33,740 research outputs found

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=I−D−1/2AD−1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,…,λ∣V∣)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0≤λ1,≤…,≤λ∣V∣≤20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,…,λ~∣V∣)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0≤λ~1,≤…,≤λ~∣V∣≤20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that ∥λ~−λ∥1≤ϵ∣V∣\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, ∣V∣|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Convex Graph Invariant Relaxations For Graph Edit Distance

    Get PDF
    The edit distance between two graphs is a widely used measure of similarity that evaluates the smallest number of vertex and edge deletions/insertions required to transform one graph to another. It is NP-hard to compute in general, and a large number of heuristics have been proposed for approximating this quantity. With few exceptions, these methods generally provide upper bounds on the edit distance between two graphs. In this paper, we propose a new family of computationally tractable convex relaxations for obtaining lower bounds on graph edit distance. These relaxations can be tailored to the structural properties of the particular graphs via convex graph invariants. Specific examples that we highlight in this paper include constraints on the graph spectrum as well as (tractable approximations of) the stability number and the maximum-cut values of graphs. We prove under suitable conditions that our relaxations are tight (i.e., exactly compute the graph edit distance) when one of the graphs consists of few eigenvalues. We also validate the utility of our framework on synthetic problems as well as real applications involving molecular structure comparison problems in chemistry.Comment: 27 pages, 7 figure

    Spectral computations on lamplighter groups and Diestel-Leader graphs

    Get PDF
    The Diestel-Leader graph DL(q,r) is the horocyclic product of the homogeneous trees with respective degrees q+1 and r+1. When q=r, it is the Cayley graph of the lamplighter group (wreath product of the cyclic group of order q with the infinite cyclic group) with respect to a natural generating set. For the "Simple random walk" (SRW) operator on the latter group, Grigorchuk & Zuk and Dicks & Schick have determined the spectrum and the (on-diagonal) spectral measure (Plancherel measure). Here, we show that thanks to the geometric realization, these results can be obtained for all DL-graphs by directly computing an l^2-complete orthonormal system of finitely supported eigenfunctions of the SRW. This allows computation of all matrix elements of the spectral resolution, including the Plancherel measure. As one application, we determine the sharp asymptotic behaviour of the N-step return probabilities of SRW. The spectral computations involve a natural approximating sequence of finite subgraphs, and we study the question whether the cumulative spectral distributions of the latter converge weakly to the Plancherel measure. To this end, we provide a general result regarding Foelner approximations; in the specific case of DL(q,r), the answer is positive only when r=q

    On some random forests with determinantal roots

    Get PDF
    Consider a finite weighted oriented graph. We study a probability measure on the set of spanning rooted oriented forests on the graph. We prove that the set of roots sampled from this measure is a determinantal process, characterized by a possibly non-symmetric kernel with complex eigenvalues. We then derive several results relating this measure to the Markov process associated with the starting graph, to the spectrum of its generator and to hitting times of subsets of the graph. In particular, the mean hitting time of the set of roots turns out to be independent of the starting point, conditioning or not to a given number of roots. Wilson's algorithm provides a way to sample this measure and, in absence of complex eigenvalues of the generator, we explain how to get samples with a number of roots approximating a prescribed integer. We also exploit the properties of this measure to give some probabilistic insight into the proof of an algebraic result due to Micchelli and Willoughby [13]. Further, we present two different related coalescence and fragmentation processes

    A new numerical approach to Anderson (de)localization

    Full text link
    We develop a new approach for the Anderson localization problem. The implementation of this method yields strong numerical evidence leading to a (surprising to many) conjecture: The two dimensional discrete random Schroedinger operator with small disorder allows states that are dynamically delocalized with positive probability. This approach is based on a recent result by Abakumov-Liaw-Poltoratski which is rooted in the study of spectral behavior under rank-one perturbations, and states that every non-zero vector is almost surely cyclic for the singular part of the operator. The numerical work presented is rather simplistic compared to other numerical approaches in the field. Further, this method eliminates effects due to boundary conditions. While we carried out the numerical experiment almost exclusively in the case of the two dimensional discrete random Schroedinger operator, we include the setup for the general class of Anderson models called Anderson-type Hamiltonians. We track the location of the energy when a wave packet initially located at the origin is evolved according to the discrete random Schroedinger operator. This method does not provide new insight on the energy regimes for which diffusion occurs.Comment: 15 pages, 8 figure
    • …
    corecore