9 research outputs found

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Complexity of Manipulation, Bribery, and Campaign Management in Bucklin and Fallback Voting

    Get PDF
    A central theme in computational social choice is to study the extent to which voting systems computationally resist manipulative attacks seeking to influence the outcome of elections, such as manipulation (i.e., strategic voting), control, and bribery. Bucklin and fallback voting are among the voting systems with the broadest resistance (i.e., NP-hardness) to control attacks. However, only little is known about their behavior regarding manipulation and bribery attacks. We comprehensively investigate the computational resistance of Bucklin and fallback voting for many of the common manipulation and bribery scenarios; we also complement our discussion by considering several campaign management problems for Bucklin and fallback.Comment: 28 page

    Campaign Management under Approval-Driven Voting Rules

    Get PDF
    Approval-like voting rules, such as Sincere-Strategy Preference-Based Approval voting (SP-AV), the Bucklin rule (an adaptive variant of kk-Approval voting), and the Fallback rule (an adaptive variant of SP-AV) have many desirable properties: for example, they are easy to understand and encourage the candidates to choose electoral platforms that have a broad appeal. In this paper, we investigate both classic and parameterized computational complexity of electoral campaign management under such rules. We focus on two methods that can be used to promote a given candidate: asking voters to move this candidate upwards in their preference order or asking them to change the number of candidates they approve of. We show that finding an optimal campaign management strategy of the first type is easy for both Bucklin and Fallback. In contrast, the second method is computationally hard even if the degree to which we need to affect the votes is small. Nevertheless, we identify a large class of scenarios that admit fixed-parameter tractable algorithms.Comment: 34 pages, 1 figur

    Multivariate Analyis of Swap Bribery

    Full text link
    We consider the computational complexity of a problem modeling bribery in the context of voting systems. In the scenario of Swap Bribery, each voter assigns a certain price for swapping the positions of two consecutive candidates in his preference ranking. The question is whether it is possible, without exceeding a given budget, to bribe the voters in a way that the preferred candidate wins in the election. We initiate a parameterized and multivariate complexity analysis of Swap Bribery, focusing on the case of k-approval. We investigate how different cost functions affect the computational complexity of the problem. We identify a special case of k-approval for which the problem can be solved in polynomial time, whereas we prove NP-hardness for a slightly more general scenario. We obtain fixed-parameter tractability as well as W[1]-hardness results for certain natural parameters.Comment: 20 pages. Conference version published at IPEC 201
    corecore