7,452 research outputs found

    Dynamic threshold policy for delaying and breaking commitments in transportation auctions

    Get PDF
    In this paper we consider a transportation procurement auction consisting of shippers and carriers. Shippers offer time sensitive pickup and delivery jobs and carriers bid on these jobs. We focus on revenue maximizing strategies for shippers in sequential auctions. For this purpose we propose two strategies, namely delaying and breaking commitments. The idea of delaying commitments is that a shipper will not agree with the best bid whenever it is above a certain reserve price. The idea of breaking commitments is that the shipper allows the carriers to break commitments against certain penalties. The benefits of both strategies are evaluated with simulation. In addition we provide insight in the distribution of the lowest bid, which is estimated by the shippers

    A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines

    Full text link
    This paper presents a novel idea for the general case of the Common Due-Date (CDD) scheduling problem. The problem is about scheduling a certain number of jobs on a single or parallel machines where all the jobs possess different processing times but a common due-date. The objective of the problem is to minimize the total penalty incurred due to earliness or tardiness of the job completions. This work presents exact polynomial algorithms for optimizing a given job sequence for single and identical parallel machines with the run-time complexities of O(nlogn)O(n \log n) for both cases, where nn is the number of jobs. Besides, we show that our approach for the parallel machine case is also suitable for non-identical parallel machines. We prove the optimality for the single machine case and the runtime complexities of both. Henceforth, we extend our approach to one particular dynamic case of the CDD and conclude the chapter with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    Multi-Period Stochastic Resource Planning: Models, Algorithms and Applications

    Get PDF
    This research addresses the problem of sequential decision making in the presence of uncertainty in the professional service industry. Specifically, it considers the problem of dynamically assigning resources to tasks in a stochastic environment with both the uncertainty of resource availability due to attrition, and the uncertainty of job availability due to unknown project bid outcome. This problem is motivated by the resource planning application at the Hewlett Packard (HP) Enterprises. The challenge is to provide resource planning support over a time horizon under the influence of internal resource attrition and demand uncertainty. To ensure demand is satisfied, the external contingent resources can be engaged to make up for internal resource attrition. The objective is to maximize profitability by identifying the optimal mix of internal and contingent resources and their assignments to project tasks under explicit uncertainty. While the sequential decision problems under uncertainty can often be modeled as a Markov decision process (MDP), the classical dynamic programming (DP) method using the Bellman’s equation suffers the well-known curses-of-dimensionality and only works for small size instances. To tackle the challenge of curses-of-dimensionality this research focuses on developing computationally tractable closed-loop Approximate Dynamic Programming (ADP) algorithms to obtain near-optimal solutions in reasonable computational time. Various approximation schemes are developed to approximate the cost-to-go function. A comprehensive computational experiment is conducted to investigate the performance and behavior of the ADP algorithm. The performance of ADP is also compared with that of a rolling horizon approach as a benchmark solution. Computational results show that the optimization model and algorithm developed in this thesis are able to offer solutions with higher profitability and utilization of internal resource for companies in the professional service industry

    Project portfolio management: capacity allocation, downsizing decisions and sequencing rules.

    Get PDF
    This paper aims to gain insight into capacity allocation, downsizing decisions and sequencing rules when managing a portfolio of projects. By downsizing, we mean reducing the scale or size of a project and thereby changing the project's content. In previous work, we have determined the amount of critical capacity that is optimally allocated to concurrently executed projects with deterministic or stochastic workloads when the impact of downsizing is known. In this paper, we extend this view with the possibility of sequential processing, which implies that a complete order is imposed on the projects. When projects are sequenced instead of executed in parallel, two effects come into play: firstly, unused capacity can be shifted to later projects in the same period; and secondly, reinvestment revenues gain importance because of the differences in realization time of the sequenced projects. When project workloads are known, only the second effect counts; when project workloads are stochastic, however, the project's capacity usage is uncertain so that unused capacity can be shifted to later projects in the same period. In this case, both effects need to be taken into account. In this paper, we determine optimal sequencing rules when the selection and capacity-allocation decisions for a set of projects have already been made. We also consider a combination of parallel and sequential planning and we perform simulation experiments that confirm the appropriateness of our capacity-allocation methods.Project portfolio management; Downsizing; Sequencing;

    04231 Abstracts Collection -- Scheduling in Computer and Manufacturing Systems

    Get PDF
    During 31.05.-04.06.04, the Dagstuhl Seminar 04231 "Scheduling in Computer and Manufacturing Systems" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore