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Abstract

Given two sets, R and B, consisting of n cities each, in the bipartite traveling salesman
problem one looks for the shortest way of visiting alternately the cities of R and B, re-
turning to the city of origin. This problem is known to be NP-hard for arbitrary sets
R and B. In this paper we provide an O(n6) algorithm to solve the bipartite traveling
salesman problem if the quadrangle property holds. In particular, this algorithm can be
applied to solve in O(n6) time the bipartite traveling salesman problem in the following
cases: S = R ∪ B is a convex point set in the plane, S = R ∪ B is the set of vertices of a
simple polygon and V = R∪B is the set of vertices of a circular graph. For this last case,
we also describe another algorithm which runs in O(n2) time.

Keywords: Traveling salesman, Combinatorial optimization, Bipartite traveling
salesman, quadrangle property, Kalmanson matrix, Transportation

1. Introduction

1.1. Background and prior work

In the traveling salesman problem (TSP), given a prescribed set of cities, one wishes to
find the shortest route starting and finishing at the same location, visiting each one of the
cities exactly once. This problem is perhaps one of the most extensively studied problems
in combinatorial optimization and its different variants have many applications in different
areas of knowledge, including computer science, operations research, genetics, engineering
and electronics. The reader is referred to [23, 26] for a review of the state of the art on
this problem.

One of these variants is the bipartite TSP (BTSP). Now, the set of cities is partitioned
into two classes R and B, with |R| = |B| = n, and one wishes to find a shortest route such
that the cities in R and B alternate along the route. Besides being interesting in itself,
the BTSP is related to other problems, mainly pickup and delivery problems, such as the
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pick-and-place robots problem (or the printed circuit board assembly problem) [29], the
k-delivery TSP [1] or the swapping problem [4]. For an overview on pickup and delivery
problems, see [8].

In the k-delivery TSP (k-DTSP), one looks for the shortest route to pick up n items
located at n source points and deliver them to n sink points, using a single vehicle of
capacity k and assuming that an item at a source point can be delivered to any sink point.
The BTSP is a special case of the k-DTSP if k = 1. In the swapping problem, the main
goal is to find the shortest route to swap n objects of m ≤ n different types between n
locations using a single vehicle with unit capacity. Every location is associated with two
object types –the one it currently holds and the one it demands– and holds or demands at
most one unit of an object. Moreover, the total supply in the network for each object type
equals its total demand. When there are only two object types, the swapping problem is
equivalent to the BTSP. The reader is referred to [1, 9, 11, 31] and [2, 3, 4, 5] for different
results and variants on the k-DTSP and the swapping problem, respectively.

In the Euclidean BTSP, the cities are assumed to be points in the plane and the distance
between any two points is the Euclidean distance. It is well-known that the BTSP and the
Euclidean BTSP are NP-hard, so there is no polynomial algorithm to solve them unless
P = NP . Moreover, the problem remains NP-hard even in the case of a grid graph. In
general, researchers have focused on designing good approximation algorithms. We refer
the reader to [4, 7, 12, 20, 28, 29] and the references therein for different approximation
algorithms along with experimental results. The best known approximation factor for the
Euclidean BTSP is 2 [12, 20].

There are also some publications in the literature devoted to solving particular cases
of the BTSP. In [31], the authors study the k-DTSP for path and tree graphs. In the case
of a path, they give an O(n2/min{k, n}) algorithm for arbitrary k and linear algorithms
for k = 1 and k =∞. In the case of a tree (see also [3]), they propose an O(n2) algorithm
for k = 1 and an O(n) algorithm for k =∞, and show that the problem becomes NP-hard
in strong sense if k is arbitrary. In [9], a linear-time algorithm is described to solve the
k-DTSP on a path.

Another particular case of the BTSP studied in the literature is related to the shoelace
problem [24]. In this problem, the objective is to find an optimal strategy for lacing shoes
such that the amount of shoelace used is minimized. When the eyelets are arranged in
two horizontal lines and two eyelets on the same line are not connected consecutively,
then the shoelace problem is an instance of the BTSP (the eyelets placed on the two lines
correspond to R and B, respectively). In this case, Halton [24] proved that the optimal way
of threading the shoelaces is the so-called criss-cross lacing strategy, which corresponds to
the typical method used in the USA for lacing shoes: threading the shoelaces in opposing
zigzags, so that they seem to be crossed when seen from above.

