− 1
]+

l{~TH ,R}.

(iv) Since Qi[{u, x}] ⊆ Qi,

|Qi[{u, x}]| ≤ |Qi| = αil{~TH ,R}.

Let |Qi[{u, x}]| = δil{~TH ,R}, where δi is a constant from the set [0, αi].

(v) Note that Pi−1[{u, x}] \Pi−1[{u, v}] and Pi−1[{u, v}] are non-overlapping sub-

sets of Pi−1[{u, w}] = R[{u, w}]. Also, the set R[{u, v}] can be partitioned

into Qi and Pi−1[{u, v}]. Therefore,

|Pi−1[{u, x}] \ Pi−1[{u, v}]| ≤ |R[{u, w}]| − |Pi−1[{u, v}]|

= |R[{u, v}]| − |Pi−1[{u, v}]|

= |Qi| = αil{~TH ,R}.

Let |Pi−1[{u, x}] \Pi−1[{u, v}]| = ǫil{~TH ,R}, where ǫi is a constant from the set

[0, αi].

(vi) Note that the setsQi[{u, x}] and Pi−1[{u, x}]\Pi−1[{u, v}] are non-overlapping

subsets of R[{u, x}]. Therefore,

|Qi[{u, x}]|+ |Pi−1[{u, x}] \ Pi−1[{u, v}]| ≤ |R[{u, x}]|.

This implies that δi + ǫi ≤ 2.

(vii) Since m{~TH ,R[{u,x}]} is the size of maximum matching in graph ḠR[{u,x}],

m{~TH ,R[{u,x}]} ≤
|VḠR[{u,x}]

|

2
=
|R[{u, x}]|

2
= l{~TH ,R}.

Let m{~TH ,R[{u,x}]} = γil{~TH ,R}, where γi is a constant from the set [0, 1].
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From (i), (ii) and (iii),

ai ≤

(

αi −
[

βi +
αi
2
− 1
]+
)

l{~TH ,R}. (3.25)

From (i), (iv), (v) and (vi),

gi =
(

δi +
ǫi
2
− αi

)

l{~TH ,R}. (3.26)

And, from (iv), (v), (vi) and (vii),

hi =
[

δi +
ǫi
2

+ γi − 2
]+

l{~TH ,R}, (3.27)

where αi, βi, γi, δi, ǫi are known constants satisfying the following inequalities.

0 ≤ βi, γi ≤ 1, 0 ≤ δi, ǫi ≤ αi ≤ 2, δi + ǫi ≤ 2 (3.28)

From equations (3.24), (3.25), (3.26) and (3.27) we obtain

|λGDY(R)|

minλ∈Λ
{~TH,R}

|λ(R)|
≤ max

ei∈E
(iv)
H

{

2 + min
{

f1i , [f2i − f3i ]
+}

2−min {βi, γi}

}

, (3.29)

where

f1i = αi −
[

βi +
αi
2
− 1
]+

, f2i = δi + ǫi − αi, f3i =
[

δi +
ǫi
2

+ γi − 2
]+

,

and αi, βi, γi, δi, ǫi are constants satisfying the inequalities (3.28).

The lemma follows from equation (3.29).

Lemma 3.10. For any real α, β, γ, δ and ǫ satisfying

0 ≤ β, γ ≤ 1, 0 ≤ δ, ǫ ≤ α ≤ 2, δ + ǫ ≤ 2,

and functions f1, f2, f3 given by

f1 = α−
[

β +
α

2
− 1
]+

, f2 = δ + ǫ− α, f3 =
[

δ +
ǫ

2
+ γ − 2

]+

,

the following holds

max
α,β,γ,δ,ǫ

2 + min
{

f1, [f2 − f3]
+}

2−min {β, γ}
≤

5

2
.
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Proof. Note that for all permissible values of α, β, γ, δ and ǫ we have the following.

2 + min
{

f1, [f2 − f3]
+}

2−min {β, γ}
= min

{

2 + f1

2−min {β, γ}
,

2 + [f2 − f3]
+

2−min {β, γ}

}

≤ min

{

2 + f1

2− β
,
2 + [f2 − f3]

+

2− γ

}

(3.30)

Next we shall prove that, for 0 ≤ α ≤ 1,

2 + f1

2− β
≤

5

2
, (3.31)

and, for 1 ≤ α ≤ 2,

2 + [f2 − f3]
+

2− γ
≤

5

2
. (3.32)

From equations (3.30), (3.31), and (3.32) we get the required result.

For equation (3.31), observe that

2 + f1

2− β
=

2 + α−
[

β + 1
2
α− 1

]+

2− β
=

2 + α−max
{

β + 1
2
α− 1, 0

}

2− β

=
min

{

3 + 1
2
α− β, 2 + α

}

2− β
≤

3 + 1
2
α− β

2− β
≤

5

2
,

where the final inequality follows from the assumption that 0 ≤ α, β ≤ 1.

Next, we prove equation (3.32). Note that if f2 ≤ f3, we have

2 + [f2 − f3]
+

2− γ
=

2

2− γ
≤ 2,

where the inequality follows from the assumption that 0 ≤ γ ≤ 1. Thus, the case of

interest is when f2 > f3. Also, since f3 ≥ 0, f2 = δ + ǫ− α > 0. Hence, in this case

we have

2 + [f2 − f3]
+

2− γ
=

2 + δ + ǫ− α−
[

δ + 1
2
ǫ+ γ − 2

]+

2− γ

=
2 + δ + ǫ− α−max

{

δ + 1
2
ǫ+ γ − 2, 0

}

2− γ

=
min

{

2 + 1
2
ǫ− α + 2− γ, 2 + 1

2
ǫ− α + δ + 1

2
ǫ
}

2− γ

=
2 + 1

2
ǫ− α

2− γ
+ min

{

1,
δ + 1

2
ǫ

2− γ

}

≤
2− 1

2
α

2− γ
+ 1 ≤

5

2
, (3.33)
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where the first inequality follows from the assumption that ǫ ≤ α and the second

inequality follows from the assumptions that 0 ≤ γ ≤ 1 and 1 ≤ α ≤ 2.

Theorem 3.11. For the restricted MIN-MC-WA-BT problem where the degree of

the bidirected tree is at most 3, GREEDY-WA is an approximation algorithm with

approximation ratio 5
2
.

Proof. The theorem follows from Lemmas 3.9 and 3.10.

3.3 Complexity Analysis

In this section, we prove that the wavelength assignment scheme GREEDY-

WA, presented in Section 3.1, has a polynomial running time. In particular, we

claim the following result.

Proposition 3.12. For the given instance {~TH ,R} of the MIN-MC-WA-BT prob-

lem restricted to the case when the degree of the bidirected tree is at most 3, the

running time complexity of GREEDY-WA is

O
(

|EH |
(

l{~TH ,R}

)2.5
+ |R|l{~TH ,R} + |EH ||R|

2
)

.

Proof. GREEDY-WA starts off with a BFS of host tree H from some arbitrary root

vertex. Complexity of BFS in graph G is O
(

|VG|+ |EG|
)

[42, p.531-539]. Therefore,

for tree H , BFS is linear in |EH |. For constructing the conflict graph GR of the given

set of rooted subtrees, we need to decide for every pair of rooted subtrees in the set

R, whether the rooted subtrees in that pair collide or not. For each pair we have to

check for collision on a maximum of |E~TH
| = 2|EH | directed edges. Therefore, the

conflict graph can be constructed in O
(

|EH ||R|2
)

time.

First consider the case when the host tree edge ei = {u, v} ∈ EH being pro-

cessed in the i-th round of wavelength assignment is of type (i), (ii) or (iii) as defined

in Lemma 3.3. In order to assign wavelength to rooted subtree ~R ∈ Qi, we first
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determine the set of unavailable wavelengths for ~R. This is the set of wavelengths

that have already been assigned to (either in the first i − 1 rounds or in the i-th

round itself) any rooted subtree that collides with ~R. Using Lemma 3.4, we can

upper bound the size of this set by |Pi−1[{u, v}] ∪ Qi| = |R[{u, v}]| = 2l{~TH ,R}.

Rooted subtree ~R is greedily assigned the first wavelength that is not in this set of

unavailable wavelengths. This shows that ~R is assigned wavelength in O
(

l{~TH ,R}

)

time.

Next consider the case when the host tree edge ei = {u, v} ∈ EH being pro-

cessed in the i-th round of wavelength assignment is of type (iv) as defined in

Lemma 3.3. In this case GREEDY-WA calls subroutines PROCESS-EDGE-1 and

PROCESS-EDGE-2. Note that since |Pi−1[{u, v}] ∪ Qi| = 2l{~TH ,R}, in PROCESS-

EDGE-1 initializing B1 as the complementary bipartite graph GPi−1[{u,v}]∪Qi takes

O
(

(

l{~TH ,R}

)2
)

time. Between every pair of independent vertices in B1, we decide

whether to introduce an edge or not. Let rooted subtrees ~R, ~S ∈ Pi−1[{u, v}] ∪ Qi

be a pair of independent vertices in B1. If ~R, ~S are both unassigned or assigned with

the same wavelength, then no edge is added. On the other hand, if ~R, ~S are assigned

with different wavelengths, then the new edge {~R, ~S} is added in B1. Clearly these

are constant time checks. The interesting case is when ~R is unassigned whereas

some wavelength has already been assigned to ~S. In this case we check if there is

some rooted subtree ~U that has already been assigned a wavelength which it shares

with ~S, and it collides with ~R. If there is such a rooted subtree, then we add the

new edge {~R, ~S} in B1. To perform this check in constant time, for each processed

host tree edge we track the pairs of rooted subtrees that share wavelengths. Note

that due to Lemma 3.1, more than two rooted subtrees present on a host tree edge

can not share wavelengths. Also, from Lemma 3.4 we can infer that if there is a

rooted subtree ~U which shares wavelength with ~S and collides with ~R, then it must

be present on edge {u, w} (as defined in Lemma 3.3, {u, w} is the host tree edge
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adjacent to u that has already been processed). Since ~S, ~U form a pair of rooted

subtrees present on host tree edge {u, w} that share wavelength, the pair is tracked.

So we can simply check (in constant time) if ~R collides with the rooted subtree (if

present) that shares its wavelength with ~S on the host tree edge {u, w}. This deter-

mines whether we have to add the new edge {~R, ~S} in B1 or not. Since the number

of pairs of independent vertices in B1 is upper bounded by
(

l{~TH ,R}

)2

, graph B1

is updated in O
(

(

l{~TH ,R}

)2
)

time. After this, B̄1 can also be obtained from B1 in

O
(

(

l{~TH ,R}

)2
)

time. Complexity of determining a maximum matching in bipartite

graph B is O
(
√

|VB||EB|
)

[42, p.696-697]. Therefore, in bipartite graph B̄1 having

2l{~TH ,R} vertices, determining a maximum matching requires O
(

(

l{~TH ,R}

)2.5
)

time.

If an unassigned rooted subtree is matched to a rooted subtree that has already been

assigned some wavelength, the wavelength assignment for that unassigned rooted

subtree is a constant time operation. On the other hand, for unmatched unassigned

rooted subtrees and matched pairs of unassigned rooted subtrees, as explained in

the previous paragraph, wavelength assignment is carried out in O
(

l{~TH ,R}

)

time.

Similar time complexities hold for various steps of PROCESS-EDGE-2. Determin-

ing the better of the two subroutines and assigning wavelength to an unassigned

rooted subtree ~R ∈ Qi is a constant time operation.

To summarize, the running time complexity of GREEDY-WA depends on the

following steps.

(i) Constructing the conflict graph GR requires O
(

|EH ||R|
2
)

time.

(ii) Determining a maximum matching in bipartite graphs B̄1 and B̄2 requires

O
(

(

l{~TH ,R}

)2.5
)

time. This is done for all host tree edges of type (iv). Since

there are O
(

|EH |
)

such edges, the total time required for determining maxi-

mum matchings is O
(

|EH |
(

l{~TH ,R}

)2.5
)

.

(iii) Assigning wavelengths to rooted subtrees is either a constant time or aO
(

l{~TH ,R}

)
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operation. Since there are |R| rooted subtrees, total time required for assign-

ing wavelengths is O
(

|R|l{~TH ,R}

)

.

This gives us the required time complexity for GREEDY-WA.
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Chapter 4

Subtree Based Multicast Wavelength Assignment

in Bidirected Trees

In this chapter, we present another, simpler scheme for a restricted version of

the MIN-MC-WA-BT problem described in Section 2.2. The additional restriction

that we place on the problem is to limit the degree of the bidirected tree to be at most

4. In other words, the problem under consideration is the MIN-MC-WA-BT problem

represented as a pair {~TH ,R}, where ~TH is a bidirected tree with degree ∆~TH
≤ 4

and R is a set of rooted subtrees on ~TH . We prove that the presented scheme is

a 10
3
-approximation algorithm when ∆~TH

= 4, a 3-approximation algorithm when

∆~TH
= 3 and a 2-approximation algorithm when ∆~TH

= 2.

4.1 Subtree Based Wavelength Assignment

Let UR denote the set of subtrees of host treeH obtained by taking the skeleton

graphs of all the rooted subtrees in the set R, i.e., if R = {~R1, ~R2, . . . , ~R|R|}, then

UR = {U1, U2 . . . , U|R|}, where Ui := ‖~Ri‖ for every ~Ri ∈ R. Consider the conflict

graph GUR
corresponding to the set of subtrees UR, defined to be the intersection

graph of the family of the sets of edges of the subtrees. In other words, for any pair

of subtrees Ui, Uj ∈ UR, there is an edge {Ui, Uj} ∈ EGUR
in the conflict graph if
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and only if they share some common host tree edge, i.e., EUi ∩EUj 6= ∅.

The basic idea is that instead of solving the MIN-MC-WA-BT problem in-

stance {~TH ,R}, which is hard, we color the conflict graph GUR
and then use this

coloring to generate a wavelength assignment for the original set of rooted subtrees.

Lemma 4.1. GR is a spanning subgraph of GUR
.

Proof. By definition of the set UR there is an obvious bijection between VGUR
and

VGR
. Also, for every edge {~Ri, ~Rj} ∈ EGR

of the conflict graph GR, there is a

corresponding edge {Ui, Uj} ∈ EGUR
in the conflict graph GUR

. This is because

the presence of edge {~Ri, ~Rj} ∈ EGR
implies that the rooted subtrees ~Ri and ~Rj

share some common directed edge (u, v) ∈ E~TH
of the bidirected tree ~TH , i.e, (u, v) ∈

E~Ri
∩E~Rj

. In that case, the host tree edge {u, v} ∈ EH is shared by the corresponding

subtrees Ui and Uj , i.e., {u, v} ∈ EUi ∩EUj .

Lemma 4.1 results in the following corollary.

Corollary 4.2. Any vertex coloring for the conflict graph GUR
determines a ver-

tex coloring for the conflict graph GR. Consequently it determines a wavelength

assignment for the corresponding MIN-MC-WA-BT problem instance {~TH ,R}.

Corollary 4.2 suggests that we can simply color the conflict graph GUR
of the

skeleton subtrees of the rooted subtrees in the set R, and then assign each rooted

subtree ~Ri ∈ R the wavelength corresponding to the color determined for its skeleton

subtree Ui. This is essentially the scheme that we follow.

Observe that if the host tree degree ∆H = 2, then the graph GUR
is simply an

interval graph [41, p.175]. Moreover as stated in Section 2.3, if the host tree degree

∆H = 3, then the graph GUR
is chordal, and if the host tree degree ∆H = 4, then the

graph GUR
is weakly chordal. In all three cases, the graph is easily colorable. Since

the degree of a bidirected tree is defined to be equal to the degree of its host tree,

the characterization of the conflict graph GUR
based on the degree of the bidirected
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tree ~TH is exactly the same as the characterization based on the degree of the host

tree H .

The complete scheme is given as Algorithm 5 (SUBTREE-BASED-WA). We

denote the wavelength assignment generated by the scheme by λSUB.

Subroutine 5 SUBTREE-BASED-WA
Require: MIN-MC-WA-BT problem instance {~TH ,R}, where ∆~TH

≤ 4.

Ensure: A wavelength assignment λSUB ∈ Λ{~TH ,R}.

1: Determine UR = {U1, U2, . . . , U|R|} where Ui := ‖ ~Ri‖ for every ~Ri ∈ R.

2: Determine the conflict graph GUR .

3: Determine a minimum vertex coloring ψ∗ for the conflict graph GUR .

{This is easy since the conflict graph is an interval graph, chordal graph or weakly chordal

graph depending on whether the degree of the bidirected tree is 2, 3 or 4.}

4: λ(~Ri)← ψ∗(Ui) for every ~Ri ∈ R

4.2 Approximation Analysis

In this section, we shall prove that SUBTREE-BASED-WA is an approxima-

tion algorithm for the problem. We shall first discuss the case when the degree of

the bidirected tree, and hence the host tree, is equal to 4, i.e., ∆H = 4. The other

two cases when the degree of the bidirected tree, and hence the host tree, is equal

to 2, 3, i.e., ∆H = 2, 3, are similar.

We start our analysis by proving a pair of useful results that characterize the

subtrees in the set UR based on the structure of the conflict graph GUR
. Both of

these results are independent of the degree of the host tree H . In Lemma 4.3 we

prove that in the conflict graph GUR
, all the subtrees forming a clique must have

at least one host tree vertex in common. And in Lemma 4.4 we prove that if two

subtrees of a tree contain a common edge, then they must contain at least one

common edge adjacent to their every common vertex.

