62,449 research outputs found

    Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

    Get PDF
    We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization problem. Our technique preserves constant factor approximation ratios, as well as ratios that depend only on certain problem parameters, and exact algorithms yield exact algorithms. Using our technique, we obtain a new 1.61-approximation algorithm for the concave cost facility location problem. For inventory problems, we obtain a new exact algorithm for the economic lot-sizing problem with general concave ordering costs, and a 4-approximation algorithm for the joint replenishment problem with general concave individual ordering costs

    Natural evolution strategies and variational Monte Carlo

    Full text link
    A notion of quantum natural evolution strategies is introduced, which provides a geometric synthesis of a number of known quantum/classical algorithms for performing classical black-box optimization. Recent work of Gomes et al. [2019] on heuristic combinatorial optimization using neural quantum states is pedagogically reviewed in this context, emphasizing the connection with natural evolution strategies. The algorithmic framework is illustrated for approximate combinatorial optimization problems, and a systematic strategy is found for improving the approximation ratios. In particular it is found that natural evolution strategies can achieve approximation ratios competitive with widely used heuristic algorithms for Max-Cut, at the expense of increased computation time

    Pseudo-Separation for Assessment of Structural Vulnerability of a Network

    Full text link
    Based upon the idea that network functionality is impaired if two nodes in a network are sufficiently separated in terms of a given metric, we introduce two combinatorial \emph{pseudocut} problems generalizing the classical min-cut and multi-cut problems. We expect the pseudocut problems will find broad relevance to the study of network reliability. We comprehensively analyze the computational complexity of the pseudocut problems and provide three approximation algorithms for these problems. Motivated by applications in communication networks with strict Quality-of-Service (QoS) requirements, we demonstrate the utility of the pseudocut problems by proposing a targeted vulnerability assessment for the structure of communication networks using QoS metrics; we perform experimental evaluations of our proposed approximation algorithms in this context
    • …
    corecore