Halton’s result was generalized later in [27] and [19]. In both papers the authors
show that the criss-cross strategy is still the best way of visiting the cities under certain
constraints on the distance matrix D. If 1, 2, . . . , n and n+ 1, n+ 2, . . . , 2n are the cities in
R and B, respectively, Misiurewicz [27] shows that it is sufficient for the distance matrix
D to satisfy: d(i, j) + d(k, l) ≤ d(i, l) + d(k, j) for 1 ≤ i ≤ k ≤ n and n + 1 ≤ j ≤ l ≤ 2n.
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Figure 1: Left: The shortest Hamiltonian alternating cycle is the criss-cross cycle. Right: The shortest
Hamiltonian alternating cycle for another partition of the same convex point set.

In the second paper [19], Deineko and Woeginger prove the result for a relaxation on the
Monge inequalities for a matrix M and provide an O(n4) algorithm to decide whether
there is a renumbering of the cities such that the resulting distance matrix satisfies this
relaxation.

1.2. The quadrangle property

A classic example where Misiurewicz’s conditions are satisfied is the following. Consider
the set of 2n vertices of a convex polygon and suppose that the clockwise order of the
vertices is {1, 2, . . . , 2n}. Assume that the vertices from 1 to n belong to R, the vertices
from n+1 to 2n belong to B, and that the cost of an edge connecting one vertex to another
is the Euclidean distance. The well-known quadrangle property for a convex quadrilateral
states that the total length of the diagonals of the quadrilateral is always bigger than the
total length of two opposite sides. In particular, given any four vertices i < k < j < l,
with i and k belonging to R and j and l to B, the total length of the two crossing edges
(i, j) and (k, l) is always bigger than the total length of the two non-crossing edges (i, l)
and (k, j). These are Misiurewicz’s conditions for reversing the order of the vertices of B.
Therefore, the shortest way of visiting alternately the vertices in R and B is the criss-cross
cycle, as is shown in the left part of Figure 1. Vertices belonging to R are illustrated as
solid red points and vertices belonging to B as hollow blue points.

Assume now that the 2n vertices of the convex polygon are divided into two arbitrary
sets R and B of equal size, as in the right part of Figure 1. Misiurewicz’s inequalities are
no longer satisfied because the vertices in R and B are not consecutive in the cyclic order.
However, it is still true that if two edges (segments) of the bipartite graph defined by R and
B cross, then they can be replaced by two other edges (segments) of the bipartite graph,
reducing the total length. Using this fact, one can still compute the shortest Hamiltonian
cycle C visiting alternately the vertices in R and B, as the right part of Figure 1 shows.

These are precisely the types of particular cases of the BTSP we study in this paper:
instances in which, given a cyclic order on the cities, two “crossing edges” can be replaced
by two “non-crossing edges” without increasing the length. This concept is formalized for
graphs as follows.

Definition 1. Let G = (V,E) be an undirected graph on the set of vertices V = {1, 2, . . . , N}.
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For an edge e = (i, j) of E, let d(i, j) be the cost of e. Assuming that (1, 2, . . . , N) is a
cyclic order of the vertices of G, we say that G satisfies the quadrangle property if

d(i1, i4) + d(i2, i3) ≤ d(i1, i3) + d(i2, i4)

for any four vertices i1, i2, i3, i4 such that (i1, i4), (i2, i3), (i1, i3), (i2, i4) are edges of E and
i1 < i2 < i3 < i4 cyclically.

These inequalities, d(i1, i4) + d(i2, i3) ≤ d(i1, i3) + d(i2, i4), are usually called quadran-
gle inequalities. Misiurewicz’s conditions correspond to the quadrangle property for the
particular case of the complete bipartite graph G = (R ∪ B,E), with R = {1, 2, . . . , n},
B = {n+ 1, n+ 2, . . . , 2n} and the cyclic order (1, 2, . . . n, 2n, 2n− 1, . . . , n+ 1).

