28 research outputs found

    Approximating the Expansion Profile and Almost Optimal Local Graph Clustering

    Full text link
    Spectral partitioning is a simple, nearly-linear time, algorithm to find sparse cuts, and the Cheeger inequalities provide a worst-case guarantee for the quality of the approximation found by the algorithm. Local graph partitioning algorithms [ST08,ACL06,AP09] run in time that is nearly linear in the size of the output set, and their approximation guarantee is worse than the guarantee provided by the Cheeger inequalities by a polylogarithmic logΩ(1)n\log^{\Omega(1)} n factor. It has been a long standing open problem to design a local graph clustering algorithm with an approximation guarantee close to the guarantee of the Cheeger inequalities and with a running time nearly linear in the size of the output. In this paper we solve this problem; we design an algorithm with the same guarantee (up to a constant factor) as the Cheeger inequality, that runs in time slightly super linear in the size of the output. This is the first sublinear (in the size of the input) time algorithm with almost the same guarantee as the Cheeger's inequality. As a byproduct of our results, we prove a bicriteria approximation algorithm for the expansion profile of any graph. Let ϕ(γ)=minμ(S)γϕ(S)\phi(\gamma) = \min_{\mu(S) \leq \gamma}\phi(S). There is a polynomial time algorithm that, for any γ,ϵ>0\gamma,\epsilon>0, finds a set SS of measure μ(S)2γ1+ϵ\mu(S)\leq 2\gamma^{1+\epsilon}, and expansion ϕ(S)2ϕ(γ)/ϵ\phi(S)\leq \sqrt{2\phi(\gamma)/\epsilon}. Our proof techniques also provide a simpler proof of the structural result of Arora, Barak, Steurer [ABS10], that can be applied to irregular graphs. Our main technical tool is that for any set SS of vertices of a graph, a lazy tt-step random walk started from a randomly chosen vertex of SS, will remain entirely inside SS with probability at least (1ϕ(S)/2)t(1-\phi(S)/2)^t. This itself provides a new lower bound to the uniform mixing time of any finite states reversible markov chain

    Gap Amplification for Small-Set Expansion via Random Walks

    Get PDF
    In this work, we achieve gap amplification for the Small-Set Expansion problem. Specifically, we show that an instance of the Small-Set Expansion Problem with completeness ϵ\epsilon and soundness 12\frac{1}{2} is at least as difficult as Small-Set Expansion with completeness ϵ\epsilon and soundness f(ϵ)f(\epsilon), for any function f(ϵ)f(\epsilon) which grows faster than ϵ\sqrt{\epsilon}. We achieve this amplification via random walks -- our gadget is the graph with adjacency matrix corresponding to a random walk on the original graph. An interesting feature of our reduction is that unlike gap amplification via parallel repetition, the size of the instances (number of vertices) produced by the reduction remains the same

    Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure

    Full text link
    We study the problem of finding and characterizing subgraphs with small \textit{bipartiteness ratio}. We give a bicriteria approximation algorithm \verb|SwpDB| such that if there exists a subset SS of volume at most kk and bipartiteness ratio θ\theta, then for any 0<ϵ<1/20<\epsilon<1/2, it finds a set SS' of volume at most 2k1+ϵ2k^{1+\epsilon} and bipartiteness ratio at most 4θ/ϵ4\sqrt{\theta/\epsilon}. By combining a truncation operation, we give a local algorithm \verb|LocDB|, which has asymptotically the same approximation guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness ratio of the output set, and runs in time O(ϵ2θ2k1+ϵln3k)O(\epsilon^2\theta^{-2}k^{1+\epsilon}\ln^3k), independent of the size of the graph. Finally, we give a spectral characterization of the small dense bipartite-like subgraphs by using the kkth \textit{largest} eigenvalue of the Laplacian of the graph.Comment: 17 pages; ISAAC 201

    Testing Small Set Expansion in General Graphs

    Get PDF
    We consider the problem of testing small set expansion for general graphs. A graph GG is a (k,ϕ)(k,\phi)-expander if every subset of volume at most kk has conductance at least ϕ\phi. Small set expansion has recently received significant attention due to its close connection to the unique games conjecture, the local graph partitioning algorithms and locally testable codes. We give testers with two-sided error and one-sided error in the adjacency list model that allows degree and neighbor queries to the oracle of the input graph. The testers take as input an nn-vertex graph GG, a volume bound kk, an expansion bound ϕ\phi and a distance parameter ε>0\varepsilon>0. For the two-sided error tester, with probability at least 2/32/3, it accepts the graph if it is a (k,ϕ)(k,\phi)-expander and rejects the graph if it is ε\varepsilon-far from any (k,ϕ)(k^*,\phi^*)-expander, where k=Θ(kε)k^*=\Theta(k\varepsilon) and ϕ=Θ(ϕ4min{log(4m/k),logn}(lnk))\phi^*=\Theta(\frac{\phi^4}{\min\{\log(4m/k),\log n\}\cdot(\ln k)}). The query complexity and running time of the tester are O~(mϕ4ε2)\widetilde{O}(\sqrt{m}\phi^{-4}\varepsilon^{-2}), where mm is the number of edges of the graph. For the one-sided error tester, it accepts every (k,ϕ)(k,\phi)-expander, and with probability at least 2/32/3, rejects every graph that is ε\varepsilon-far from (k,ϕ)(k^*,\phi^*)-expander, where k=O(k1ξ)k^*=O(k^{1-\xi}) and ϕ=O(ξϕ2)\phi^*=O(\xi\phi^2) for any 0<ξ<10<\xi<1. The query complexity and running time of this tester are O~(nε3+kεϕ4)\widetilde{O}(\sqrt{\frac{n}{\varepsilon^3}}+\frac{k}{\varepsilon \phi^4}). We also give a two-sided error tester with smaller gap between ϕ\phi^* and ϕ\phi in the rotation map model that allows (neighbor, index) queries and degree queries.Comment: 23 pages; STACS 201
    corecore