We shall see that Lemma 4.3 allows us to determine the size of maximum clique
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in the conflict graph GUR
by studying the sets of subtrees containing a common host

tree vertex one at a time, rather than studying the set of all the subtrees at once.

For each such set of subtrees, Lemma 4.4 allows us to concentrate only on the

conflicts on the host tree edges adjacent to the common host tree vertex among

the subtrees in the set, and ignore the presence or absence of the subtrees on all

the other host tree edges. We require the size of maximum clique in conflict graph

GUR
to determine the chromatic number of the graph, which in turn is needed to

determine the approximation ratio for SUBTREE-BASED-WA.

Lemma 4.3. If subtrees Ui1 , . . . , Uik ∈ UR form a clique of size k in the conflict

graph GUR
, then there is a host tree vertex v ∈ VH common to all these subtrees,

i.e., v ∈
⋂k
j=1 VUij .

Proof. We prove by induction.

For the case when k = 2, the lemma effectively states that if there is an

edge {Ui1, Ui2} ∈ EGUR
, then for the corresponding subtrees VUi1 ∩ VUi2 6= ∅. By

the definition of conflict graph, the existence of edge {Ui1 , Ui2} ∈ EGUR
implies that

there is at least one common edge in the corresponding subtrees, i.e., EUi1∩EUi2 6= ∅,

which in turn implies that VUi1 ∩ VUi2 6= ∅. Hence, the statement holds for k = 2.

Let it hold for k = m, i.e., if subtrees Ui1 , . . . , Uim ∈ UR form a clique of size

m in the conflict graph GUR
, then there is a host tree vertex v ∈ VH common to all

these subtrees, i.e., v ∈
⋂m

j=1 VUij .

Next we consider the case when k = m + 1. Let the set of subtrees C =

{Ui1 , . . . , Uim+1} ⊆ UR form a clique of size m + 1 in the conflict graph GUR
. Let

Cj := C \ {Uij} for j ∈ {1, . . . , m+1}. For every j, Cj forms a clique of size m in the

conflict graph GUR
. By inductive assumption, there is a host tree vertex common to

all the subtrees in the clique Cj . Let vj ∈ VH be a host tree vertex that is common to

all the subtrees in the clique Cj . Note that if vl ∈ VUil for some l ∈ {1, . . . , m+ 1},

then this means vl ∈
⋂m+1
j=1 VUij and hence the statement of the lemma holds for
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k = m+ 1. Let us assume the alternative case, i.e., for every j, vj /∈ VUij . Consider

the host tree vertices v1, vl, vm+1 where 1 < l < m+ 1. Since Uil lies in the cliques

C1 and Cm+1; v1, vm+1 ∈ VUil . Also, by assumption, vl /∈ VUil . Therefore, there is a

path in the host tree H (using edges from the set EUil ) between vertices v1, vm+1

that does not contain vertex vl. Using similar arguments we can find a path between

vertices v1, vl not containing vertex vm+1 and a path between vertices vl, vm+1 not

containing vertex v1. This shows the presence of a cycle in the host tree H , which

is a contradiction. Hence, the statement of the lemma holds for k = m+ 1.

For any bidirected tree vertex v ∈ V~TH , let us defineR[v] to be the set of rooted

subtrees that contain v, i.e., R[v] := {~R ∈ R : v ∈ V~R}. Hence, for any host tree

vertex v ∈ VH , UR[v] := {U ∈ U : v ∈ VU}. An immediate implication of Lemma 4.3

is that the size of maximum clique in the conflict graph GUR
is equal to the largest

of the size of maximum cliques in the conflict graphs of subtrees containing various

host tree vertices, i.e.,

ωGUR
= max

v∈VH
ωGUR[v]

, (4.1)

where ωGUR
denotes the clique number of the graph GUR

, and UR[v] denotes the set

of subtrees that contain host tree vertex v ∈ VH .

Lemma 4.4. If subtrees Ui, Uj ∈ UR[v] share some host tree edge, then they must

share at least one host tree edge adjacent to the host tree vertex v ∈ VH .

Proof. Subtrees Ui, Uj ∈ UR[v] imply that host tree vertex v ∈ VH lies in both the

vertex sets VUi and VUj . Let subtrees Ui, Uj share some host tree edge that is not

adjacent to v. Let one of its end vertices be w. Therefore, host tree vertex w lies

in both the vertex sets VUi and VUj . Since vertices v, w ∈ VUi and Ui is a subtree

of the host tree H , all the host tree edges on the path between vertices v, w are in

the set EUi. Let {u, v} ∈ EH be the first edge on the path starting from vertex v.
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Therefore, host tree edge {u, v} ∈ EUi . Following similar arguments we can show

that host tree {u, v} ∈ EUj as well.

One of the implications of Lemma 4.4 is that if two subtrees Ui, Uj ∈ UR[v] do

not share any host tree edge adjacent to vertex v, then there is no edge between the

two subtrees in the conflict graph GUR
, i.e., {Ui, Uj} /∈ EGUR

.

After having established Lemmas 4.3 and 4.4, we try to study the sets of

subtrees containing a common host tree vertex in more detail. Consider a host tree

vertex v ∈ VH . Two subtrees Ui, Uj ∈ UR[v] are said to be equivalent (with respect to

v) if there is no host tree edge adjacent to v such that Ui is present on the edge but

Uj is not, and vice versa. For any host tree vertex v ∈ VH , we can partition UR[v],

the set of subtrees that contain v, into equivalence classes based on their presence or

absence on the tree edges adjacent to vertex v. In the case when the degree of the

host tree is ∆H = 4, for any host tree vertex v ∈ VH , there are 15 such equivalence

classes. Let these be U1
R[v], . . . ,U

15
R[v]. Figure 4.1 shows a sample subtree from each

of these classes in the neighborhood of vertex v. In the figure, vertex v is depicted as

black dot. Note that there are host tree vertices for which some of the equivalence

classes may be empty, e.g. for a vertex v ∈ VH having degree δH(v) < 4.

Next, in Lemmas 4.5 and 4.6, we shall determine an upper bound on the size of

maximum clique in the conflict graph. Lemma 4.5 is another useful result pertaining

to the cliques in conflict graph GUR
, and is independent of the degree of host tree

H . Finally, in Lemma 4.6 we specifically look at the maximal cliques in the conflict

graphs of subtrees of host tree H of degree ∆H = 4.

Lemma 4.5. For some host tree vertex v ∈ VH , let the set of rooted subtrees C ⊆

UR[v] form a clique of size k in the conflict graph GUR
. If there are two equivalent

subtrees Ui, Uj ∈ UR[v] such that Ui ∈ C but Uj /∈ C, then the vertex set C ∪ {Uj}

forms a clique of size k + 1 in the conflict graph GUR
.
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Figure 4.1: Partition of UR[v], the set of subtrees of host tree H with degree ∆H = 4

containing vertex v ∈ VH , into 15 equivalence classes: U1
R[v], . . . ,U

15
R[v].

Proof. Note that if subtree Ui ∈ UR[v] then it must be present on at least one of the

host tree edges adjacent to v. This is simply because we assume that there are at

least two vertices in Ui, i.e., |VUi| ≥ 2. The reason for this assumption is that if the

subtree Ui is singleton, then the corresponding rooted subtree ~Ri is also singleton,

which is not possible since ~Ri models some multicast traffic request with a source

and at least one destination node. Since Ui is a subtree and therefore connected,

the host tree edges on the paths from v to every other vertex in the set VUi must

belong to the set EUi . At least one of these paths must necessarily contain some

host tree edge adjacent to v. With this observation in mind, we begin the proof of

the lemma.

As explained above, since subtrees Ui, Uj ∈ UR[v] are equivalent, they share at

least one host tree edge (adjacent to v). Therefore, there is an edge in the conflict

graph between subtrees Ui, Uj, i.e., {Ui, Uj} ∈ EGUR
. For every subtree Ul ∈ C\{Ui},

since the edge {Ui, Ul} ∈ EGUR
, by Lemma 4.4, subtrees Ui, Ul share some host tree

edge adjacent to vertex v. Also, since subtrees Ui, Uj are equivalent (w.r.t. v),

every host tree edge adjacent to vertex v is either in both the sets EUi, EUj , or is in

neither of the two. Therefore, for every subtree Ul ∈ C, the edge {Uj , Ul} exists in

the conflict graph GUR
. This proves that the subtree set C ∪ {Uj} forms a clique of
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U8
R[v]

U6
R[v]

U9
R[v]

U5
R[v]

U10
R[v]

U7
R[v]U4

R[v]

U2
R[v]

U1
R[v]

U3
R[v]

U14
R[v]

U13
R[v]

U11
R[v]

U12
R[v]

U15
R[v]

Figure 4.2: Structure of the complementary conflict graph ḠUR[v]
in the case when

the degree of the host tree is ∆H = 4.

size k + 1 in the conflict graph.

An immediate implication of Lemma 4.5 is that if the subtree set C ⊆ UR[v]

forms a maximal clique in GUR[v]
, then for every equivalence class U lR[v] of the subtree

set UR[v], exactly one of the following holds:

(i) Every subtree in the equivalence class is in the maximal clique, i.e, U lR[v] ⊆ C.

(ii) None of the subtrees in the equivalence class is in the maximal clique, i.e,

U lR[v] ∩ C = ∅.

Using this observation we determine an upper bound on the size of maximum clique

in the conflict graph GUR[v]
.

Lemma 4.6. Given a bidirected tree ~TH having degree ∆~TH
= 4, and a set R of

rooted subtrees of ~TH . The size of maximum clique in the conflict graph GUR[v]
is

bounded as ωGUR
≤ 10

3
l{~TH ,R}, where UR is the set of skeletons of the rooted trees in

the set R as defined in Section 4.1, and l{~TH ,R} is the load of the set R of rooted

subtrees on the bidirected tree ~TH as defined in Section 3.2.

Proof. Using Lemmas 4.4 and 4.5, we can determine the maximal cliques in the

conflict graph GUR[v]
. It turns out that it is much easier to observe the maximal
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independent sets in the complementary conflict graph ḠUR[v]
. These are exactly the

same as the maximal cliques in conflict graph GUR[v]
. Figure 4.2 depicts the structure

of complementary conflict graph ḠUR[v]
. Each vertex in the figure represents a set

of independent subtrees in ḠUR[v]
. And, an edge in the figure represents an edge

between every subtree in one set and every subtree in the other set.

We observe that the only possible maximal cliques in the conflict graph GUR[v]

comprise of the subtrees in the following equivalence classes.

(i) U1
R[v],U

5
R[v],U

6
R[v],U

7
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

15
R[v]

(ii) U2
R[v],U

5
R[v],U

8
R[v],U

9
R[v],U

11
R[v],U

12
R[v],U

14
R[v],U

15
R[v]

(iii) U3
R[v],U

6
R[v],U

8
R[v],U

10
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(iv) U4
R[v],U

7
R[v],U

9
R[v],U

10
R[v],U

11
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(v) U5
R[v],U

6
R[v],U

7
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(vi) U5
R[v],U

8
R[v],U

9
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(vii) U6
R[v],U

8
R[v],U

10
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(viii) U7
R[v],U

9
R[v],U

10
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(ix) U5
R[v],U

7
R[v],U

9
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(x) U5
R[v],U

6
R[v],U

8
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(xi) U6
R[v],U

7
R[v],U

10
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

(xii) U8
R[v],U

9
R[v],U

10
R[v],U

11
R[v],U

12
R[v],U

13
R[v],U

14
R[v],U

15
R[v]

According to our notation, the load of the set R of rooted subtrees on the

bidirected tree ~TH is l{~TH ,R}. Therefore, the number of subtrees present on any host
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tree edge is upper bounded by 2l{~TH ,R}. For any host tree vertex v ∈ VH , this leads

to the following inequalities:

|U1
R[v]|+ |U

5
R[v]|+ |U

6
R[v]|+ |U

7
R[v]|

+ |U11
R[v]|+ |U

12
R[v]|+ |U

13
R[v]|+ |U

15
R[v]| ≤ 2l{~TH ,R} (4.2)

|U2
R[v]|+ |U

5
R[v]|+ |U

8
R[v]|+ |U

9
R[v]|

+ |U11
R[v]|+ |U

12
R[v]|+ |U

14
R[v]|+ |U

15
R[v]| ≤ 2l{~TH ,R} (4.3)

|U3
R[v]|+ |U

6
R[v]|+ |U

8
R[v]|+ |U

10
R[v]|

+ |U12
R[v]|+ |U

13
R[v]|+ |U

14
R[v]|+ |U

15
R[v]| ≤ 2l{~TH ,R} (4.4)

|U4
R[v]|+ |U

7
R[v]|+ |U

9
R[v]|+ |U

10
R[v]|

+ |U11
R[v]|+ |U

13
R[v]|+ |U

14
R[v]|+ |U

15
R[v]| ≤ 2l{~TH ,R} (4.5)

Note that inequalities (4.2), (4.3), (4.4) and (4.5) actually bound the size of maximal

cliques listed as (i), (ii), (iii) and (iv), respectively, by 2l{~TH ,R}.

Adding inequalities (4.3), (4.4), (4.5) and 2×(4.2), we get

2|U1
R[v]|+ |U

2
R[v]|+ |U

3
R[v]|+ |U

4
R[v]|+ 3|U5

R[v]|

+ 3|U6
R[v]|+ 3|U7

R[v]|+ 2|U8
R[v]|+ 2|U9

R[v]|+ 2|U10
R[v]|

+ 4|U11
R[v]|+ 4|U12

R[v]|+ 4|U13
R[v]|+ 3|U14

R[v]|+ 5|U15
R[v]| ≤ 10l{~TH ,R}

⇒ |U5
R[v]|+ |U

6
R[v]|+ |U

7
R[v]|+ |U

11
R[v]|

+ |U12
R[v]|+ |U

13
R[v]|+ |U

14
R[v]|+ |U

15
R[v]| ≤

10

3
l{~TH ,R}. (4.6)

Inequality (4.6) bounds the size of maximal clique listed as (v) above. We can

similarly show that the size of maximal cliques listed as (vi), (vii) and (viii) are also

bounded by 10
3
l{~TH ,R}.
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(a) Partition of the set UR[v] of subtrees into 7

equivalence classes: U1
R[v], . . . ,U

7
R[v].

U1
R[v]

U7
R[v]

U2
R[v] U6

R[v]
U3
R[v]

U5
R[v]

U4
R[v]

(b) Structure of the conflict graph

GUR[v]
.

Figure 4.3: Equivalence classes and structure of the conflict graph of subtrees UR[v]

in the case when the degree of the host tree is 3.

Adding inequalities (4.2), (4.3) and (4.5), we get

|U1
R[v]|+ |U

2
R[v]|+ |U

4
R[v]|+ 2|U5

R[v]|+ |U
6
R[v]|

+ 2|U7
R[v]|+ |U

8
R[v]|+ 2|U9

R[v]|+ |U
10
R[v]|+ 3|U11

R[v]|

+ 3|U12
R[v]|+ 3|U13

R[v]|+ 3|U14
R[v]|+ 3|U15

R[v]| ≤ 6l{~TH ,R}

⇒ |U5
R[v]|+ |U

7
R[v]|+ |U

9
R[v]|+ |U

11
R[v]|

+ |U12
R[v]|+ |U

13
R[v]|+ |U

14
R[v]|+ |U

15
R[v]| ≤ 3l{~TH ,R}

(4.7)

Inequality (4.7) bounds the size of maximal clique listed as (ix) above. We can

similarly show that the size of maximal cliques listed as (x), (xi) and (xii) are also

bounded by 3l{~TH ,R}.

Hence, for any host tree vertex v ∈ VT , the size of maximum clique in conflict

graph GUR[v]
is upper bounded by 10

3
l{~TH ,R}, i.e., ωGUR[v]

≤ 10
3
l{~TH ,R}. Therefore,

from equation (4.1), the size of maximum clique in the conflict graph GUR
is upper

bounded as ωGUR
≤ 10

3
l{~TH ,R}.

Next we prove the main theorem of this section.
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Theorem 4.7. SUBTREE-BASED-WA is a 10
3
-approximation algorithm for the

restricted MIN-MC-WA-BT problem where the degree of the bidirected tree is 4.

Proof. As stated before, SUBTREE-BASED-WA assigns wavelengths to the rooted

subtrees in the set R as determined by vertex coloring of GUR
, the conflict graph

of their skeleton subtrees. When the degree of the bidirected tree is ∆~TH
= 4, the

conflict graph GUR
is weakly chordal, and the following hold.

(i) Coloring GUR
is easy. Therefore, the total number of wavelengths required by

SUBTREE-BASED-WA is equal to χGUR
.

(ii) The conflict graph GUR
is perfect [41, p.146]. Therefore, its chromatic number

is equal to its clique number, i.e., χGUR
= ωGUR

.

Hence, by Lemma 4.6 we get the upper bound on the number of wavelengths required

by the algorithm as

|λSUB(R)| = χGUR
= ωGUR

≤
10

3
l{~TH ,R}. (4.8)

Note that the minimum number of wavelengths required for assigning wave-

lengths to the set R of rooted subtrees on the bidirected tree ~TH is lower bounded

by l{~TH ,R}, i.e.,

min
λ∈Λ

{~TH,R}

|λ(R)| ≥ l{~TH ,R}. (4.9)

From equations (4.8) and (4.9), we obtain

|λSUB(R)|

minλ∈Λ
{~TH,R}

|λ(R)|
≤

10

3
,

which gives the required approximation ratio for SUBTREE-BASED-WA.