1.3. Our main contribution

In this paper, we study the BTSP for a complete bipartite graph G = (R ∪ B,E)
satisfying the quadrangle property, that is, assuming that (1, 2, . . . , 2n) is a cyclic order of
the vertices of G, inequality d(i1, i4)+d(i2, i3) ≤ d(i1, i3)+d(i2, i4) holds for any four vertices
i1, i2 ∈ R, and i3, i4 ∈ B such that i1 < i2 < i3 < i4 cyclically. To the best of our knowledge,
this problem has only been solved when R = {1, 2, . . . , n} and B = {n+ 1, n+ 2, . . . , 2n}
(Misiurewicz [27]). We show that there is a shortest cycle for the BTSP in G not containing
a five-point star (defined later). Then, we provide an O(n6) algorithm to find the shortest
cycle not containing a five-point star. As a consequence, we also solve in O(n6) time
the following three particular cases of the BTSP: the Euclidean BTSP for points in convex
position, the BTSP for a simple polygon and the BTSP for a circular graph (or cycle graph).
In the three cases, the quadrangle property holds. Line and circular graph models have
been widely studied in the literature, because of their real applications: Trucks delivering
goods along a highway or ships visiting ports along a shoreline are some examples. Simple
polygons are often used to model terrains and can also be used, for example, to model a
lake in which boats have to visit ports placed on the shoreline, following the shortest paths
among the ports.

1.4. Organization of the paper

The paper is organized as follows. Section 2 is devoted to studying the BTSP for a
complete bipartite graph satisfying the quadrangle property with a given cyclic order on
its vertices. In particular, we show that there is a shortest cycle not containing a five-point
star. In Section 3, we describe an O(n6) algorithm to find the shortest cycle not containing
a five-point star, improving the best known algorithm for this problem that runs in O(n7)
time [18]. In Section 4, we show three particular cases satisfying the quadrangle property:
the BTSP for convex point sets, for simple polygons and for circular graphs. We also
analyze the case of the BTSP for Kalmanson matrices. In Section 5, we analyze in more
detail the structure of cycles not containing five-point stars and we give an O(n2) algorithm
to solve the BTSP for a circular graph. Hence, we also solve in O(n2) time the swapping
problem for circular graphs with m = 2 object types. The complexity of the general
swapping problem for a circular graph is unknown [3, 5]. Finally, some concluding remarks
are given in Section 6.
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2. The BTSP for a complete bipartite graph satisfying the quadrangle property

Before studying the BTSP for a complete bipartite graph, we give some notation and
definitions which are used throughout the paper. G = (V,E) is an undirected graph on
the set of vertices V = {1, 2, . . . , N}, where (1, 2, . . . , N) is assumed to be a cyclic order of
the vertices of V . For an edge e = (i, j) of G, d(i, j) is the cost associated with e (or the
length of e or the distance between vertices i and j).

A Hamiltonian cycle C on G is given by a cyclic permutation (i1, i2, . . . , iN) of the
vertices of G, so C consists of the edges (i1, i2), (i2, i3) . . . , (iN , i1) of G. We consider C as
a directed cycle consisting of the directed edges (i1, i2), (i2, i3) . . . , (iN , i1). The length of
C is the amount

l(C) =
N∑
j=1

d(ij, ij+1)

where iN+1 is identified with i1.
We say that two edges (i1, i3) and (i2, i4) of G combinatorially cross if and only if the

cyclic order of the four vertices is either i1 < i2 < i3 < i4 or i1 < i4 < i3 < i2. We
also say that two edges which cross define a combinatorial crossing. Using the following
trivial observation, one can imagine combinatorial crossings as geometric crossings between
segments connecting points in the plane in convex position.

Observation 1. Let {p1, p2, . . . , pN} be a set of N points in the plane on a unit circle,
clockwise ordered. Let G = (V,E) be a graph on the set of vertices V = {1, 2, . . . , N},
where (1, 2, . . . , N) is assumed to be a cyclic order of the vertices of V . Identifying vertex
k with point pk, for k = 1, . . . , N , two edges (i, j) and (i′, j′) of G combinatorially cross if
and only if their corresponding segments pipj and pi′pj′ geometrically cross.

