1 research outputs found

    Polynomially solvable cases of the bipartite traveling salesman problem

    Get PDF
    Given two sets, R and B, consisting of n cities each, in the bipartite traveling salesman problem one looks for the shortest way of visiting alternately the cities of R and B, returning to the city of origin. This problem is known to be NP-hard for arbitrary sets R and B. In this paper we provide an O(n6) algorithm to solve the bipartite traveling salesman problem if the quadrangle property holds. In particular, this algorithm can be applied to solve in O(n6) time the bipartite traveling salesman problem in the following cases: S=R¿B is a convex point set in the plane, S=R¿B is the set of vertices of a simple polygon and V=R¿B is the set of vertices of a circular graph. For this last case, we also describe another algorithm which runs in O(n2) time
    corecore