As already stated, Lemmas 4.3, 4.4 and 4.5 are independent of the degree of

the host tree H . In particular, they hold for ∆H = 2, 3 as well. It is much easier

to determine the upper bound on the size of maximum clique in the conflict graph
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(a) Partition of the set UR[v] of

subtrees into 3 equivalence classes:

U1
R[v],U

2
R[v],U

3
R[v].

U3
R[v]

U2
R[v]U1

R[v]

(b) Structure of the conflict graph

GUR[v]
.

Figure 4.4: Equivalence classes and structure of the conflict graph of subtrees UR[v]

in the case when the degree of the host tree is 2.

GUR
for the case when ∆H = 2, 3 compared to the case when ∆H = 4 (Lemma 4.6).

These bounds are 2l{~TH ,R} and 3l{~TH ,R} for the case when the degree of the host tree

is 2 and 3, respectively. For the case when ∆H = 3, Figure 4.3(a) shows a sample

subtree from each of the equivalence classes (as defined before) in the set UR[v] in

the neighborhood of host tree vertex v ∈ VH . Figure 4.3(b) depicts the structure of

the conflict graph GUR[v]
. Each vertex in the figure represents a clique of subtrees.

An edge between two vertices represents an edge between every subtree in one set

and every subtree in the other set. The corresponding figures for the case when

∆H = 2 are presented as Figures 4.4(a) and 4.4(b). The reader is encouraged to

use Figures 4.3(b) and 4.4(b) and determine (analogous to Lemma 4.6) the upper

bound on the size of maximum clique in the conflict graph GUR
when ∆H = 3, 2

respectively. The arguments presented in the proof of Theorem 4.7 also hold and

we get the approximation ratio of 2 and 3 when ∆~TH
= 2 and 3, respectively.

4.3 Complexity Analysis

The time complexity of SUBTREE-BASED-WA wavelength assignment scheme

depends on the complexity of the algorithm employed for coloring the conflict graph

GUR
. When ∆~TH

≤ 4, the scheme has a polynomial running time. In particular, we

have the following result.
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Proposition 4.8. For the given instance {~TH ,R} of the MIN-MC-WA-BT problem,

the running time complexity of SUBTREE-BASED-WA is:

(i) O
(

|R|2
(

|EH |+ |R|
))

when ∆~TH
= 4.

(ii) O
(

|EH ||R|2
)

when ∆~TH
= 3.

(iii) O
(

|R| log |R|
)

when ∆~TH
= 2.

Proof. First note that in SUBTREE-BASED-WA, for constructing the conflict graph

GUR
, we need to decide for every pair of subtrees in the set UR, whether the sub-

trees in that pair collide or not. For each pair we have to check for collision on a

maximum of |EH | host tree edges. Therefore, the conflict graph can be constructed

in O
(

|EH ||R|2
)

time.

The complexity of minimum vertex coloring in a weakly chordal graph W

is O
(

|VW |3
)

[36]. Also, as stated before, for the case when ∆~TH
= 4 the conflict

graph GUR
is a weakly chordal graph. Therefore, in this case the complexity of

SUBTREE-BASED-WA is O
(

|R|2
(

|EH |+ |R|
))

.

Minimum vertex coloring in a chordal graph C is solvable in O
(

|VC| + |EC |
)

time [43]. Also as stated before, for the case when ∆~TH
= 3 the conflict graph GUR

is a chordal graph. Therefore, in this case the complexity of SUBTREE-BASED-

WA is determined by the complexity of constructing the conflict graph, i.e., the

complexity of SUBTREE-BASED-WA is O
(

|EH ||R|2
)

.

As stated before, when ∆~TH
= 2 the conflict graph GUR

is an interval graph.

In fact, in this case compared to first constructing and then coloring conflict graph

GUR
, it is much more efficient to treat the subtrees as intervals and straightaway

assign colors to them. The complexity of coloring a given set I of intervals is

O
(

|I| log |I|
)

[44]. Therefore the complexity of SUBTREE-BASED-WA in the case

when ∆~TH
= 2 is O

(

|R| log |R|
)

.
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Chapter 5

NP Completeness Results for Multicast

Wavelength Assignment in Bidirected Trees

In this chapter, we state and prove three NO completeness results. Two of

these are for a pair of restricted versions of the MIN-MC-WA-BT problem. The third

result is for a problem related to another restricted version of the MIN-MC-WA-BT

problem.

5.1 Motivation and Background

In this section, we discuss the significance of the hardness results that we later

prove in Sections 5.2, 5.3 and 5.4. We also give some background required for the

proofs.

In Sections 5.2, and 5.3, we prove that the decision version of the MIN-MC-

WA-BT problem defined in Section 2.2 is NP complete even under the following

restricted settings:

(i) The bidirected tree is restricted to being a bidirected star.

(ii) The bidirected tree is restricted to being a bidirected path.

Analogous to the definition of a bidirected tree, a bidirected star (path) is defined
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as the directed graph generated by replacing the edges of a star (path) by pairs of

anti-parallel directed edges.

These results are interesting because in both these cases, if we add an addi-

tional restriction that the set of rooted subtrees is restricted to being directed paths,

the problem becomes tractable. This is because directed path coloring in bidirected

stars is equivalent to the problem of edge coloring in bipartite graphs, and directed

path coloring in bidirected paths is equivalent to the problem of interval coloring.

Both interval coloring [44] and edge coloring in bipartite graphs [45] are solvable in

polynomial time. Observe that the restricted MIN-MC-WA-BT problem, where the

rooted subtrees are restricted to being directed paths, is nothing but the routing and

wavelength assignment problem for unicast traffic requests in bidirected trees under

all-optical networking paradigm. Therefore, the hardness results show that the mul-

ticast routing and wavelength assignment is inherently harder than the unicast case

when we restrict the fiber topology to being a bidirected path or a bidirected star

(both of which are interesting topologies from practical standpoint). This suggests

that simply tweaking the algorithms developed for unicast routing and wavelength

assignment may not result in good algorithms for the multicast case, and there is

a need to develop and study new techniques that are dedicated to the multicast

problem.

In Section 5.4, we prove a hardness result related to the MIN-MC-WA-BT

problem restricted to the case when the bidirected tree has degree at most 3. Recall

that in Section 2.2, we showed that any given instance of the MIN-MC-WA-BT

problem is equivalent to the problem of minimum vertex coloring of the conflict

graph corresponding to the given set of rooted subtrees of the given bidirected tree.

Since the clique number of any graph provides a ‘good’ lower bound for its chromatic

number, in order to get a good lower bound on the minimum number of wavelengths

required by any traffic grooming solution for a given instance of the MIN-MC-WA-
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BT problem, it makes sense to study the problem of determining the clique number

of the corresponding conflict graph. We prove that the decision version of the

problem of determining the clique number of the conflict graphs corresponding to

the set of MIN-MC-WA-BT problems restricted to the case when the degree of the

bidirected tree is at most 3, is NP complete.

Before proceeding any further, let us state MC-WA-BT, the decision version

of the MIN-MC-WA-BT problem.

Problem 5.1 (MC-WA-BT). Given a triple {~TH ,R, k}, where ~TH is a bidirected

tree, R is a set of rooted subtrees on ~TH and k is a positive integer; consider a set

of mappings Λ{~TH ,R} from R to N, such that for any mapping λ ∈ Λ{~TH ,R}, if a pair

of rooted subtrees ~Ri, ~Rj ∈ R collide, then λ(~Ri) 6= λ(~Rj).

Is there a mapping λ∗ ∈ Λ{~TH ,R} such that |λ∗(R)| ≤ k?

To show the NP completeness of MC-WA-BT problem in the desired restricted

settings, we first prove that the general MC-WA-BT problem is in NP.

Lemma 5.2. MC-WA-BT is in NP.

Proof. Given any instance of {~TH ,R, k}, of the MC-WA-BT problem, and any map-

ping λ : R −→ N, we can verify in O
(

|E~TH
||R|2

)

time, whether λ is a certificate (as

defined in the definition of the MC-WA-BT problem) for the given instance of the

problem or not. Hence, MC-WA-BT is in NP.

5.2 Bidirected Stars

In this section, we prove that the MC-WA-BT problem described in Section 5.1,

restricted to the case when the bidirected tree is a bidirected star, is NP complete.

We prove the hardness result by reduction from the problem of vertex coloring

in graphs (COL). For completeness, the exact definition of the COL problem is given

next.
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(a) Graph G from the given instance of

COL.
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(c) Set R of rooted subtrees.

Figure 5.1: Construction of an instance of MC-WA-BT restricted to bidirected stars,

equivalent to a given instance of COL.

Problem 5.3 (COL). Given a pair {G, k}, where G is a graph and k is a positive

integer; consider the set of mappings ΨG from VG to N such that for any mapping

ψ ∈ ΨG, if a pair of vertices u, v ∈ VG are adjacent to each other, i.e., if there is an

edge {u, v} ∈ EG, then ψ(u) 6= ψ(v).

Does there exist a mapping ψ∗ ∈ ΨG such that |ψ∗(VG)| ≤ k?

It is known that COL is NP complete [46].

Theorem 5.4. MC-WA-BT restricted to bidirected stars is NP complete.
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Proof. Let {G, k} be any given instance of the COL problem. Label the edges of the

graph G from e1 to e|VG|. Generate an instance of MC-WA-BT problem as follows:

(i) Construct a bidirected star ~S with |EG| + 1 vertices. Label the leaf vertices

from v1 to v|EG| starting from any leaf vertex and traversing clockwise through

all the leaves. Label the eye of the star as v|EG|+1.

(ii) Corresponding to each vertex a ∈ VG, construct a rooted subtree ~Ra of ~S with

directed edge set E~Ra
= {(v|EG|+1, vi) : ei ∈ EG \ EG[VG\{a}]}, and vertex set

V~Ra = {v|EG|+1} ∪ {vi : ei ∈ EG \ EG[VG\{a}]}. In other words, the rooted

subtree ~Ra, corresponding to the vertex a ∈ VG, contains the directed edge

(v|EG|+1, vi) if and only if edge ei ∈ EG is adjacent to a.

The time required for this construction is linear in the size of the graph G. An

example construction is presented in Figure 5.1. Let the graph G specified by the

given instance of the COL problem be as shown in Figure 5.1(a). In Figure 5.1(b),

we present the host star graph that is used to generate the bidirected star ~S. Finally,

in Figure 5.1(c), we present the set R of rooted subtrees of the bidirected star ~S.

For clarity, in the figure we annotate the set of vertices of ~S, even though we have

omitted the directed edges and vertices of ~S.

By construction, there is an edge {a, b} ∈ EG if an only if the corresponding

pair of rooted subtrees ~Ra, ~Rb ∈ R collide. To observe this, first assume that the edge

{a, b} is labeled as ei during the edge labeling. In this case, since the directed edge

(v|EG|+1, vi) ∈ E~S is contained in both the rooted subtrees ~Ra and ~Rb, they collide.

Next assume that the rooted subtree pair ~Ra, ~Rb ∈ R collide. By construction,

all the directed edges present in any rooted subtree in the set R are of the form

(v|EG|+1, vj) where j ∈ {1, . . . , |EG|}. Without loss of any generality, since ~Ra, ~Rb

collide, assume that they collide on the directed edge (v|EG|+1, vi) ∈ E~S. Since the

directed edge (v|EG|+1, vi) ∈ E~Ra
, the edge ei is incident on the vertex a. Similarly
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we show that the edge ei is incident on the vertex b. Hence, the edge ei is nothing

but the edge {a, b}, i.e., {a, b} ∈ EG.

From the above claim, we have a bijection between the set of mappings

ΨG and Λ{~S,R}. Moreover, for any ψ ∈ ΨG and the corresponding λ ∈ Λ{~S,R},

|ψ(VG)| = |λ(R)|. This proves that the instance {G, k} of COL is equivalent to the

instance {~S,R, k} of MC-WA-BT where ~S is a bidirected star. Hence, the problem

COL is reducible to the problem MC-WA-BT restricted to bidirected stars. Finally,

applying Lemma 5.2 completes the proof.

5.3 Bidirected Paths

In this section, we prove that the MC-WA-BT problem described in Section

5.1, restricted to the case when the bidirected tree is a bidirected path, is NP

complete.

We prove the hardness result by reduction from the circular arc coloring prob-

lem (ARC-COL). For completeness, we give the exact definition of the ARC-COL

problem. But before presenting the ARC-COL problem, we need to tie down a few

notations. Given a circle C, an arc on C is denoted by an ordered pair (pl, pr), where

pl and pr are points on the circle C. The arc (pl, pr) is the set of all the points on

C encountered while traversing the circle in clockwise direction starting from point

pl and ending at point pr. In this case pl and pr are referred to as the end points of

the arc. More specifically, pl is the left end point and pr is the right end point. Arcs

(pli, pri), (plj , prj) on circle C are said to overlap, if they share some common point

on the circle, i.e., if (pli, pri) ∩ (plj , prj) 6= ∅. An arc (pli , pri) on circle C is said to

contain another arc (plj , prj ) on C, if all the points of (plj , prj) are also in (pli, pri),

i.e., if (plj , prj) ⊆ (pli , pri).

Next we state the ARC-COL problem.
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(a) Set of circular arcs from the given

instance of ARC-COL.

vlj+1 vri−1 vrj−1 vli+1vli

~Ri,3

~Ri,4k−|I|+i−1
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v−2i+2
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~Rj
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v2|A|+2i−1

v2|A|+2iv2|A|+2i−2

~Ri,51

~Ri,5k−|I|+i−1

(b) Set Ri ∪Rj of rooted subtrees on the bidirected path ~P .

Figure 5.2: Construction of an instance of MC-WA-BT restricted to bidirected

paths, equivalent to a given instance of ARC-COL.

Problem 5.5 (ARC-COL). Given a triple {C,A, k}, where C is a circle, A is a set

of arcs on the circle with distinct end points, and k is a positive integer; consider

a set of mappings Θ{C,A} from A to N such that for any mapping θ ∈ Θ{C,A}, if a

pair of arcs (pli, pri), (plj , prj) ∈ A overlap, then θ((pli , pri)) 6= θ((plj , prj)).

Is there a mapping θ∗ ∈ Θ{C,A} such that |θ∗(A)| ≤ k?

It is known that ARC-COL is NP complete [47].

Theorem 5.6. MC-WA-BT restricted to bidirected paths is NP complete.

Proof. Let {C,A, k} be any given instance of the ARC-COL problem. From among

94



the 2|A| end points belonging to all the arcs in A, select a point p that satisfies the

following:

(i) Point p is the left end point of some arc in A.

(ii) The first end point encountered on traversing the circle C in anticlockwise

direction while starting from point p, is a right end point of some arc in A.

Such an end point must exist because, of the 2|A| end points belonging to all the

arcs in A, exactly |A| are left end points and |A| are right end points. Next, label

the end points of the arcs from p1 to p2|A| starting by labeling the selected end point

p as p1, and moving clockwise on the circle.

Partition the set A into subsets I and J where I is the set of all the arcs

inA that contain the arc (p2|A|, p1), i.e., I := {(pl, pr) ∈ A : (p2|A|, p1) ⊆ (pl, pr)} and

J := A\I. Without loss of any generality, assume that I = {(pl1, pr1), . . . , (pl|I|
, pr|I|

)}.

Therefore, J = {(pl|I|+1
, pr|I|+1

), . . . , (pl|A|
, pr|A|

)}. A consequence of the labeling de-

scribed above is that none of the arcs in the set I have either p1 or p2|A| as an end

point.

Next, construct a bidirected path ~P with 2|A|+ 4|I| vertices that are labeled

from v−2|I|+1 to v2|A|+2|I| starting from one leaf and traversing the path to reach the

other leaf. For every arc (pli, pri) ∈ A, construct a set of rooted subtrees Ri of ~P .

If the arc (pli , pri) ∈ I, then

Ri =
5
⋃

j=1

Ri,j,

where

Ri,j =











{~Ri,j} for j ∈ {1, 2, 3},

{~Ri,j1,
~Ri,j2, . . . ,

~Ri,jk−|I|+i−1
} for j ∈ {4, 5}.

The vertex sets and the directed edge sets of the various rooted subtrees constructed
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above are defined as

V~Ri,1 = {v2|A|+2i−1, v2|A|+2i−2, . . . , v−2i+1},

E~Ri,1
= {(v2|A|+2i−1, v2|A|+2i−2), (v2|A|+2i−2, v2|A|+2i−3), . . . , (v−2i+2, v−2i+1)},

V~Ri,2 = {vli, vli+1, . . . , v2|A|+2i},

E~Ri,2
= {(vli, vli+1), (vli+1, vli+2), . . . , (v2|A|+2i−1, v2|A|+2i)},

V~Ri,3 = {v−2i+2, v−2i+3, . . . , vri},

E~Ri,3
= {(v−2i+2, v−2i+3), (v−2i+3, v−2i+4), . . . , (vri−1, vri)},

and for every j ∈ {1, 2, . . . , k − |I|+ i− 1},

V~Ri,4j
= {v2|A|+2i−2, v2|A|+2i−1, v2|A|+2i},

E~Ri,4j
= {(v2|A|+2i−1, v2|A|+2i−2), (v2|A|+2i−1, v2|A|+2i)},

V~Ri,5j
= {v−2i+1, v−2i+2, v−2i+3},

E~Ri,5j
= {(v−2i+2, v−2i+1), (v−2i+2, v−2i+3)}.