Optimum cycles are defined in the following way.

Definition 2. A Hamiltonian cycle C in G is optimum if its length is less than or equal to
the length of any other Hamiltonian cycle C ′ and, if both cycles have the same length, the
number of combinatorial crossings of C is less than or equal to the number of combinatorial
crossings of C ′.

Given a partition R ∪B of the set of vertices of G into two sets R and B, we say that
R is the set of red vertices and B is the set of blue vertices. A cycle (path) is alternating
if any two consecutive vertices have distinct color. Lastly, a five-point star for a cyclic
permutation is defined as follows.

Definition 3. Let π = (i1, i2, . . . , iN) be a cyclic permutation of the set {1, 2, . . . , N}.
Given five arbitrary indices {j1, j2, j3, j4, j5} such that j1 < j2 < j3 < j4 < j5 cycli-
cally, we say that the five indices form a five-point star if they appear in π in the order
. . . , j1, . . . , j3, . . . , j5, . . . , j2, . . . , j4, . . . or in the order . . . , j1, . . . , j4, . . . , j2, . . . , j5, . . . , j3, . . ..

Let G = (R ∪ B,E) be a complete bipartite graph such that R ∪ B is a partition of
V = {1, 2, . . . , 2n}, with |R| = |B| = n. In the BTSP for G, we look for a Hamiltonian
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alternating cycle C such that l(C) ≤ l(C ′) for any other Hamiltonian alternating cycle
C ′. Assuming that G satisfies the quadrangle property with respect to the cyclic order
(1, 2, . . . , 2n), the main result of this section is that there is a shortest Hamiltonian alter-
nating cycle not containing a five-point star. To prove this result, we need two lemmas.
The first lemma shows that, if two crossing edges of a subgraph of G are replaced by two
non-crossing edges of G, then the number of combinatorial crossings decreases. The second
lemma gives a constraint on the colors of the endpoints of crossing edges in an optimum
Hamiltonian alternating cycle.

The first lemma is essentially the following well-known property for geometric graphs
drawn on n points in the plane in convex position, assuming that no three of them are
on a line and that the distance between two points is the Euclidean distance. Recall that
a geometric graph is a graph whose vertices are points in the plane and whose edges are
straight line segments connecting the vertices.

Property 1. If H is a geometric graph drawn on a convex point set S such that edge
(pi, pj) crosses edge (pi′ , pj′), then the geometric graph H ′ obtained by replacing those edges
by edges (pi, pi′) and (pj, pj′) (or by (pi, pj′) and (pj, pi′)) has less total length than H.
Moreover, H ′ also has fewer crossings than H.

This property follows from the convexity of S. For four points in convex position, with
no three of them on a line, the quadrangle inequality is strict when using the Euclidean
distance, so H ′ must have less length than H. On the other hand, if a crossing in H ′ does
not involve edges (pi, pi′) and (pj, pj′), then this crossing also appears in H. Moreover, if
an edge e of H ′ crosses (pi, pi′) (or (pj, pj′)), then, by convexity, e necessarily crosses at
least one of (pi, pj) and (pi′ , pj′), and if e crosses (pi, pi′) and (pj, pj′), then e also crosses
(pi, pj) and (pi′ , pj′). Therefore, the number of crossings in H is at least the number of
crossings in H ′. Since (pi, pi′) and (pj, pj′) do not cross, the number of crossings in H ′ is
fewer than the number of crossings in H.

From the definition of the quadrangle property, Observation 1 and Property 1, the
following lemma holds.

Lemma 1. Let G = (R∪B,E) be a complete bipartite graph such that R∪B is a partition
of V = {1, 2, . . . , 2n}, with |R| = |B| = n. Assume that G satisfies the quadrangle property
with respect to the cyclic order (1, 2, . . . , 2n). If H is a subgraph of G such that edge (i, j)
combinatorially crosses edge (i′, j′), then, by replacing those edges by edges (i, i′) and (j, j′)
(if i and i′ have different colors) or by (i, j′) and (j, i′) (if i and i′ have the same color),
the length of the resulting graph H ′ is less than or equal to the length of H. Moreover, H ′

has fewer combinatorial crossings than H.

