9 research outputs found

    Approximating the minimum directed tree cover

    Full text link
    Given a directed graph GG with non negative cost on the arcs, a directed tree cover of GG is a rooted directed tree such that either head or tail (or both of them) of every arc in GG is touched by TT. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be NPNP-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is max{2,ln(D+)}\max\{2, \ln(D^+)\} with D+D^+ is the maximum outgoing degree of the nodes in GG.Comment: 13 page

    Vertex and edge covers with clustering properties: complexity and algorithms

    Get PDF
    We consider the concepts of a t-total vertex cover and a t-total edge cover (t≥1), which generalise the notions of a vertex cover and an edge cover, respectively. A t-total vertex (respectively edge) cover of a connected graph G is a vertex (edge) cover S of G such that each connected component of the subgraph of G induced by S has at least t vertices (edges). These definitions are motivated by combining the concepts of clustering and covering in graphs. Moreover they yield a spectrum of parameters that essentially range from a vertex cover to a connected vertex cover (in the vertex case) and from an edge cover to a spanning tree (in the edge case). For various values of t, we present NP-completeness and approximability results (both upper and lower bounds) and FTP algorithms for problems concerned with finding the minimum size of a t-total vertex cover, t-total edge cover and connected vertex cover, in particular improving on a previous FTP algorithm for the latter problem

    Complexity of Minimum Corridor Guarding Problems

    Full text link
    In this paper, the complexity of minimum corridor guarding problems is discussed. These problem can be described as: given a connected orthogo-nal arrangement of vertical and horizontal line segments and a guard with unlimited visibility along a line segment, find a tree or a closed tour with minimum total length along edges of the arrangement, such that if the guard runs on the tree or on the closed tour, all line segments are visited by the guard. These problems are proved to be NP-complete. Keywords: computational complexity, computational geometry, corridor guarding, NP-complet

    Approximation algorithms for connected dominating sets

    Full text link

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I,k)(I',k') to the same problem, such that I+kkO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c1c \geq 1, a cc-approximate solution ss' to the pre-processed instance (I,k)(I',k') can be turned in polynomial time into a (cα)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NPcoNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α1\alpha \geq 1, unless NPcoNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Approximating The Tree And Tour Covers Of A Graph

    No full text
    The tree and tour cover problems on an edge-weighted graph are to compute a minimum weight tree and closed walk, respectively, whose vertices form a vertex cover. Both problems are NP-hard. In this note we give strongly polynomial time, constant factor approximation algorithms for both problems. An interesting feature of our algorithms is how they combine approximations of other problems, namely the weighted vertex cover, traveling salesman, and Steiner tree problems. y Information Processing Letters 47 (1993), 275-282. z Partially supported by NSF Grants CCR-9204585 and ECSE-8857642. 1 Introduction Our starting point is the weighted vertex cover problem: Given a graph G = (V; E) with weights on the vertices find a minimum weight set of vertices that "cover" all edges, i.e., a set of vertices V 0 ` V such that for each edge fu; vg 2 E at least one of u and v belongs to V 0 . This problem is NP-hard [GJ], however it can be approximated by a cover whose weight is at most double..
    corecore