Otherwise, if the arc (pli , pri) ∈ J , then Ri = {~Ri} having the vertex set and the

directed edge set defined as

V~Ri = {vli , vli+1, . . . , vri},

E~Ri
= {(vli , vli+1), . . . (vri−1, vri)}.

LetR :=
⋃|A|
i=1Ri. This is a polynomial time construction. An example construction

is presented in Figure 5.2. In Figure 5.2(a), we show two overlapping arcs (pli, pri)

and (plj , prj) and the set of interesting points on the circle. Observe that (pli , pri) ∈ I

and (plj , prj) ∈ J . In Figure 5.2(b), we present the set Ri∪Rj of rooted subtrees of

the bidirected path ~P , corresponding to the arcs (pli , pri) and (plj , prj). For clarity,

in the figure we only annotate the set of vertices of the rooted subtrees that are

required to present the structure of the rooted subtrees, and do not show all the

directed edges and vertices of ~P .
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We claim that the answer to the ARC-COL problem {C,A, k} is YES if and

only if the answer to the MC-WA-BT problem {~P ,R, k} is YES. To prove this

claim, first assume that the answer to the ARC-COL problem {C,A, k} is YES. Let

θ∗ be the mapping as described in the definition of the ARC-COL problem. Without

loss of any generality, assume that θ∗(A) = {1, 2, . . . , |θ∗(A)|}, where |θ∗(A)| ≤ k.

Construct a mapping λ : R −→ N using the mapping θ∗ as described next. First,

for every i ∈ {1, 2, . . . , |I|},

λ(~Ri,1) = λ(~Ri,2) = λ(~Ri,3) = θ∗((pli, pri)), (5.1)

and for every i ∈ {|I|+ 1, |I|+ 2, . . . , |A|},

λ(~Ri) = θ∗((pli, pri)). (5.2)

Next, for every i ∈ {1, . . . , |I|}, j ∈ {1, . . . , k − |I|+ i− 1},

λ(~Ri,4j) = λ(~Ri,5j ) = min {{1, 2, . . . , k} \ Fi,j} , (5.3)

where

Fi,j =

j−1
⋃

m=1

{

λ
(

~Ri,4m

)}

∪ θ∗
({

(pli, pri), (pli+1
, pri+1

) . . . , (pl|I|
, pr|I|

)
})

. (5.4)

Later in this proof, we shall show that for every i ∈ {1, . . . , |I|}, j ∈ {1, . . . , k −

|I|+ i− 1}, the set {1, 2, . . . , k} \ Fi,j 6= ∅. Hence, the mapping λ is well defined.

Observe that according to our construction, collisions between rooted subtrees

in the set R can be classified as follows:

(i) A pair of rooted subtrees ~Ri, ~Rj ∈ {~R|I|+1, . . . , ~R|A|} collide if and only if the

arcs (pli, pri), (plj , prj) ∈ J overlap.

(ii) Let Si = {~R1,i, . . . , ~R|I|,i}, for i ∈ {1, 2, 3}. For i ∈ {1, 2, 3}, all the rooted

subtrees in the set Si collide. Note that all the arcs in the set I contain the

arc (p2|A|, p1) and therefore, are mutually overlapping.
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(iii) For i ∈ {|I| + 1, . . . , |A|} and j ∈ {1, . . . , |I|}, the rooted subtree ~Ri col-

lides with at least one of the rooted subtrees ~Rj,2, ~Rj,3 if and only if the arcs

(pli, pri) ∈ J and (plj , prj) ∈ I overlap.

(iv) Let Si,j = {~Ri,j1, . . . , ~Ri,jk−|I|+i−1
} for i ∈ {1, . . . , |I|} and j ∈ {4, 5}. For i ∈

{1, . . . , |I|} all the rooted subtrees in the set Si,4 collide with each other, and

also with all the rooted subtrees in the sets {~Ri,1, . . . , ~R|I|,1} and {~Ri,2, . . . , ~R|I|,2};

and all the rooted subtrees in the set Si,5 collide with each other, and also with

all the rooted subtrees in the sets {~Ri,1, . . . , ~R|I|,1} and {~Ri,3, . . . , ~R|I|,3}.

Besides the collisions described above, there can be no other collisions between the

rooted subtrees in the set R.

Consider a collision of type (i). Since the arcs (pli, pri), (plj , prj ) overlap,

θ∗((pli, pri)) 6= θ∗((plj , prj)). Also, the mapping λ for rooted subtrees ~Ri, ~Rj is de-

fined according to equation (5.2). Hence λ(~Ri) 6= λ(~Rj).

Consider a collision of type (ii). Since the arcs in the set I are mutually

overlapping, θ∗ maps distinct arcs in the set to distinct values. Also, the mapping

λ for rooted subtrees in the sets Si, for i ∈ {1, 2, 3} is defined according to equation

(5.1). Hence, for i ∈ {1, 2, 3}, distinct rooted subtrees in the set Si are assigned

distinct values by the mapping λ.

Consider a collision of type (iii). Since the arcs (pli , pri), (plj , prj) overlap,

θ∗((pli, pri)) 6= θ∗((plj , prj)). Also, the mapping λ for the rooted subtree ~Ri is de-

fined according to equation (5.2), and for the rooted subtrees ~Rj,2, ~Rj,3, it is defined

according to equation (5.1). Hence λ(~Rj,2), λ(~Rj,3) 6= λ(~Ri).

Consider a collision of type (iv). Equation (5.1) ensures that

θ∗
({

(pli, pri), . . . , (pl|I|
, pr|I|

)
})

= λ

(

{

~Ri,1, ~Ri,2, ~Ri,3, . . . , ~R|I|,1, ~R|I|,2, ~R|I|,3

}

)

.(5.5)
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From equations (5.4) and (5.5), we get

Fi,j = λ

(

j−1
⋃

m=1

{

~Ri,4m

}

∪
{

~Ri,1, ~Ri,2, ~Ri,3, . . . , ~R|I|,1, ~R|I|,2, ~R|I|,3

}

)

. (5.6)

Mapping λ for rooted subtrees in the sets Si,j, for i ∈ {1, . . . , |I|} and j ∈ {4, 5}

is defined according to equation (5.3). Hence, for i ∈ {1, . . . , |I|} and j ∈ {4, 5},

distinct rooted subtrees in the set Si,j are assigned values by the mapping λ that are

distinct not only with each other, but also from the values assigned by the mapping

λ to the rooted subtrees in the set {~Ri,1, ~Ri,2, ~Ri,3, . . . , ~R|I|,1, ~R|I|,2, ~R|I|,3}.

Hence, the mapping λ respects all the collisions among rooted subtrees in

the set R and is as described in the definition of the MC-WA-BT problem, i.e.,

λ ∈ Λ{~P ,R}.

Next we shall show that, for every i ∈ {1, . . . , |I|}, j ∈ {1, . . . , k−|I|+ i−1},

the set {1, 2, . . . , k} \ Fi,j 6= ∅. Hence, mapping λ is well defined. For this, observe

that for every i ∈ {1, . . . , |I|},

|Fi,1| = |I| − i+ 1,

and for every j ∈ {2, . . . , k − |I|+ i− 1},

|Fi,j| = |Fi,j−1|+ 1 = |I| − i+ j.

Hence, for every i ∈ {1, . . . , |I|}

max
j∈{1,...,k−|I|+i−1}

|Fi,j| = |Fi,k−|I|+i−1|+ 1 = k − 1.

The above analysis also shows that, |λ(R)| = k. Hence, the answer to the MC-WA

problem {~P ,R, k} is also YES.

Next assume that the answer to the MC-WA-BT problem {~P ,R, k} is YES.

Let λ∗ be a mapping as described in the definition of the MC-WA-BT problem.

First observe that for any mapping λ ∈ Λ{~P ,R}, |λ(R)| ≥ k. This is because

|λ(R)| ≥

∣

∣

∣

∣

∣

λ

(

k−1
⋃

m=1

{

~R|I|,4m

}

∪
{

~R|I|,2

}

)
∣

∣

∣

∣

∣

= k.
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The equality is because in the set
⋃k−1
m=1{

~R|I|,4m}∪{~R|I|,2}, there are exactly k rooted

subtrees and all of them collide on the directed edge (v2|A|+2|I|−1, v2|A|+2|I|) ∈ E~P ,

therefore every mapping in the set Λ{~P ,R} is forced to assign distinct values to all

the rooted subtrees in the set. Since the mapping λ∗ ∈ Λ{~P ,R} is a certificate for

MC-WA-BT problem {~P ,R, k}, |λ∗(R)| = k.

Observing all the collisions among the rooted subtrees on the directed edges

(v2|A|+2|I|−1, v2|A|+2|I|) and (v2|A|+2|I|−1, v2|A|+2|I|−2), we note that the distinct rooted

subtrees in the set
⋃k−1
m=1{

~R|I|,4m} are assigned different values according to the map-

ping λ∗, and also λ∗(~R|I|,1) = λ∗(~R|I|,2) /∈ λ
∗(
⋃k−1
m=1{

~R|I|,4m|}). Continuing similar

line of reasoning and observing for every i ∈ {|I|, . . . , 1}, pairs of directed edges

(v2|A|+2i−1, v2|A|+2i), (v2|A|+2i−1, v2|A|+2i−2), and (v−2i+2, v−2i+1), (v−2i+2, v−2i+3), we

have, for distinct i, j ∈ {|I|, . . . , 1},

λ∗(~Ri,1) = λ∗(~Ri,2) = λ∗(~Ri,3). (5.7)

and

λ∗(~Ri,1) 6= λ∗(~Rj,1). (5.8)

Consider a mapping θ : A −→ N defined as

θ((pli, pri)) = λ∗(~Ri,1) (5.9)

for i ∈ {1, . . . , |I|}, and

θ((pli , pri)) = λ∗(~Ri) (5.10)

for i ∈ {|I|+ 1, . . . , |A|}. First note that

|θ(A)| ≤ |λ∗(R)| = k.

Next we prove that θ is a mapping as defined in the definition of the ARC-COL

problem. Suppose the arcs (pli , pri), (plj , prj) ∈ A overlap. If (pli, pri), (plj , prj ) ∈ I
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(in which case, they necessarily overlap on arc (p2|A|, p1)), then by equations (5.8)

and (5.9), θ((pli, pri)) 6= θ((plj , prj)). If (pli, pri), (plj , prj) ∈ J , then by equation

(5.10) and the fact that λ∗ ∈ Λ{~P ,R}, θ((pli, pri)) 6= θ((plj , prj)). If (pli , pri) ∈ I

and (plj , prj) ∈ J , then (pli , pri), (plj , prj)’s overlap ensures that the rooted subtree

~Rj collides with at least one of the rooted subtree ~Ri,2, ~Ri,3. Hence, by equations

(5.9), (5.10) and the fact that λ∗ ∈ Λ{~P ,R}, θ((pli, pri)) 6= θ((plj , prj)). This shows

that mapping θ is indeed as described in the definition of the ARC-COL problem.

Hence, the answer to the ARC-COL problem instance {C,A, k} is also YES.

This proves that the ARC-COL problem is reducible to the MC-WA-BT

problem restricted to bipartite paths. Finally, applying Lemma 5.2 completes the

proof.

5.4 Bidirected Trees

In this section, we prove that the problem CLIQUE-MC-WA-BT (defined next)

restricted to the case where the degree of the bidirected tree is at most 3, is NP

complete.

Problem 5.7 (CLIQUE-MC-WA-BT). Given a triple {~TH ,R, k}, where ~TH is a

bidirected tree, R is a set of rooted subtrees on ~TH and k is a positive integer;

consider the conflict graph GR of the set R of rooted subtrees. Is there a set C ⊆ R

of rooted subtrees such that GC is a clique, and |C| ≥ k?

To show the NP completeness of CLIQUE-MC-WA-BT problem in the desired

restricted settings, we first prove that the general CLIQUE-MC-WA-BT problem is

in NP.

Lemma 5.8. CLIQUE-MC-WA-BT is in NP.

Proof. Given any instance of {~TH ,R, k}, of the CLIQUE-MC-WA-BT problem, and

any set C ⊆ R of rooted subtrees, we can verify in O
(

|E~TH
||R|2

)

time, whether C is
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a certificate, as defined in the definition of the CLIQUE-MC-WA-BT problem, for

the given instance of the problem or not. Hence, MC-WA-BT is in NP.

We prove the hardness result by reduction from the independent set problem

in tripartite graphs (TRIPARTITE-IS). For completeness, the exact definition of

the TRIPARTITE-IS problem is given next.

Problem 5.9 (TRIPARTITE-IS). Given a pair {T, k}, where T is a tripartite graph

and k is a positive integer. Is there an independent set S ⊆ VT such that |S| ≥ k?

It is known that TRIPARTITE-IS is NP complete [48].

Theorem 5.10. CLIQUE-MC-WA-BT restricted to bidirected trees having degree

at most 3 is NP complete.

Proof. Let {T, k} be any given instance of the TRIPARTITE-IS problem. We shall

construct an instance {~TH ,R, k} of the CLIQUE-MC-WA-BT problem, where ~TH is

a bidirected tree having degree at most 3, R is a set of rooted subtrees on ~TH such

that the conflict graph GR is isomorphic to the complementary tripartite graph T̄ .

Since cliques in T̄ are equivalent to independent sets in T , this would show that

the TRIPARTITE-IS problem is reducible to the CLIQUE-MC-WA-BT problem

restricted to bidirected trees having degree at most 3. Next, we present the con-

struction of the required instance {~TH ,R, k} of the CLIQUE-MC-WA-BT problem.

By the definition of tripartite graphs, we can partition the vertex set VT into

three independent sets [49]. Let these be

U := {u1, . . . , u|U |}, V := {v1, . . . , v|V |}, W := {w1, . . . , w|W |}.

Obviously, the vertex sets U , V and W form cliques in the complementary tripartite

graph T̄ . Also, they partition the set VT̄ . We define the following four sets of vertices

N := {n1, ň1, . . . , n|U |, ň|U |}, P := {p1, p̌1, . . . , p|V |, p̌|V |},

Q := {q1, q̌1, . . . , q|W |, q̌|W |}, X := {x}.
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n1

ň1
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p1

p|V |

p̌1

q̌|W |

q̌1

ň|U |

n|U |

q|W |

q1

p̌|V |

(a) Host tree H used to generated the bidirected tree

~TH .

ňi

n|U | ni n1

x
~Rvj

~Rui

(b) Structure of rooted subtrees ~Rui ,
~Rvj on the di-

rected edge set E~TH [N∪X].

Figure 5.3: Construction of an instance of CLIQUE-MC-WA-BT restricted to bidi-

rected trees having degree at most 3, equivalent to a given instance of ARC-COL.
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Next, we construct a graph H having the vertex set and the edge set defined as

VH :=X ∪N ∪ P ∪Q,

EH :=
{

{ni, ni+1} : i ∈ {1, . . . , |U | − 1}
}

∪
{

{ni, ňi} : i ∈ {1, . . . , |U |}
}

∪
{

{pi, pi+1} : i ∈ {1, . . . , |V | − 1}
}

∪
{

{pi, p̌i} : i ∈ {1, . . . , |V |}
}

∪
{

{qi, qi+1} : i ∈ {1, . . . , |W | − 1}
}

∪
{

{qi, q̌i} : i ∈ {1, . . . , |W |}
}

∪
{

{x, n1}, {x, p1}, {x, q1}
}

.

Observe that H is a tree with degree ∆H = 3. We construct the bidirected tree

~TH from the tree H as the host. Hence, the degree of the bidirected tree ~TH is also

equal to 3.

Next, we construct three sets of rooted subtrees of ~TH denoted as

RU := {~Ru1, . . . , ~Ru|U|
}, RV := {~Rv1 , . . . , ~Rv|V |

}, RW := {~Rw1, . . . , ~Rw|W |
}.

We shall describe the vertex sets and the directed edge sets for these sets of rooted

subtrees, in a moment. Let us define the set R of rooted subtrees to be

R := RU ∪RV ∪RW .

From the notations used for the rooted subtrees in the sets RU , RV and RW , and

the vertices in the sets U , V and W , observe that there is an obvious bijection

between the sets R and VT̄ . Note that we can partition the set of edges ET̄ into six

subsets ET̄ [U ], ET̄ [V ], ET̄ [W ], EU,V , EV,W and EW,U . As described before, T̄ [U ], T̄ [V ]

and T̄ [W ] are cliques. The other three edge sets are defined as

EU,V :=
{

{u, v} ∈ ET̄ : u ∈ U and v ∈ V
}

,

EV,W :=
{

{v, w} ∈ ET̄ : v ∈ V and w ∈W
}

,

EW,U :=
{

{w, u} ∈ ET̄ : w ∈W and u ∈ U
}

.

Observe that set E~TH
of directed edges can be partitioned into three subsets

E~TH [N∪X], E~TH [P∪X] and E~TH [Q∪X]. We shall study these three directed edge sets
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one at a time, and describe which of the directed edges in each of these sets are

contained in the rooted subtrees in the set R. The vertex set of each rooted subtree

can then be determined from its set of directed edges.