Proof. Let S = {p1, p2, . . . , p2n} be a set of 2n points in the plane on a unit circle, clockwise
ordered. Let H = (S,E) and H

′
= (S,E

′
) be the geometric graphs on S associated with H

and H ′, respectively, where an edge (segment) (pi, pj) belongs to H (H
′
) if and only if the

edge (i, j) belongs to H (H ′). By Observation 1, the number of combinatorial crossings of
H (H ′) must coincide with the number of geometric crossings of H (H

′
). Since H

′
has been
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Figure 2: Replacing edges (i, j) and (i′, j′) by edges (i, i′) and (j, j′), a shorter Hamiltonian alternating
cycle is obtained.

obtained from H by replacing two crossing edges by two non-crossing edges, by Property
1, H

′
has fewer geometric crossings than H , so H ′ has fewer combinatorial crossings than

H.
On the other hand, since edges (i, j) and (i′, j′) combinatorially cross, the cyclic order

of the vertices is either i′ < j < j′ < i or i′ < i < j′ < j. In both cases, as G satisfies
the quadrangle property, the sum of the lengths of the edges (i, i′) and (j, j′) (or the edges
(i, j′) and (j, i′)) is not bigger than the sum of the lengths of the edges (i, j) and (i′, j′).
Hence, the length of H ′ is less than or equal to the length of H.

Lemma 2. Let G = (R∪B,E) be a complete bipartite graph such that R∪B is a partition
of V = {1, 2, . . . , 2n}, with |R| = |B| = n. Assume that G satisfies the quadrangle property
with respect to the cyclic order (1, 2, . . . , 2n). Let C be an optimum Hamiltonian alternating
cycle in G. If the directed edges (i, j) and (i′, j′) of C combinatorially cross, then i, i′ have
the same color (and j, j′ the other color).

Proof. Suppose that vertices i and i′ have different colors. Then, by replacing the crossing
directed edges (i, j) and (i′, j′) by the directed edges (i, i′) and (j, j′) and by reversing
the path of C from j to i′, we obtain a new Hamiltonian alternating cycle C ′. Figure 2
illustrates the new cycle obtained, where paths connecting vertices are drawn as curves.
By Lemma 1, C ′ has fewer crossings than C and its length is at most the length of C,
contradicting that C is optimum.

Using the two previous lemmas, we now show that no optimum Hamiltonian alternating
cycle can contain a five-point star.

Theorem 1. Let G = (R∪B,E) be a complete bipartite graph such that R∪B is a partition
of V = {1, 2, . . . , 2n}, with |R| = |B| = n. Assume that G satisfies the quadrangle property
with respect to the cyclic order (1, 2, . . . , 2n). Then, no optimum Hamiltonian alternating
cycle C in G can contain a five-point star.

Proof. The proof is by contradiction. We show that if five vertices i1 < i2 < i3 < i4 < i5
appear in C in the cyclic order i1, . . . , i3, . . . , i5, . . . , i2, . . . , i4, . . ., then there are two pairs
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Figure 3: Building cycle C ′ (right) from cycle C (left). The directed edges edges (i′5, i
′
2), (i′1, i

′
3), (i′′2 , i

′′
4)

and (i′′3 , i
′′
5) of C are replaced by the directed edges (i′5, i

′
3), (i′1, i

′
2), (i′′2 , i

′′
5) and (i′′3 , i

′′
4).

of crossing edges in C such that, when replacing the crossing edges by the corresponding
non-crossing edges, a new cycle shorter than C is obtained. The same reasoning can be
applied to the symmetric order i1, . . . , i4, . . . , i2, . . . , i5, . . . , i3, . . ..

As i1 < i2 < i3 < i5 cyclically, in the directed path of C from i5 to i2, there is necessarily
a directed edge (i′5, i

′
2) such that the cyclic order of i1, i

′
2, i3 and i′5 is i1 < i′2 < i3 < i′5. For

the same reason, since i1 < i′2 < i3 < i′5 cyclically, in the directed path of C from i1 to i3
there is a directed edge (i′1, i

′
3) such that i′1 < i′2 < i′3 < i′5. These two directed edges (i′5, i

′
2)

and (i′1, i
′
3) combinatorially cross, so i′5 and i′1 must have the same color by Lemma 2 and

i′2 and i′3 the other color.
Using the same argument, in the paths of C from i2 to i4 and from i3 to i5, there are

two directed edges, (i′′2, i
′′
4) in the path from i2 to i4 and (i′′3, i

′′
5) in the path from i3 to i5

such that i′′2 < i′′3 < i′′4 < i′′5. By Lemma 2, i′′2 and i′′3 have the same color and i′′4 and i′′5 the
other color.

