11 research outputs found

    Scattering and Sparse Partitions, and Their Applications

    Get PDF

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result

    Counting Small Induced Subgraphs Satisfying Monotone Properties

    Get PDF
    Given a graph property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) asks, on input a graph GG and a positive integer kk, to compute the number of induced subgraphs of size kk in GG that satisfy Φ\Phi. The search for explicit criteria on Φ\Phi ensuring that #IndSub(Φ)\#\mathsf{IndSub}(\Phi) is hard was initiated by Jerrum and Meeks [J. Comput. Syst. Sci. 15] and is part of the major line of research on counting small patterns in graphs. However, apart from an implicit result due to Curticapean, Dell and Marx [STOC 17] proving that a full classification into "easy" and "hard" properties is possible and some partial results on edge-monotone properties due to Meeks [Discret. Appl. Math. 16] and D\"orfler et al. [MFCS 19], not much is known. In this work, we fully answer and explicitly classify the case of monotone, that is subgraph-closed, properties: We show that for any non-trivial monotone property Φ\Phi, the problem #IndSub(Φ)\#\mathsf{IndSub}(\Phi) cannot be solved in time f(k)V(G)o(k/log1/2(k))f(k)\cdot |V(G)|^{o(k/ {\log^{1/2}(k)})} for any function ff, unless the Exponential Time Hypothesis fails. By this, we establish that any significant improvement over the brute-force approach is unlikely; in the language of parameterized complexity, we also obtain a #W[1]\#\mathsf{W}[1]-completeness result.Comment: 33 pages, 2 figure

    A New Coreset Framework for Clustering

    Full text link
    Given a metric space, the (k,z)(k,z)-clustering problem consists of finding kk centers such that the sum of the of distances raised to the power zz of every point to its closest center is minimized. This encapsulates the famous kk-median (z=1z=1) and kk-means (z=2z=2) clustering problems. Designing small-space sketches of the data that approximately preserves the cost of the solutions, also known as \emph{coresets}, has been an important research direction over the last 15 years. In this paper, we present a new, simple coreset framework that simultaneously improves upon the best known bounds for a large variety of settings, ranging from Euclidean space, doubling metric, minor-free metric, and the general metric cases
    corecore