We start with the set E~TH [N∪X]. For every ~R ∈ RU , we have

{

(ni+1, ni) : i ∈ {1, . . . , |U |}
}

∪
{

(n1, x)
}

⊆ E~R. (5.11)

For every ~R ∈ RV , we have

{

(ni, ni+1) : i ∈ {1, . . . , |U |}
}

∪
{

(x, n1)
}

⊆ E~R. (5.12)

For every i ∈ {1, . . . , |U |}, we have

(ni, ňi) ∈ E~Rui
. (5.13)

Finally, for every i ∈ {1, . . . , |U |} and for every j ∈ {1, . . . , |V |}, if there is an edge

{ui, vj} ∈ ET̄ , we have

(ni, ňi) ∈ E~Rvj
. (5.14)

Observe that according to equation (5.11), all the rooted subtrees in the set RU

collide, therefore the set RU forms a clique in the conflict graph GR. Similarly,

according to equation (5.12), all the rooted subtrees in the set RV collide, there-

fore the set RV forms a clique in the conflict graph GR. Recall that these cliques

are desired since the corresponding vertex sets U and V form cliques in the graph

T̄ . Next, observe that according to equations (5.13) and (5.14), if there is an edge

{ui, vj} ∈ ET̄ , then the corresponding rooted subtrees Rui and Rvj collide on the

directed edge (ni, ňi), hence the edge {Rui ,Rvj} exists in the conflict graph GR.

Moreover, if vertices ui and vj are independent in the graph T̄ , then the corre-

sponding rooted subtrees Rui and Rvj are also independent in the conflict graph

GR. Hence, the graph GRU∪RV
is isomorphic to the complementary bipartite graph

T̄ [U ∪ V ]. An example construction is presented in Figure 5.3. In Figure 5.3(a), we
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present the host tree H that is used to generate the bidirected tree ~TH . In Figure

5.3(b), we present the rooted subtrees ~Rui and ~Rvj corresponding to the vertices

ui ∈ U and vj ∈ V such that the edge {ui, vj} is in the complementary tripartite

graph T̄ . We only show the structure of the rooted subtree ~Rui on the directed edge

set E~TH [N∪X], and the structure of the rooted subtree ~Rvj on the directed edge set

E~TH [{x,ňi,n1,...,n|U|}]
. For clarity, in the figure we only show the structure of the rooted

subtrees on the interesting directed edges, and do not show all the directed edges

and vertices of ~TH . Also, we only annotate the set of interesting vertices of ~TH .

Arguing similarly for the sets E~TH [P∪X] and E~TH [Q∪X], we get the complete

characterization of the rooted subtrees in the set R. We advise the reader to check

that the directed graphs in the set R are indeed rooted subtrees of the bidirected

tree ~TH . More specifically, the rooted subtrees in the sets RU , RV and RW have

the vertices nU , pV and qW as the roots. Moreover, with a little effort, we note that

the conflict graph GR is indeed isomorphic to the complementary tripartite graph

T̄ .

This completes the characterization of the required problem instance {~TH ,R, k}

of the TRIPARTITE-IS problem that we set out to construct. Finally, applying

Lemma 5.8 completes the proof.
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Chapter 6

Multicast Traffic Grooming in Unidirectional

Rings

As stated in Section 1.2.2, we are interested in the problem of grooming mul-

ticast traffic in all-optical unidirectional ring networks. In this chapter, we define

the exact problem that we wish to study. We also present the work that is closely

related to our problem of interest.

6.1 Model

As described in Section 1.2.2, a unidirectional ring is the directed graph ~C

having vertex set V ~C = {v1, v2 . . . , v|V~C |} and edge set E ~C = {(v1, v2), . . . , (v|V~C |, v1)}.

The skeleton ‖ ~C‖ of the unidirectional ring ~C is a cycle of size |V ~C |.

Observe that the set of leaves of any rooted subtree of a unidirectional ring is

singleton. Hence, as described in Section 1.3, a rooted subtree of a unidirectional

ring is nothing but a directed path on the ring.

Consider a triple { ~C,M, g} where ~C is a unidirectional ring that models the

fiber network, M is a set of multicast traffic requests on ~C and g is the grooming

ratio as defined in Section 1.4.3. Note that for a multicast traffic request {s,D} on a

unidirectional ring ~C, there is a unique directed path on the unidirectional ring that
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satisfies the properties stated in Section 1.4.2, i.e, the set R{ ~C,{s,D}} of interesting

directed paths defined in Section 1.4.2, contains exactly one directed path. Hence,

the routing of every multicast traffic request in the setM is fixed, i.e., the mapping

π described in MC-TG in Section 1.4.3, is trivially determined. As a consequence,

the traffic grooming problem MIN-WAVE-MC-TG simply reduces to a problem of

assigning wavelengths and sub-wavelength channels to the set of directed paths on

the given unidirectional ring, corresponding to the given set of multicast traffic

requests. On the other hand, the traffic grooming problem MIN-ADM-MC-TG also

reduces to assigning wavelengths and sub-wavelength channels to the set of directed

paths on the unidirectional ring; but in this case, unlike the MIN-WAVE-MC-TG

problem, corresponding to each directed path we also have a set of ring vertices that

act as either the source or the destinations of the corresponding multicast traffic

request.

Observe that the start vertex of the directed path corresponding to any mul-

ticast traffic request {s,D} on a unidirectional ring ~C, is the source node s and the

end vertex is a node from the set of destinations D. This end vertex is referred

to as the final destination of the multicast traffic request {s,D} and is denoted by

d. All the other destinations in the set D \ {d} are referred to as the intermediate

destinations.

6.2 Problem Statement

As discussed in Section 6.1, grooming a given set of multicast traffic requests

on a unidirectional ring network is equivalent to assigning wavelengths and sub-

wavelength channels to the set of rooted subtrees of the unidirectional ring corre-

sponding to the given set of multicast traffic requests. More precisely, grooming a

set of multicast traffic requests on a unidirectional ring network can be modeled as

follows.
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Definition 6.1 (MC-TG-UR). Given a triple { ~C,R, g}, where ~C is a unidirectional

ring, R is a set of directed paths on ~C and g is a positive integer; a traffic grooming

solution is a pair of mappings {λ, ω} as described next.

(i) Mapping λ : R −→ N solves the wavelength assignment problem in the sense

that it maps each directed path ~R ∈ R to a wavelength (described as a positive

integer).

(ii) Mapping ω : R −→ N solves the sub-wavelength channel assignment problem

in the sense that it maps each directed path ~R ∈ R to a sub-wavelength channel

(described as a positive integer).

(iii) Jointly the two mappings should satisfy the constraints that for every pair of

rooted subtrees ~Ri, ~Rj ∈ R, if they collide, then (λ(~Ri), ω(~Ri)) 6= (λ(~Rj), ω(~Rj));

and the number of sub-wavelength channels in any wavelength must not exceed

g, i.e., maxk∈λ(R)|ω({~R ∈ R : λ(~R) = k})| ≤ g.

We denote the set of all such pairs of mappings {λ, ω} for the triple { ~C,R, g} by

Ξ{ ~C,R,g}.

Using the definition presented above, we define the problem of grooming a set

of multicast traffic requests on a unidirectional ring with the objective of minimizing

the total number of wavelengths used, as follows.

Problem 6.2 (MIN-WAVE-MC-TG-UR). Given a triple { ~C,R, g}, where ~C is a

unidirectional ring, R is a set of directed paths on ~C and g is a positive integer;

determine a traffic grooming solution {λ, ω} ∈ Ξ{ ~C,R,g} as defined in MC-TG-UR

with the objective of minimizing |λ(R)|, the total number of wavelengths required.

An interesting observation is that the problems of grooming unicast and mul-

ticast traffic requests on all-optical unidirectional rings with the objective of min-

imizing the total number of wavelengths are equivalent. This is because modeling
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multicast traffic requests as directed paths on a unidirectional ring only preserves

the information about the source nodes and the final sink nodes of the multicast

traffic requests. Consider a set of unicast traffic requests having the source and the

destination nodes coinciding with the source and the final destination nodes of the

given set of multicast traffic requests. Observe that the problem of grooming these

two sets of traffic requests on the given unidirectional ring with the objective of

minimizing the number of wavelengths used, is exactly the same.

Next we define the problem of grooming a set of multicast traffic requests on

a unidirectional ring, with the objective of minimizing the total number of ADMs

used.

Problem 6.3 (MIN-ADM-MC-TG-UR). Given a triple { ~C,M, g}, where ~C is

a unidirectional ring, M is a set of multicast traffic requests on ~C and g is a

positive integer; let R be the set of directed paths corresponding to the multicast

traffic requests in the set M and let ~R{s,D} denote the directed path correspond-

ing to any multicast traffic request {s,D} ∈ M. For the triple { ~C,R, g}, de-

termine a traffic grooming solution {λ, ω} ∈ Ξ{ ~C,R,g} as defined in MC-TG-UR,

with the objective of minimizing the total number of ADMs required. The num-

ber of ADMs required by the traffic grooming solution {λ, ω} can be determined as

∑

v∈V~G
|λ(Mv)|, where, as defined in the problem MIN-ADM-MC-TG described in

Section 1.4.3, for any vertex v ∈ V ~G, Mv is the set of all the multicast traffic re-

quests that have vertex v as the source node or as one of the destination nodes, i.e.,

Mv := {{s,D} ∈ M : v ∈ {s} ∪D}.

The total number of ADMs required by any traffic grooming solution in the

MIN-ADM-MC-TG-UR problem is calculated exactly as in the problem MIN-ADM-

MC-TG described in Section 1.4.3.
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6.3 Related Work

Grooming static unicast sub-wavelength traffic to minimize either the number

of ADMs or the number of wavelengths required per fiber in WDM ring networks is

a well studied problem [11][50][51][52]. Different traffic scenarios such as uniform all-

to-all traffic [51][53], distance dependent traffic [50] and non-uniform traffic [11][54]

have been studied. Work has also been done with other cost functions such as the

overall network cost [55], which includes the cost of transceivers, wavelengths and

the number of required hops. Recently there has been a lot of work on grooming

both static [56] as well as dynamic [57][58][59] traffic in mesh networks.

The past few years have seen a spurt of research in the problem of grooming

multicast traffic in WDM networks. And although a lot of literature is available,

not many results are known for the multicast traffic grooming problem. Most of

the work in the multicast case has focused on heuristics for grooming multicast

traffic in WDM mesh networks under non-uniform static [60] as well as dynamic

traffic [61][62][63][64][65][66] scenarios. Although multicast traffic grooming in mesh

WDM networks is a general case of the same problem in WDM rings, the ideas that

are applied for mesh networks in [60][61][62][63][64][65][66] are not very attractive

for unidirectional rings. The difference between the mesh and the unidirectional

ring case is that, in mesh networks there are many possible routings for each traffic

demand whereas in unidirectional rings the routing is fixed and we have control over

wavelength assignment only. All of the heuristics for grooming multicast traffic in

mesh networks take advantage of the multiple routings possible and the wavelength

assignment is usually trivial (first fit). This is clearly not desired for grooming in

unidirectional rings, since the routing is already fixed and the only way to effectively

groom traffic is by using intelligent wavelength assignment.

Although, most of the work on multicast traffic grooming looks at mesh WDM

networks, there has been some work in the case of WDM rings also. More specifically,
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in [67] the authors look at the problem of grooming given multicast traffic demands

in a bidirectional WDM ring. They present a heuristic algorithm inspired by the

algorithm to groom unicast traffic demands on WDM rings given in [11]. The

problem that we study here is somewhat different from the problem studied in [67].

The main difference, other than the fact that we study unidirectional rings while

[67] looks at bidirectional rings, is that the cost function used is different. We

consider the number of ADMs and the number of wavelengths required per fiber as

our cost, whereas in [67], the total number of ports of e-DAC nodes in the network

is considered as the cost. In [67], the authors define two different types of nodes,

o-DAC and e-DAC nodes. When all the traffic on all the incoming wavelengths

needs to be forwarded, o-DAC nodes are used since the splitting can be done in the

optical domain. If this is not the case then e-DAC nodes are used. Note that the

cost functions are not the same since we require ADMs at all the nodes where some

traffic needs to be dropped whereas in [67], even the nodes where there is some drop

traffic can be treated as o-DAC nodes. Another important difference is that, unlike

us, the authors in [67] do not consider all-optical networking.
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Chapter 7

Algorithms for Multicast Traffic Grooming in

Unidirectional Rings

In this chapter, we study the MIN-WAVE-MC-TG-UR and the MIN-ADM-

MC-TG-UR problems described in Section 6.2.

We show that any ‘good’ circular arc graph coloring algorithm can be used to

generate a ‘good’ traffic grooming solution for the MIN-WAVE-MC-TG-UR prob-

lem. For the MIN-ADM-MC-TG-UR problem, we analyze the worst case perfor-

mances of several very simple traffic grooming strategies. We also present a new

traffic grooming heuristic and study its performance by simulations.

7.1 Minimizing Wavelengths

We start with the MIN-WAVE-MC-TG-UR problem. We discuss how it is

related to the problem of vertex coloring in circular arc graphs, and how we can use

the approximation algorithms developed for the circular arc graph coloring problem

for the MIN-WAVE-MC-TG-UR problem.
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7.1.1 Relation to Vertex Coloring

Given an instance { ~C,R, g} of the MIN-WAVE-MC-TG-UR problem described

in Section 6.2, consider the conflict graph GR corresponding to the set R of directed

paths on the unidirectional ring ~C. The conflicts modeled in this graph correspond

to all the pairwise collisions between the directed paths in the setR, i.e., for any pair

of directed paths ~Ri, ~Rj ∈ R, there is an edge {~Ri, ~Rj} ∈ EGR
in the conflict graph

if and only if they collide and therefore, cannot be assigned the same sub-wavelength

channel on the same wavelength. Assuming the sub-wavelength channels in distinct

wavelengths to be distinct, it is straightforward to argue that grooming the set R of

directed paths on the unidirectional ring ~C in order to minimize the total number

of sub-wavelength channels used is equivalent to the problem of finding a minimum

vertex coloring of the corresponding conflict graph GR, where each color signifies a

sub-wavelength channel. Moreover, observe that since each wavelength supports a

maximum of g sub-wavelength channels, the minimum number of wavelengths re-

quired by the instance { ~C,R, g} of the MIN-WAVE-MC-TG-UR problem is given

by

min
{λ,ω}∈Ξ

{ ~C,R,g}

|λ(R)| =

⌈

χGR

g

⌉

, (7.1)

where χGR
is the chromatic number of the conflict graph GR and Ξ{ ~C,R,g} is the set

of all the possible traffic grooming solutions for the triple { ~C,R, g} as defined in

MC-TG-UR described in Section 6.2.

7.1.2 NP Completeness

Consider the problem of coloring a set of arcs of a circle, described as the

ARC-COL problem in Section 5.3. Corresponding to any instance of the ARC-COL

problem, we can construct an equivalent instance of the decision version of the MIN-

WAVE-MC-TG-UR problem in polynomial time. Since ARC-COL is NP complete,
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MIN-WAVE-MC-TG-UR is NP hard.

7.1.3 Approximation Algorithms

Since the MIN-WAVE-MC-TG-UR problem is NP hard, it makes sense to

study approximation algorithms for the problem. As described above, for an instance

{ ~C,R, g} of the MIN-WAVE-MC-TG-UR problem, a vertex coloring of the conflict

graph GR trivially determines a grooming solution (partitioning the colors into sets

of size g and treating each set as a wavelength and the colors as the sub-wavelength

channels). Such a scheme is presented as Algorithm 6 (ARC-COL-BASED-TG).

Let us denote the traffic grooming solution generated by ARC-COL-BASED-TG by

the pair {λARC, ωARC}. Observe that ARC-COL-BASED-TG requires an algorithm

ARC-COL-ALGO for coloring circular arc graphs. If ARC-COL-ALGO is an ap-

proximation algorithm for the problem of minimum vertex coloring of circular arc

graphs, we can prove the following theorem for ARC-COL-BASED-TG.

Theorem 7.1. If ARC-COL-ALGO is an α-approximation algorithm for the prob-

lem of minimum vertex coloring of circular arc graphs, the total number of wave-

lengths required by the grooming solution generated by ARC-COL-BASED-TG for a

given MIN-WAVE-MC-TG-UR problem instance { ~C,R, g} is bounded as

|λARC(R)| ≤ α
(

min
{λ,ω}∈Ξ

{ ~C,R,g}

|λ(R)|
)

+ 1

Proof. The total number of wavelengths required by the traffic grooming solution

generated by ARC-COL-BASED-TG can be upper bounded as

|λARC(R)| =

⌈

|ψARC(R)|

g

⌉

≤

⌈

α · χGR

g

⌉

≤ α

⌈

χGR

g

⌉

+ 1 (7.2)

The first equality follows from the workings of the ARC-COL-BASED-TG scheme

and the first inequality follows from the fact that ARC-COL-ALGO is an α-approximation

algorithm for the problem of minimum vertex coloring of circular arc graphs. The

result follows from equations (7.1) and (7.2).
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For completion, we review the best approximation algorithms for coloring cir-

cular arc graphs that are available in the literature. Kumar et. al. [68] give a

randomized algorithm with approximation ratio (1 + 1
e

+ o(1)) for instances of the

problem needing at least ω(ln(n)) colors, where n is the number of arcs to be colored.

In [69], Karapetian et. al. present a 3
2
-approximation algorithm for circular arc col-

oring. The lower bound on chromatic number used in the analysis of Karapetian’s

algorithm, is the clique number. This along with the fact that the approximation

ratio of 3
2

is strict, suggests that it might not be easy to design deterministic coloring

algorithms with better approximation ratios.

Subroutine 6 ARC-COL-BASED-TG
Require: MIN-WAVE-MC-TG-UR problem instance { ~C,R, g} and an algorithm ARC-COL-

ALGO for vertex coloring circular arc graphs.

Ensure: A traffic grooming solution {λARC, ωARC} ∈ Ξ{~C,R,g}.

1: Determine the conflict graph GR.

2: Using ARC-COL-ALGO, determine a vertex coloring ψARC for the conflict graph GR.

{The conflict graph is a circular arc graph.}

3: Partition R into subsets {P1,P2, . . . ,Pl

|ψARC(R)|
g

m} such that the following hold:

(i) For every Pi, |ψARC(Pi)| ≤ g.

(ii) For every pair Pi,Pj, ψ
ARC(Pi) ∩ ψARC(Pj) = ∅.

4: for all sets P1,P2, . . . ,Pl

|ψARC(R)|
g

m do

5: λARC(~R)← i for every ~R ∈ Pi

6: end for

7: for all ~R ∈ R do

8: ωARC(~R)← min{k ∈ N : ∄ ~S ∈ R such that λARC(~R) = λARC(~S) and ωARC(~S) = k}

9: end for
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7.2 Minimizing ADMs: Bounds and Simple Schemes

In this section we present and analyze some very simple schemes for the MIN-

ADM-MC-TG-UR problem described in Section 6.2. We start by developing a

lower bound on the number of ADMs required by any traffic grooming scheme for

a given instance of the MIN-ADM-MC-TG-UR problem. This lower bound acts as

a benchmark against which we compare the various traffic grooming schemes.

7.2.1 Lower Bound

Consider an instance { ~C,M, g} of the MIN-ADM-MC-TG-UR problem where

~C is a unidirectional ring, M is a set of multicast traffic requests on ~C and g

is the grooming ratio. Observe that the total number of ADMs required by any

traffic grooming solution for the MIN-ADM-MC-TG-UR problem is determined by

summing the ADMs required at each vertex in the unidirectional ring. Hence, a

lower bound for the MIN-ADM-MC-TG-UR problem can simply be obtained by

determining lower bounds on the number of ADMs required at each vertex of the

unidirectional ring and summing over all the ring vertices. As per our notation, for

any vertex v ∈ V ~C , Mv is the set of all the multicast traffic requests that have the

ring vertex v as either the source node or as one of the destination nodes. Let us

denote the set of directed paths corresponding to the multicast traffic requests in

the set Mv by Rv. We claim that the minimum number of ADMs required by any

traffic grooming solution, at any ring vertex v ∈ V ~C , is equal to
⌈

χGRv

g

⌉

, where χGRv

is the chromatic number of the conflict graph GRv of the set Rv of directed paths on

the unidirectional ring ~C. To observe this claim, we note that since all the multicast

traffic requestsMv corresponding to the set of directed pathsRv have the ring vertex

v as either the source or as one of the destinations, v must be equipped with ADMs

corresponding to all the wavelengths on which any of these requests are groomed.
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Hence, in order to use the minimum number of ADMs at ring vertex v (irrespective

of the number of ADMs required at other vertices of the ring), we need to groom the

setMv of multicast traffic requests represented by the set Rv of directed paths, on

as few wavelengths as possible. The claim follows using the arguments presented in

Section 7.1 for establishing equation (7.1). Hence, the minimum number of ADMs

required by the instance { ~C,M, g} of the MIN-ADM-MC-TG-UR problem is lower

bounded as

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)| ≥
∑

v∈V~C

⌈

χGRv

g

⌉

. (7.3)

Moreover, due to Lemma 7.2, we claim that the lower bound described above is easy

to calculate.

Lemma 7.2. Consider a unidirectional ring ~C and a set of multicast traffic requests

Mv containing the ring vertex v ∈ V ~C as either the source or as one of the destina-

tions. The conflict graph GRv of the set Rv of directed paths corresponding to the

multicast traffic requests Mv on ~C, is a complementary bipartite graph.

Proof. We define Mv=s to be the set of multicast traffic requests having the ring

vertex v as the source node, i.e., Mv=s := {{s,D} ∈ Mv : v = s}. Similarly, we

define Mv=d to be the set of multicast traffic requests having the ring vertex v as

the final destination, i.e.,Mv=d := {{s,D} ∈ Mv : v = d}. Clearly,Mv=s,Mv=d ⊆

Mv, and Mv=s ∩Mv=d = ∅. Let the set of corresponding directed paths be Rv=s

and Rv=d. Since ~C is a unidirectional ring, δi
~C
(v) = δo

~C
(v) = 1. Therefore, without

loss of generality, we assume that (u, v), (v, w) ∈ E ~C
are the only two directed edges

adjacent to v. Observe that the set of directed paths Rv=s collide on the directed

edge (v, w), the set of directed paths Rv=d collide on the directed edge (u, v), and

the set of directed paths Rv \ (Rv=s ∪ Rv=d) collide on both the directed edges

(u, v) and (v, w). Moreover, every directed path in the set Rv \ (Rv=s ∪ Rv=d)

collides with every directed path in the set Rv=s ∪Rv=d on one of the two directed
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edges (u, v) and (v, w). Consequently, the induced subgraphs GRv [Rv \ Rv=s] and

GRv [Rv \Rv=d] of the conflict graph GRv are cliques. Hence, the conflict graph GRv

is a complementary bipartite graph.

7.2.2 Worst Case

Next we investigate the absolute worst that any traffic grooming solution can

perform for the MIN-ADM-MC-TG-UR problem. The maximum number of ADMs

is required when we use a different wavelength for each multicast traffic request, i.e.,

we do no traffic grooming and wavelength reuse. Hence, given a MIN-ADM-MC-

TG-UR problem instance { ~C,M, g}, the absolute worst that any traffic grooming

solution can do in terms of the number of ADMs required, is upper bounded as

max
{λ,ω}∈Ξ

{ ~C,R,g}

∑

v∈V~C

|λ(Mv)| ≤
∑

v∈V~C

|Mv|, (7.4)

where, as defined before,Mv is the set of multicast traffic requests having the ring

vertex v as either the source node or as one of the destination nodes.

Consider the conflict graph GRv of the set Rv of directed paths, corresponding

to the multicast traffic requests Mv on ~C. According to the proof of Lemma 7.2,

the induced subgraphs GRv [Rv \ Rv=s] and GRv [Rv \ Rv=d] of the conflict graph

GRv are cliques. Hence, its chromatic number is lower bounded as

χGRv
≥ max

{

|Rv \ Rv=s|, |Rv \ Rv=d|
}

≥
|Rv|

2
=
|Mv|

2
. (7.5)

The second inequality is due to the facts thatRv=s,Rv=d ⊆ Rv andRv=s∩Rv=d = ∅.

By equations (7.3), (7.4) and (7.5),

max
{λ,ω}∈Ξ

{ ~C,R,g}

∑

v∈V~C

|λ(Mv)| ≤
∑

v∈V~C

|Mv| ≤
∑

v∈V~C

2χGRv
≤ 2g

∑

v∈V~C

⌈

χGRv

g

⌉

≤ 2g
(

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)|
)

(7.6)
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This analysis shows that any traffic grooming scheme for the MIN-ADM-MC-TG-UR

problem is an approximation algorithm with approximation ratio 2g. An interesting

observation is that in the case of no grooming (g = 1), any wavelength assignment

will be within twice the optimal as far as the number of ADMs required in the

unidirectional ring network is concerned.

7.2.3 Random Traffic Grooming

A very simple traffic grooming scheme for the MIN-ADM-MC-TG-UR prob-

lem described in Section 6.2 is the random traffic grooming strategy. Let the

triple { ~C,M, g} be the given instance of the MIN-ADM-MC-TG-UR problem. We

randomly partition the set M of the given multicast traffic requests into subsets

S1,S2, . . . ,S⌈ |M|
g ⌉

, each containing a maximum of g requests. The grooming solu-

tion is to assign a single wavelength to all the multicast traffic requests in a particular

partition. Multicast traffic requests in different partitions are assigned distinct wave-

lengths. This is clearly possible since we are providing a separate sub-wavelength

channel for each traffic request. The complete scheme is presented as Algorithm 7

(RANDOM-TG).

Subroutine 7 RANDOM-TG
Require: MIN-ADM-MC-TG-UR problem instance { ~C,M, g}.

Ensure: A traffic grooming solution {λRAND, ωRAND} ∈ Ξ{~C,R,g}, where R is the set of directed

paths corresponding to the setM of multicast traffic requests on the unidirectional ring ~C.

1: PartitionM into subsets {S1,S2 . . . ,S⌈ |M|
g ⌉
} such that |Si| ≤ g for every i ∈ {1, 2, . . . ,

⌈

|M|
g

⌉

}.

2: for all sets S1,S2, . . . ,S⌈ |M|
g ⌉

do

3: λRAND(~R)← i for every ~R such that the corresponding multicast request is in Si.

4: end for

5: for all ~R ∈ R do

6: ωRAND(~R)← min{k ∈ N : ∄ ~S ∈ R such that λRAND(~R) = λRAND(~S) and ωRAND(~S) = k}

7: end for
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Let us denote the traffic grooming solution generated by RANDOM-TG by the

pair {λRAND, ωRAND}. According to our notations, the ring vertex v ∈ V ~C acts as the

source or as one of the destination nodes for the setMv of multicast traffic requests.

Hence, v must be equipped with an ADM corresponding to all the wavelengths in the

set λRAND(Rv), where Rv is the set of directed paths corresponding to the multicast

traffic requests in the set Mv. Let U ~C ⊆ V ~C be the set of ring vertices that act as

the source node or as one of the destination nodes for at least one traffic request,

i.e., U ~C := {v ∈ V ~C :Mv 6= ∅}. For a ring vertex v ∈ U ~C , the worst that can happen

is that we have to equip v with ADMs corresponding to all the wavelengths used by

the traffic grooming solution. On the other hand, since any ring vertex v ∈ V ~C \U ~C

does not act as the source or as one of the destinations for any multicast traffic

request, no traffic is being added or dropped at v and therefore, there is no need to

equip v with ADM corresponding to any wavelength. Using these two arguments,

we can upper bound the number of ADMs required by the traffic grooming solution

generated by RANDOM-TG as

∑

v∈V~C

|λRAND(Rv)| ≤
∑

v∈U~C

|λRAND(R)| =
∑

v∈U~C

⌈

|M|

g

⌉

= |U ~C |

⌈

|M|

g

⌉

. (7.7)

We define the size of a multicast traffic request {s,D} as |{s} ∪D| = 1 + |D|. Let

us define zavg to be the average size of the multicast traffic requests in the set M,

i.e., zavg := 1
|M|

∑

v∈V~C
|Mv|. Equations (7.5) and (7.7) give us

∑

v∈V~C

|λRAND(Rv)| ≤ |U ~C |

⌈∑

v∈V~C
|Mv|

gzavg

⌉

≤ |U ~C |

⌈

2
∑

v∈V~C
χGRv

gzavg

⌉

≤ |U ~C |
∑

v∈V~C

⌈

χGRv

g

⌉

≤ |V ~C |
(

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)|
)

. (7.8)

The third inequality holds because of the fact that zavg ≥ 2. This is true since every

multicast traffic request has one source node and at least one destination node.

If we further assume a large enough average multicast traffic request size, we
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can achieve a better bound. In particular, using equations (7.5) and (7.7),

∑

v∈V~C

|λRAND(Rv)| ≤ |U ~C |

⌈

2
∑

v∈V~C
χGRv

gzavg

⌉

≤
|U ~C |

zavg

⌈

2
∑

v∈V~C
χGRv

g
+ zavg

⌉

≤
2|U ~C |

zavg

⌈∑

v∈V~C
χGRv

g

⌉

+ |U ~C | ≤
2|U ~C |

zavg

∑

v∈V~C

⌈

χGRv

g

⌉

+ |U ~C |

≤

(

2|U ~C |

zavg

+ 1

)

∑

v∈V~C

⌈

χGRv

g

⌉

≤

(

2|V ~C|

zavg

+ 1

)

(

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)|
)

. (7.9)

The second last inequality is due to the fact that if a ring vertex v acts as the

source or as one of the destinations for at least one multicast traffic request, then

the conflict graph GRv has at least one vertex and therefore χGRv
≥ 1. Observing

that there are |U ~C | such nodes, we get
∑

v∈V~C

⌈

χGRv

g

⌉

≥ |U ~C |.

From the analysis presented above, we see that RANDOM-TG, the simple

strategy of grooming any g traffic requests on the same wavelength, is an approx-

imation algorithm with approximation ratio |V ~C |. Moreover, if the average size of

the given multicast traffic requests satisfies the inequality zavg ≥
2|V~C |

|V~C |−1
, then we can

prove a better approximation ratio of 1 +
2|V~C |

zavg
for RANDOM-TG.

7.2.4 Arc Coloring Based Traffic Grooming

Another simple traffic grooming scheme for the MIN-ADM-MC-TG-UR prob-

lem described in Section 6.2, is to employ the ARC-COL-BASED-TG algorithm

presented in Section 7.1.3. Let the triple { ~C,M, g} be the given instance of the

MIN-ADM-MC-TG-UR problem. Let R be the set of directed paths corresponding

to the set of multicast traffic requests M on the unidirectional ring ~C. We simply

use the traffic grooming solution generated by ARC-COL-BASED-TG for the MIN-

WAVE-MC-TG-UR problem instance { ~C,R, g}. For ease of exposition, we refer to

this modification of ARC-COL-BASED-TG by the same name.
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For the subsequent discussion, we assume that we employ the 3
2
-approximation

algorithm for coloring circular arc graphs, developed by Karapetian [69], as ARC-

COL-ALGO in ARC-COL-BASED-TG. According to the notation defined previ-

ously, U ~C is the set of ring vertices that act as the source or as one of the destina-

tions for at least one multicast traffic request in the set R. Following similar line of

reasoning as we did for the analysis of RANDOM-TG, we can argue that the total

number of ADMs required by the traffic grooming solution {λARC, ωARC} generated

by ARC-COL-BASED-TG for the given MIN-ADM-MC-TG-UR problem instance

{ ~C,M, g} can be upper bounded as

∑

v∈V~C

|λARC(Rv)| ≤
∑

v∈U~C

|λARC(R)| ≤
∑

v∈U~C

⌈

|ψARC(R)|

g

⌉

≤ |U ~C
|

⌈

⌊

3
2
χGR

⌋

g

⌉

. (7.10)

The final inequality is due to the fact that ARC-COL-ALGO is assumed to be a

3
2
-approximation algorithm for the problem of coloring circular arc graphs.

Let us define zmin to be the size of the smallest multicast traffic request in the

set M, i.e., zmin := min{s,D}∈M 1 + |D|. The minimum number of ADMs required

for each wavelength is zmin. Hence, using equation (7.1), a lower bound (other than

our primary lower bound given in equation (7.3)) on the total number of ADMs

required by any traffic grooming solution for the given instance of the MIN-ADM-

MC-TG-UR problem is

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)| = min
{λ,ω}∈Ξ

{ ~C,R,g}

∑

k∈λ(R)

∣

∣

⋃

{s,D}∈Mλ=k

{s} ∪D
∣

∣

≥ min
{λ,ω}∈Ξ

{~C,R,g}

∑

k∈λ(R)

zmin = zmin

(

min
{λ,ω}∈Ξ

{ ~C,R,g}

|λ(R)|

)

≥ zmin

⌈

χGR

g

⌉

, (7.11)

where Mλ=k is defined to be the set of multicast traffic requests that are as-

signed wavelength k according to the traffic grooming solution {λ, ω}, i.e.,Mλ=k :=

{{s,D} ∈ M : λ(~R{s,D}) = k}. The first equality is simply another way of counting
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the number of ADMs required by any traffic grooming solution. Instead of counting

the number of ADMs required on each ring vertex and adding these, we are count-

ing the number of ring vertices on which an ADM corresponding to a particular

wavelength is required, and then we sum over all the wavelengths required by the

traffic grooming solution. The first inequality is simply by the definition of zmin and

the final inequality is by equation (7.1).

Using equations (7.10) and (7.11), we see that

∑

v∈V~C

|λARC(Rv)| ≤ |U ~C |

⌈

⌊

3
2
χGR

⌋

g

⌉

≤ |U ~C |

⌈

2χGR

g

⌉

≤ 2|U ~C |

⌈

χGR

g

⌉

≤
2|V ~C|

zmin

(

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)|
)

. (7.12)

Hence, ARC-COL-BASED-TG is a
2|V~C |

zmin
-approximation algorithm for the MIN-

ADM-MC-TG-UR problem.