Therefore, C is (i′1, i
′
3), Pi′3,i

′′
3
, (i′′3, i

′′
5), Pi′′5 ,i

′
5
, (i′5, i

′
2), Pi′2,i

′′
2
, (i′′2, i

′′
4), Pi′′4 ,i

′
1
, where Pi,j is the

directed path of C from vertex i to vertex j. Note that some of these paths Pi,j can be
empty. This happens when, for example, i3 = i′3 = i′′3. Now, replacing the crossing edges
(i′5, i

′
2) and (i′1, i

′
3) by the edges (i′5, i

′
3) and (i′1, i

′
2) and the crossing edges (i′′2, i

′′
4) and (i′′3, i

′′
5)

by the edges (i′′2, i
′′
5) and (i′′3, i

′′
4), we obtain a new cycle C ′ = (i′1, i

′
2), Pi′2,i

′′
2
, (i′′2, i

′′
5), Pi′′5 ,i

′
5
,

(i′5, i
′
3), Pi′3,i

′′
3
, (i′′3, i

′′
4), Pi′′4 ,i

′
1
. Figure 3 illustrates how to obtain this cycle, assuming that the

vertices of G are points on a unit circle. By Lemma 1, C ′ is not longer than C and has
fewer crossings than C, contradicting that C is optimum.

3. The five-point star algorithm

In this section, we describe an O(n6) algorithm to compute the shortest cycle not
containing a five-point star. This algorithm is the base for solving the particular cases of
the BTSP studied in this paper.

Recall that, given a cyclic permutation π = (i1, i2, . . . , in) of the set {1, 2, . . . , n}, five
indices j1 < j2 < j3 < j4 < j5 form a five-point star if they appear in π in the order
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(. . . , j1, . . . , j3, . . . , j5, . . . , j2, . . . , j4, . . .) or in the order (. . . , j1, . . . , j4, . . . , j2, . . . , j5, . . . , j3, . . .).
Given a set of points S in the plane, this class of permutations was defined in [21] as part
of the characterization of the order in which the points on the second convex hull of S
are visited in any simple polygon. In the same paper, the authors give some alternative
definitions for these permutations: g-pyramidal permutations and permutations satisfying
the subdivision property. A permutation π of {1, 2, . . . , n} satisfies the subdivision property
if it is formed by, first, a permutation π1 of consecutive indices and later a permutation π2
of the remaining indices and, besides, this division process can be repeated again for π1
and π2. A permutation is g-pyramidal, if it belongs to the family Gn, defined recursively
as follows:

(i) G1 = (1).

(ii) The permutation πn belongs to Gn if and only if two adjacent and consecutive indices
exist in πn, and, by contracting them, the new permutation πn−1 belongs to Gn−1.

The following lemma, proved in [21], shows that these three definitions are equivalent.

Lemma 3. [21] A permutation is g-pyramidal ⇔ it satisfies the subdivision property ⇔ it
does not contain a five-point star.

For example, the permutation (124386759) is g-pyramidal because we are able to make
the following contractions: (124386759) → (13275648) → (1326547) → (132546) →
(13245) → (1324) → (123) → (12) → (1). Moreover, it is clear that (124386759) does
not contain a five-point star and that it satisfies the subdivision property: (124386759)→
((1243)(86759))→ (((12)(43))((8675)(9)))→ . . .