We can arrive at a different (better in some cases) approximation ratio by

following a separate line of analysis. For the conflict graph GRv , let

χGRv

g
= 2n + δ + ǫ, (7.13)

where n is a non-negative integer, δ ∈ {0, 1} and 0 ≤ ǫ < 1. From equations (7.11)

and (7.13), we get

min
{λ,ω}∈Ξ

{ ~C,R,g}

∑

v∈V~C

|λ(Mv)| ≥ zmin ⌈2n+ δ + ǫ⌉ = zmin(2n+ δ + ⌈ǫ⌉). (7.14)

Again from equations (7.10) and (7.13), we get

∑

v∈V~C

|λARC(Rv)| ≤ |U ~C |

⌈

⌊

3
2
χGR

⌋

g

⌉

≤ |U ~C |

⌈

3χGR

2g

⌉

= |U ~C |

⌈

3

2
(2n+ δ + ǫ)

⌉

≤ |U ~C |

(

3n+ 3

⌈

δ + ǫ

2

⌉)

. (7.15)

The following are the only two cases possible:
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(i) δ + ǫ = 0⇒ δ = ǫ = 0

In this case, from equation (7.14), the lower bound becomes

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)| ≥ 2nzmin. (7.16)

From equations (7.15) and (7.16), we get

∑

v∈V~C

|λARC(Rv)| ≤ 3n|U ~C | ≤
3|V ~C|

2zmin

(

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)|
)

. (7.17)

(ii) δ + ǫ > 0

In this case, from equation (7.14) we get

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)| ≥ zmin(2n+ δ + ⌈ǫ⌉) ≥ zmin(2n+ 1). (7.18)

From equation (7.15), we get

∑

v∈V~C

|λARC(Rv)| ≤ |U ~C |

(

3n+ 3

⌈

δ + ǫ

2

⌉)

= |U ~C |(3n+ 3), (7.19)

where the equality is based on the fact that since δ ∈ {1, 0}, ǫ ∈ [0, 1) and

δ+ǫ > 0, we have 0 < δ+ǫ < 2. Observe that at least one ADM is required at

all the ring vertices in the set that act as the source or as one of the destinations

for at least one multicast traffic request in the setM. Therefore, we have

min
{λ,ω}∈Ξ

{~C,R,g}

∑

v∈V~C

|λ(Mv)| ≥ |U ~C |. (7.20)

Using equations (7.18), (7.19) and (7.20), we get

∑

v∈V~C

|λARC(Rv)| ≤
3|U ~C

|

2
(2n+ 1) +

3|U ~C
|

2

≤
3

2

(

|V ~C|

zmin

+ 1

)

(

min
{λ,ω}∈Ξ

{ ~C,R,g}

∑

v∈V~C

|λ(Mv)|
)

. (7.21)

From equations (7.17) and (7.21), we observe that ARC-COL-BASED-TG has an

approximation ratio
3(|V~C |+zmin)

2zmin
for the MIN-ADM-MC-TG-UR problem. Also note

that whenever zmin <
|V~C |

3
, this approximation ratio is better than the previously

computed approximation ratio of
2|V~C |

zmin
.
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7.3 Minimizing ADMs: A Heuristic

In this section, we present a heuristic traffic grooming approach for the MIN-

ADM-MC-TG-UR problem described in Section 6.2. We shall not prove any results

for the worst case performance of this scheme, but we shall study the average per-

formance by simulations.

The complete scheme is presented as Algorithm 8 (ITER-IMPROVE-TG). As

the name suggests, the scheme is based on the idea of iteratively improving a traffic

grooming solution. Let the triple { ~C,M, g} be the given instance of MIN-ADM-

MC-TG-UR problem. Let R be the set of directed paths corresponding to the set

M of multicast traffic requests on the unidirectional ring ~C. We start with an initial

wavelength assignment λ0 which assigns different wavelengths to each of the directed

paths in the set R. The ITER-IMPROVE-TG algorithm proceeds iteratively and

in the n-th iteration, we generate the wavelength assignment λn which is an im-

provement over the previous wavelength assignment λn−1, i.e., |λn(R)| < |λn−1(R)|.

At the n-th iteration of ITER-IMPROVE-TG, we define a pair of wavelengths

i, j ∈ λn−1(R) to be reducible if all the directed paths that have been assigned either

of the two wavelengths i or j, can actually be assigned a single wavelength. Let us

define Rλn−1=i to be the set of all the directed paths that have been assigned wave-

length i by the wavelength assignment λn−1, i.e., Rλn−1=i := {~R ∈ R : λn−1(~R) = i}.

Observe that the pair of wavelengths i, j ∈ λn−1(R) is reducible if and only if the

chromatic number of the conflict graph corresponding to the set Rλn−1=i

⋃

Rλn−1=j

of directed paths is at most g, i.e., if and only if χGRλn−1=i
S

Rλn−1=j
≤ g.

Let Mλn−1=i be the set of multicast traffic requests corresponding to the set

Rλn−1=i of directed paths that have been assigned wavelength i by the wavelength

assignment λn−1, i.e., Mλn−1=i := {{s,D} ∈ M : λn−1(~R{s,D}) = i}. We define

V
λn−1=i
~C

to be the set of ring vertices that act as either the source node or as one

of the destination nodes for at least one multicast traffic request whose correspond-
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ing directed path has been assigned wavelength i by the wavelength assignment

λn−1, i.e., V
λn−1=i
~C

:= {v ∈ V ~C : v ∈
⋃

{s,D}∈Mλn−1=i
{s} ∪ D}. Observe that, ac-

cording to the wavelength assignment λn−1, V
λn−1=i
~C

is the set of ring vertices that

must be equipped with ADMs corresponding to the wavelength i. Moreover, for

any reducible wavelength pair i, j ∈ λn−1(R), if we indeed use a single wavelength

for all the directed paths in the set Rλn−1=i

⋃

Rλn−1=j, we would end up saving

ADMs precisely on those ring vertices which require ADMs corresponding to both

wavelengths i and j according to the current wavelength assignment, i.e., the set

of vertices given as V
λn−1=i
~C

⋂

V
λn−1=j
~C

. Hence, the number of ADMs thus saved is

equal to |V λn−1=i
~C

⋂

V
λn−1=j
~C

|.

During the n-th iteration of ITER-IMPROVE-TG, in order to generate the

wavelength assignment λn from the wavelength assignment λn−1, we find the re-

ducible wavelength pair a, b ∈ λn−1(R) such that for every reducible wavelength

pair i, j ∈ λn−1(R), |V λn−1=a
~C

⋂

V
λn−1b

~C
| ≥ |V λn−1=i

~C

⋂

V
λn−1=j
~C

|. If there is more

than one such wavelength pair, among all the wavelength pairs satisfying the con-

straint, we select the wavelength pair a, b ∈ λn−1(R) having the minimum value of

|V λn−1=a
~C

⋃

V
λn−1b

~C
|. This is motivated by the fact that if |V λn−1=i

~C
| is large for wave-

length i, then there is a high chance that at some later iteration we have a reducible

wavelength pair containing i, corresponding to larger ADM savings; therefore we

may not want to use the wavelength i in the current step for smaller ADM savings.

Any remaining ties are broken uniformly randomly. After selecting the reducible

wavelength pair a, b ∈ λn−1(R) as described above, we generate the wavelength as-

signment λn by assigning λn(~R) = λn−1(~R) for every directed path ~R ∈ R\Rλn−1=b

and λn(~R) = a for every directed path ~R ∈ Rλn−1=b.

We continue until there are no reducible wavelength pairs left. Observe that

initially the number of wavelengths is equal to the number of multicast traffic

requests and each iteration reduces the number of wavelengths by one, therefore
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Subroutine 8 ITER-IMPROVE-TG
Require: MIN-ADM-MC-TG-UR problem instance { ~C,M, g}.

Ensure: A traffic grooming solution {λITER, ωITER} ∈ Ξ{~C,R,g}, where R is the set of directed

paths corresponding to the setM of multicast traffic requests on the unidirectional ring ~C.

1: for all ~R ∈ R do

2: λ0(~R)← min{k ∈ N : ∄ ~S ∈ R such that λ0(~S) = k}

3: end for

4: n← 1

5: while ∃ some reducible wavelength pair in the set λn−1(R) do

6: Determine the reducible wavelength pair a, b ∈ λn−1(R) having the largest value of

|V
λn−1=a

~C
∩V

λn−1=b

~C
|. If there are several such pairs, select the one with the smallest value of

|V
λn−1=a

~C
∪ V

λn−1=b

~C
|. If there are still ties, then randomly pick any of the possible choices.

7: for all ~R ∈ R do

8: if ~R ∈ Rλn−1=b then

9: λn(~R)← a

10: else

11: λn(~R)← λn−1(~R)

12: end if

13: end for

14: n← n+ 1

15: end while

16: λITER := λn−1.

17: for all ~R ∈ R do

18: ωITER(~R)← min{k ∈ N : ∄ ~S ∈ R such that λITER(~R) = λITER(~S) and ωITER(~S) = k}

19: end for
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|λn(R)| = |M| − n. This shows that the maximum number of iterations is upper

bounded by the number of multicast traffic requests.

During the n-th iteration of ITER-IMPROVE-TG, determining whether or

not any wavelength pair i, j ∈ λn−1(R) is reducible or not, is NP Complete. This

is because, as explained before, it involves solving the problem of coloring the con-

flict graph GRλn−1=i
S

Rλn−1=j
, which in general belongs to the family of circular arc

graphs. Instead of doing this, in ITER-IMPROVE-TG, we color the conflict graph

GRλn−1=i
S

Rλn−1=j
using Tucker’s algorithm for coloring circular arcs [70] and see if

we need more than g colors. Clearly this is sub-optimal because we may not be able

to find all the reducible wavelength pairs, but we still use this because in general

Tucker’s algorithm gives a good bound on the chromatic number [71].

7.4 Complexity Analysis

In this section, we present the complexity analysis for RANDOM-TG, ARC-

COL-BASED-TG and ITER-IMPROVE-TG, the three traffic grooming schemes

presented in this chapter for the MIN-ADM-MC-TG-UR problem.

7.4.1 Random Traffic Grooming

First, we consider RANDOM-TG traffic grooming scheme described in Section

7.2.3. In this scheme, we randomly partitionM, the set of the given multicast traffic

requests into
⌈

|M|
g

⌉

subsets denoted by S1,S2, . . . ,S⌈ |M|
g ⌉

, each having cardinality at

most g. This partitioning requires O(|M|) steps. The set of wavelengths employed

by the traffic grooming solution generated by RANDOM-TG is λRAND(R), where R

is the set of directed paths corresponding to the setM of multicast traffic requests

on the unidirectional ring ~C. The generated wavelength assignment λRAND assigns

wavelength i to the directed paths corresponding to all the multicast traffic request
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in subset Si. Clearly the number of wavelengths required by the mapping λRAND is

equal to
⌈

|M|
g

⌉

. Moreover, corresponding to any wavelength i ∈ λRAND(R), we re-

quire ADMs at all the ring vertices in the set
⋃

{s,D}∈Si
{s}∪D. Since {s}∪D ⊆ V ~C

for every multicast traffic request {s,D} ∈ M, the number of steps required for

evaluating
⋃

{s,D}∈Si
{s} ∪ D is equal to |V ~C ||Si|. Hence, the total number of steps

required for determining the placement of ADMs on all the ring vertices, corre-

sponding to all the wavelengths being employed by the traffic grooming solution,

is

∑

i∈λRAND(R)

|V ~C||Si| = |V ~C |
∑

i∈λRAND(R)

|Si| = |V ~C ||M|. (7.22)

Therefore the overall complexity of RANDOM-TG is O
(

|V ~C ||M|
)

.

7.4.2 Arc Coloring Based Traffic Grooming

Next, we consider ARC-COL-BASED-TG described in Section 7.2.4. In this

scheme, we have to color the conflict graph GR of the set R of directed paths

corresponding to the set M of multicast traffic requests. As described previously,

Karapetian’s circular arc graph coloring algorithm [69] is used for this purpose.

Hence, generating this coloring requires O
(

|M|2
)

time. We denote the generated

coloring by ψARC. The set of directed paths R is partitioned into
⌈

|ψARC(R)|
g

⌉

subsets

denoted by P1,P2, . . . ,Pl

|ψARC(R)|
g

m, such that each subset requires at most g colors

and directed paths in different subsets are assigned different colors by the coloring

ψARC. This partitioning requires O
(

|M|
)

steps. For any i ∈ {1, . . . ,
⌈

|ψARC(R)|
g

⌉

},

we define Si to be the set of multicast traffic requests corresponding to the directed

paths in the set Pi. The generated wavelength assignment λARC assigns wavelength

i to all the directed paths in the set Pi, therefore corresponding to wavelength i,

we require ADMs at all the ring vertices in the set
⋃

{s,D}∈Si
{s} ∪ D. Following

the arguments presented in Section 7.4.1, we argue that the total number of steps
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required for determining the placement of ADMs on all the ring vertices, corre-

sponding to all the wavelengths being employed by the traffic grooming solution,

is equal to |V ~C ||M|. Therefore the overall complexity of ARC-COL-BASED-TG is

O
(

|V ~C ||M|+ |M|
2
)

.

7.4.3 Iterative Improvement Based Traffic Grooming

Finally we consider ITER-IMPROVE-TG described in Section 7.3. In this

scheme, we start off with the simple wavelength assignment λ0, which assigns a

different wavelength to every directed path in the set R corresponding to the setM

of multicast traffic requests. In each iteration of ITER-IMPROVE-TG, we update

the wavelength assignment by first determining the ‘best’ (as described in Section

7.3) reducible wavelength pair and then assigning a single wavelength to all the

directed paths that were previously assigned either of the two wavelengths of the

pair. We continue to update the wavelength assignment iteratively till there are no

reducible wavelength pairs left.

Before the start of the n-th step of ITER-IMPROVE-TG, we assume that we

have the following:

(i) Corresponding to every wavelength i ∈ λn−1(R), the set V
λn−1=i
~C

of ring ver-

tices that require ADMs corresponding to the wavelength i according to the

wavelength assignment λn−1.

(ii) The identity of every reducible wavelength pair in the set λn−1(R).

(iii) Corresponding to every reducible wavelength pair i, j ∈ λn−1(R), the values

of |V λn−1=i
~C

⋂

V
λn−1=j
~C

| and |V λn−1=i
~C

⋃

V
λn−1=j
~C

|. Note that these two values

are required for deciding which reducible wavelength pair should be selected

in the n-th iteration of ITER-IMPROVE-TG.
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We shall not discuss any schemes for maintaining this data, but just point out that

it can be done in a graphical manner.

First, let us determine the complexity of the n-th iteration of ITER-IMPROVE-

TG. Since in each iteration we reduce the number of wavelengths by 1, |λn(R)| =

|λ0(R)| − n = |R| − n = |M| − n. Therefore, the number of wavelength pairs to

consider in the n-th iteration of ITER-IMPROVE-TG is (|M|−n+1)(|M|−n)
2

. Since we

know the identities of the reducible wavelength pairs in the set λn−1(R), and we

have the values of |V λn−1=i
~C

⋂

V
λn−1=j
~C

| and |V λn−1=i
~C

⋃

V
λn−1=j
~C

| for every reducible

wavelength pair i, j ∈ λn−1(R), the number of steps required to determine the best

reducible wavelength pair is linear in the number of wavelength pairs. After de-

termining the best reducible wavelength pair a, b ∈ λn−1(R), we generate a new

wavelength assignment λn from λn−1 by assigning the wavelength a to all the di-

rected paths in the set Rλn−1=b. In order to update the data that we maintain, we

need to determine the following:

(i) The set V λn=a
~C

.

(ii) For every wavelength i ∈ λn(R)\{a}, whether the pair a, i is reducible or not.

(iii) Corresponding to every reducible pair a, i ∈ λn(R), the values |V λn=a
~C

⋂

V λn=i
~C
|

and |V λn=a
~C

⋃

V λn=i
~C
|.

We do not need to determine the set V λn=i
~C

for any wavelength i ∈ λn(R) \ {a},

because for any such wavelength, V λn=i
~C

= V
λn−1=i
~C

. Similarly, for any wavelength

pair i, j ∈ λn(R) \ {a}, whether the pair is reducible or not is not affected during

the n-th iteration, therefore we do not need to determine this again. Next, ob-

serve that V λn=a
~C

= V
λn−1=a
~C

⋃

V
λn−1=b
~C

. Since V
λn−1=a
~C

, V
λn−1=b
~C

⊆ V ~C , determining

V λn=a
~C

requires O
(

|V ~C|
)

steps. Therefore, for any wavelength i ∈ λn(R), we can

determine the sets V λn=i
~C

in O
(

|V ~C|
)

steps. Since, for any wavelength i ∈ λn(R),

V λn=i
~C

⊆ V ~C , we can determine the values of |V λn=a
~C

⋃

V λn=i
~C
| and |V λn=a

~C

⋂

V λn=i
~C
| in
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O
(

|V ~C |
)

steps. Moreover in ITER-IMPROVE-TG, for checking whether the wave-

length pair a, i ∈ λn(R) is reducible or not, we check if we can color the conflict

graph GRλn=a
S

Rλn=i
corresponding to the set of directed paths that are assigned

either of the two wavelengths by the wavelength assignment λn, using at most g

colors or not. We employ Tucker’s algorithm [70] for coloring the circular arc graph

which requires O
(

|Rλn=a

⋃

Rλn=i|2
)

time. Since |Rλn=a

⋃

Rλn=i| ≤ |R| = |M|,

checking if wavelength pair a, i ∈ λn(R) is reducible or not takes O
(

|M|2
)

time.

Therefore, the number of steps required in n-th iteration of ITER-IMPROVE-TG

is
(

|M|−n−1
)

O
(

|V ~C |+ |M|
2
)

. As already explained in Section 7.3, the number of

iterations in ITER-IMPROVE-TG is upper bounded by |M|. Hence, the iterations

in ITER-IMPROVE-TG require O
(

|M|2
(

|V ~C|+ |M|
2
)

)

steps.

Next, we count the number of steps required to initialize the data that we

maintain at the start of ITER-IMPROVE-TG. Checking whether a wavelength pair

i, j ∈ λ0(R) is reducible or not requires O(1) steps. This is because for every

wavelength i ∈ λ0(R), |Rλ0=i| = 1. The set V λ0=i
~C

corresponds to a single multi-

cast traffic request and is therefore trivially determined. Determining the values

of |V λ0=i
~C

⋂

V λ0=j
~C
| and |V λ0=i

~C

⋃

V λ0=j
~C
| for any wavelength pair i, j ∈ λ0(R) require

O
(

|V ~C |
)

steps. Since there are |M|(|M|−1)
2

wavelength pairs, the initialization requires

O
(

|V ~C ||M|
2
)

steps.

Therefore the overall complexity of ITER-IMPROVE-TG is O
(

|M|2
(

|V ~C| +

|M|2
)

)

.

7.5 Simulation Results

As we stated at the start of Section 7.3, we study the performance of ITER-

IMPROVE-TG via simulations. The simulation results and the associated discussion

is presented in this Section.
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7.5.1 Circle Based Traffic Grooming

Since presently there is no other heuristic for grooming multicast traffic re-

quests in unidirectional rings against with which we can compare the performance of

ITER-IMPROVE-TG developed in Section 7.3, we extend the unicast traffic groom-

ing scheme presented in [11] to the multicast case. In [11], the authors assume each

of the given unicast traffic requests to be a connection. First, they combine pairs

of connections with common end points to form complete circles. After construct-

ing the maximum possible circles in this way, they apply ‘Algorithm IV:Construct

Circles - Non-Uniform Traffic’ to construct the rest of the circles. Each circle corre-

sponds to a sub-wavelength channel. After all the connections have been assigned

to some circle, the circles are groomed into wavelengths. We extend their algorithm

for multicast traffic by simply starting with the multicast traffic requests in place

of the unicast traffic requests in the circle construction phase, i.e., we consider the

multicast traffic requests to be the starting connections and construct the circles

in exactly the same way. After we have the circles, the circle grooming heuristic is

exactly the same as in [11]. We refer to this extended heuristic as CIRCLE-BASED-

TG.

7.5.2 Results

We evaluate the performance of both ITER-IMPROVE-TG and CIRCLE-

BASED-TG in terms of the number of ADMs required. For a more complete picture,

we also compare the performance of both the heuristics to the lower bound on the

number of ADMs required by any traffic grooming solution developed in equation

(7.3). Since the number of wavelengths required also contributes to the network cost

(albeit, not as much as the ADMs), we also compare the wavelengths required by

the two heuristics. For the sake of completeness we also compare the performance of
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Figure 7.1: Number of ADMs required by ITER-IMPROVE-TG, CIRCLE-BASED-

TG, RANDOM-TG, ARC-COL-BASED-TG and the lower bound in equation (7.3).
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RANDOM-TG and ARC-COL-BASED-TG, the two simple multicast traffic groom-

ing algorithms presented and analyzed in Section 7.2.

We parameterize the problem of grooming the given setM of multicast traffic

requests on the given unidirectional ring ~C by the following five variables:

(i) |V ~C |: the number of vertices on the ring.

(ii) |M|: the number of multicast traffic requests.

(iii) g: the grooming ratio.

(iv) zmin: the size of the smallest multicast traffic request.

(v) zmax: the size of the largest multicast traffic request.

During the simulation, while generating a multicast traffic request, each ring vertex

is given equal probability of being selected as the source node. The size of each

multicast traffic request is selected uniformly randomly from zmin to zmax. After the

source node and the size z of the multicast session are fixed, destination nodes are

selected such that every subset of size z − 1 of the remaining |V ~C| − 1 ring vertices

(since one ring vertex has already been selected as the source) has equal probability

of being the set of destination nodes.

For simulation, we consider a nominal ring network having 10 vertices, 80

multicast traffic requests, with each session size selected uniformly randomly be-

tween 2 to 8 and having grooming ratio 4. We study the performance of both the

schemes ITER-IMPROVE-TG and CIRCLE-BASED-TG by varying one parameter

of the problem at a time in this nominal network. More specifically, we vary the

grooming ratio from 2 to 6, the network size (number of vertices in the ring) from

8 to 16, the number of multicast traffic requests from 60 to 100 and the maximum

size of the multicast traffic requests from 2 to 10. Figure 7.1 presents the simula-

tion results comparing the total number of ADMs required by the various grooming
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schemes as well as the number of ADMs specified by the lower bound developed in

equation (7.3). The simulation results comparing the total number of wavelengths

required by ITER-IMPROVE-TG and CIRCLE-BASED-TG are presented in Fig-

ure 7.2. Each point in the plots is generated by taking an average of 20 randomly

selected grooming problem instances with the required parameters.

We can see from the plots that, as measured by the number of ADMs required,

ITER-IMPROVE-TG always outperforms CIRCLE-BASED-TG. This is true even

for unicast traffic (the case for which CIRCLE-BASED-TG was originally designed

in [11]). We also note that ITER-IMPROVE-TG usually requires more wavelengths

than CIRCLE-BASED-TG. But the increase in the number of wavelengths is never

more than 2, and is overshadowed by the savings in the number of (more expensive)

ADMs.

From the plots, we also observe that of the three traffic grooming schemes pre-

sented in this chapter, ITER-IMPROVE-TG always outperforms the simple groom-

ing strategies RANDOM-TG and ARC-COL-BASED-TG. Among the two simple

schemes, ARC-COL-BASED-TG always outperforms RANDOM-TG. We can justify

this trend in the light of the complexity analysis of the three schemes presented in

Section 7.4. Assuming that the number of multicast traffic requests to be groomed

is much larger than the number of network nodes (which is usually the case and

is true for our simulations as well), we observe that based on their time complexi-

ties, RANDOM-TG is the simplest, ITER-IMPROVE-TG is the most complex and

ARC-COL-BASED-TG lies somewhere in-between the two. Since we get what we

pay for, the relative performances of the three schemes is as expected. Although not

presented in the plots, the number of wavelengths required by RANDOM-TG and

ARC-COL-BASED-TG are also very similar to that required by ITER-IMPROVE-

TG and CIRCLE-BASED-TG.

The plots also show that the lower bound on the minimum number of ADMs
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Figure 7.2: Wavelengths required by ITER-IMPROVE-TG and CIRCLE-BASED-

TG.
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required by any traffic grooming solution for the MIN-ADM-MC-TG-UR problem

developed in equation (7.3), tracks the performance curves of the simulated traffic

grooming strategies as we vary the grooming ratio, the number of multicast traffic

requests or the size of the multicast traffic requests. This suggests that the bound

tracks the changes in these parameters quite well. But we observe that this is not

so in the case of the size of ring. We discuss this anomaly next.

7.5.3 Discussion

During our simulations presented above, we observe an interesting property

of the lower bound developed in equation (7.3) on the minimum number of ADMs

required by any traffic grooming solution for the MIN-ADM-MC-TG-UR problem.

It seems that the lower bound does not depend on the number of vertices in the

ring. To explain this, we try to calculate the expected value of the lower bound on

the number of ADMs required for grooming a set M of multicast traffic requests

on a unidirectional ring ~C, when the grooming ratio is assumed to be g. Let z{s,D}

represent the size of any multicast traffic request {s,D} ∈ M. For the purpose of

our simulations (and hence for this analysis), we assume that the multicast session

sizes z{s1,D1}, z{s2,D2}, . . . , z{s|M|,D|M|} are independent and identically distributed ac-

cording to some cumulative distribution function F with mean µF . We also assume

that the ring vertices (acting as the source node or as one of the destination nodes)

in any multicast traffic request, are selected uniformly randomly from the set of all

the vertices of the ring, i.e., for every multicast traffic request {s,D} ∈ M having

size z{s,D}, the probability that ring vertex v ∈ {s}∪D is equal to
z{s,D}

|V~C |
. Moreover,

the selection of the source node and the destination nodes of different multicast

traffic requests is assumed to be independent of each other.

Note that it is not easy to estimate the expected value of the lower bound
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presented in equation (7.3). As a work around, we approximate the lower bound as

∑

v∈V~C

⌈

χGRv

g

⌉

≈
∑

v∈V~C

⌈

|Rv|

g

⌉

=
∑

v∈V~C

⌈

|Mv|

g

⌉

, (7.23)

where, as defined before, Mv is the set of multicast traffic requests that have the

ring vertex v as either the source node or as one of the destination nodes, and Rv

is the set of the corresponding directed paths on the unidirectional ring ~C. This

approximation holds when the conflict graph GRv is dense (which is the case in our

simulations). Rather than estimating the expected value of the actual lower bound,

we estimate the expected value of this approximate. Let us define kv to be the

cardinality of the set Mv, i.e., kv := |Mv|. It is easy to observe that the expected

value of the approximate lower bound is given by

E















∑

v∈V~C

⌈

|Mv|

g

⌉















= E















∑

v∈V~C

⌈

kv
g

⌉




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Here, for the final equality we are using the fact that in any multicast traffic re-

quest, ring vertices are selected with equal probability, therefore kv’s are identically

distributed. Hence, we can drop the subscript v and assume that the number of

multicast traffic requests that have ring vertex v as either the source node or as one

of the destination nodes is distributed according to random variable k.

In order to get the required estimate, we first observe that
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Also, the number of multicast traffic requests selecting a particular ring vertex as

the source node or as one of the destination nodes can be written as

k =
∑

{s,D}∈M

x{s,D}, (7.26)

where the random variable x{s,D} takes value 1 if the multicast traffic request

{s,D} ∈ M selects the ring vertex under consideration as the source node or as one
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of the destination nodes, and 0 otherwise. We can evaluate E(k) as

E(k) =
∑

{s,D}∈M

E(x{s,D}) =
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E
(
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Here the third equality follows from the fact that given the size z{s,D} of the multicast

traffic request {s,D} ∈ M, the random variable x{s,D} is distributed according to a

Bernoulli trial with the probability of success being
z{s,D}

|V~C |
. Equation (7.27) gives us
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and
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Using equations (7.24), (7.25), (7.28) and (7.29), we can easily bound the required

expectation as

|M|µF
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If |M|µF
g
≫ |V ~C | (which is the case in our simulations and is typically the case),

then from equation (7.30), we note that the expected value of our lower bound can

be approximated by |M|µF
g

, which is independent of the number of vertices on the

unidirectional ring network. Moreover, we observe that the average value of the

lower bound as determined by simulations is consistent with the above discussion

and closely matches the estimate given in equation (7.30).

It should be clear that this behavior is mainly because the lower bound devel-

oped in equation (7.3) looks at each ring vertex in isolation. If we start considering

pairs (or triplets, etc.) of ring vertices at a time, then the bound that we might

develop will depend on the number of ring vertices. But it is not trivial to extend

the bound in equation (7.3) and for the purpose of our discussion the presented

bound suffices.
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Chapter 8

Conclusion and Future Work

In this dissertation, we addressed the problem of routing and wavelength as-

signment, and traffic grooming for multicast traffic in all-optical WDM networks.

Since both the problems are known to be hard for general network topologies, we

confined our study to certain restricted topologies. In particular, we studied the

problem of routing and wavelength assignment for multicast traffic in all-optical

bidirected trees, and the problem of multicast traffic grooming in all-optical unidi-

rectional rings.

The selected topologies are simple enough that algorithms can be developed

and analyzed analytically, but still complex enough that the problems remain inter-

esting. In particular, a strong motivation for selecting bidirected trees and unidirec-

tional rings is that most of the fiber-optic networks that are presently deployed are

either rings and trees or can be decomposed into these simple structures. Moreover,

it is plausible that studying the problems on these simple topologies may give clues

on how to attack the problems in more general network settings.

For the multicast routing and wavelength assignment problem in bidirected

trees, we study the objective of minimizing the number of wavelengths required in

the network. We argue that the topology determines the routing for each multicast

traffic request, and any instance of the problem can be modeled as the problem of

142



coloring a corresponding conflict graph of rooted subtrees on the given bidirected

tree. The problem is shown to be hard even when the bidirected tree is restricted to

being a bidirected star, or even a bidirected path. Since unicast routing and wave-

length assignment is tractable for both these restricted topologies, these hardness

results suggest that the multicast routing and wavelength assignment is inherently

harder than the unicast case. Hence, simple extensions of the algorithms developed

for the routing and wavelength assignment problem for unicast traffic may not work

well for the multicast problem, and there is a need to develop and study algorithms

designed specifically for the multicast case.

We present two algorithms, GREEDY-WA and SUBTREE-BASED-WA, for

the problem of routing and wavelength assignment for multicast traffic in all-optical

bidirected trees. GREEDY-WA is applicable to those instances of the problem in

which the degree of the given bidirected tree is at most 3, and SUBTREE-BASED-

WA is applicable to those instances of the problem in which the degree of the given

bidirected tree is at most 4. GREEDY-WA proceeds in rounds, where in each

round wavelengths are assigned to an appropriately selected subset of the given

set of multicast traffic requests. As the name suggests, the wavelength assignment

in each round is greedy in the sense that we try to use as few new wavelengths

as possible. SUBTREE-BASED-WA overestimates the resources required by each

multicast traffic request and then solves this overestimated problem. In particular, it

models each given multicast traffic request as a subtree and generates a wavelength

assignment from a minimum vertex coloring of the conflict graph of the subtrees.

We analyze the worst case performance and the time complexity of both these

algorithms. We prove that GREEDY-WA is a 5
2
-approximation algorithm for the

problem of routing and wavelength assignment for multicast traffic in all-optical

bidirected trees having degree at most 3. We also prove that SUBTREE-BASED-

WA is an approximation algorithm with approximation ratio 10
3
, 3, and 2 for the
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problem of routing and wavelength assignment for multicast traffic in all-optical

bidirected trees having degree at most 4, 3, and 2, respectively.

For the multicast traffic grooming problem in unidirectional rings, we study

two different cost functions: (i) number of wavelengths required in the network,

and (ii) number of ADMs required in the network. We restrict our study to the

case when the bandwidth requirement of the individual multicast traffic requests

are identical and are an integral fraction of the bandwidth available on individual

wavelength channels. Even though the physical topology determines the routing for

each multicast traffic request, the problem is still known to be hard for both the

cost functions.

We present ARC-COL-BASED-TG, an algorithm for grooming multicast traf-

fic requests in all-optical unidirectional rings. The algorithm treats each multicast

traffic request as an arc on a circle and colors the resulting circular arc graph. Using

the generated coloring, it trivially determines a traffic grooming solution for the

original problem. We prove that if the circular arc coloring algorithm employed by

ARC-COL-BASED-TG is an α-approximation algorithm, then ARC-COL-BASED-

TG has the same asymptotic approximation ratio for the traffic grooming problem

when the objective is to minimize the number of wavelengths required in the net-

work. We present RANDOM-TG, another simple scheme for grooming multicast

traffic requests in all-optical unidirectional rings. As the name suggests, RANDOM-

TG randomly generates a traffic grooming solution for the problem. We develop an

easy to calculate lower bound on the number of ADMs required by any traffic groom-

ing solution for any given instance of the problem, and then use this lower bound to

analyze the worst case performance of ARC-COL-BASED-TG and RANDOM-TG,

as determined by the number of ADMs required in the network. Next we present

ITER-IMPROVE-TG, a new multicast traffic grooming scheme for all-optical uni-

directional rings. ITER-IMPROVE-TG starts with a trivial traffic grooming solu-
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tion and iteratively improves upon this. We study the time complexities of all the

three schemes ARC-COL-BASED-TG, RANDOM-TG and ITER-IMPROVE-TG,

and also compare their average performance, against each other and also against

the lower bound that was developed, via simulations. During the simulation, we

also study the performance of CIRCLE-BASED-TG, which is a multicast extension

of the scheme developed in [11] for grooming unicast traffic in all-optical unidirec-

tional ring networks. We discuss all the interesting observations made during the

simulations.

It must be clear from this thesis that both routing and wavelength assignment

as well as traffic grooming for multicast traffic in all-optical WDM networks are deep

and rich areas for future research. There are several open research problems includ-

ing some simple generalizations or further investigations of the problems addressed

in this thesis, as well as various problems that are not exactly simple generalizations

of the problems that we have studied, but are still very much related. Next, we

briefly discuss some of these research directions. We shall not try to list all (or even

a fraction) of these, but we hope to show that there are numerous open research

problems available.

Some simple generalizations of the problems studied in this thesis that may

be interesting to investigate include developing inapproximability results for the

problem of multicast wavelength assignment in bidirected trees. Also, as of now,

we have not done any tightness analysis for the approximation ratios of both the

algorithms developed for the multicast wavelength assignment in bidirected trees.

This could be an interesting question in itself. Extending the wavelength assignment

algorithms to general trees is another challenging task. Investigating the use of

other techniques (such as randomization) in order to develop better approximation

algorithms for the problem of multicast wavelength assignment in bidirected trees

is another possible direction for future research.
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For the problem of multicast traffic grooming in unidirectional rings, we as-

sumed sub-wavelength-continuity constraint. Studying the problem while relaxing

this constraint is interesting because there are ADMs available that have times-

lot exchange cards built into them. Another generalization could be to assume that

the multicast traffic requests have non-uniform bandwidth requirements. This could

model the case when the traffic is unsplittable. Obviously, an open problem is to de-

velop a good approximation algorithm for the problem of multicast traffic grooming

in unidirectional rings.

In this dissertation, we restricted our study to the topologies that fix the

routing in the network. An interesting extension would be to study simple topologies

where this is not so. An examples of such a topology is the bidirected ring. Another

interesting variation could be to assume a constraint on the network resources such

as ADMs, wavelengths, optical splitters, etc., and then try to determine a largest

subset of the given set of multicast traffic requests that can be supported under these

resource constraints. This problem can be easily extended by attaching weights to

the given multicast traffic requests. As discussed before, both traffic grooming and

routing and wavelength assignment come two flavors: static and dynamic. In this

thesis, we have concentrated on the static problems. Developing algorithms for the

dynamic version of both the problems is an interesting and challenging problem.
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