G-pyramidal permutations are generalizations of pyramidal permutations. A permu-
tation π = (1, i1, i2, . . . , ir, n, j1, j2, . . . , jn−r−2) of the set {1, 2, . . . , n} is pyramidal if i1 <
i2 < . . . < ir and j1 > j2 > . . . > jn−r−2. In a pyramidal permutation, indices n and n− 1
always appear consecutively in the permutation and, if these two indices are contracted, the
resulting permutation is again pyramidal. Hence, the set of pyramidal permutations is a
subset of the set of g-pyramidal permutations. In addition, while the number of pyramidal
permutations is 2n−1, the number of g-pyramidal permutations is asymptotically (3+

√
8)n

[15, 30]. The relevance of pyramidal permutations relies on the fact that, although the
number of pyramidal permutations is exponential, finding an optimal pyramidal permuta-
tion (given a distance matrix) only requires O(n2) time. Thus, if one can prove that the
optimal solution for a problem belongs to this family, then the problem can be solved poly-
nomially. This happens, for example, when solving the TSP with a Demidenko distance
matrix: One can prove that there is an optimal cycle belonging to the family of pyramidal
permutations. The reader interested in other well-solvable cases of the TSP is referred to
[10], chapter 11 in [23] and chapter 4 in [26].

G-pyramidal permutations are also known as twisted sequences. Twisted sequences were
described by Aurenhammer in [6] and can be defined as follows. Start with the identity
permutation (1, 2, . . . , n) and choose a set of intervals over the set {1, 2, . . . , n} such that
for every pair of intervals either one of them contains the other one or the two intervals
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are disjoint. Then, reverse (twist) for every interval the order of its elements. A twisted
sequence is obtained from the identity via such a reversal process [6, 18].

Given a distance matrix, in [18], Deineko et al. developed an O(n7) algorithm to
compute the shortest twisted sequence. Their algorithm is based on proving that an optimal
path that visits the indices {i, . . . , j} in a twisted way, starting and finishing at two indices
a, b ∈ [i, j], can be decomposed into two optimal paths visiting the indices in [i, k] and
[k+1, j] in a twisted way, respectively. Although they did not give an explicit name to this
property, it corresponds to the subdivision property. Hence, a twisted sequence satisfies
the subdivision property. Besides, it is not difficult to see that a permutation satisfying the
subdivision property is also a twisted sequence and then, the family of twisted sequences
is the same as the family of g-pyramidal permutations.

Using the subdivision property, we can design a dynamic programming algorithm to
find the shortest g-pyramidal cycle (or shortest twisted sequence). Given an n×n distance
matrix D, where d(i, j) is the distance between index i and index j, the length of a cycle
C = (i1, i2, . . . , in) is l(C) =

∑n−1
j=1 d(ij, ij+1) + d(in, i1). Given the distance matrix D, the

output of the algorithm is the shortest g-pyramidal cycle C, that is, the g-pyramidal cycle
C such that l(C) ≤ l(C ′) for any other g-pyramidal cycle C ′.

The algorithm works as follows. Let us denote by [i, j] the interval of consecutive indices
i, i+ 1, . . . , j (assuming that n is followed by 1). For each interval [i, j], index s ∈ [i, j] and
index t 6∈ [i, j], let C(i, j, s, t) be the length of an optimal path beginning at s, visiting all
the indices of [i, j] and finishing at t, with the additional condition that the path visiting
indices [i, j] satisfies the subdivision property.

Clearly, if [i, j] only contains one index i, then C(i, i, i, t) = d(i, t). In any other case,
by the optimality principle of dynamic programming, C(i, j, s, t) is the minimum of:C(i, k, s, t′) + C(k + 1, j, t′, t), k ∈ [s, j − 1], t′ ∈ [k + 1, j]

C(k + 1, j, s, t′) + C(i, k, t′, t), k ∈ [i, s− 1], t′ ∈ [i, k]

because, by the subdivision property, after index s, either an interval [i, k] is visited first,
then an index t′ of [k + 1, j], next the remaining indices of this last interval and finally
index t, or the opposite, first an interval [k + 1, j], then an index t′ in [i, k], next the rest
of the indices in that interval and finally index t.

The algorithm computes the O(n4) values C(i, j, s, t) in increasing order of the size of
the intervals [i, j]. Since every C(i, j, s, t) requires O(n2) time, the overall complexity is
O(n6) time and O(n4) space. The length of the shortest g-pyramidal cycle is

min
k

(C(2, n, k, 1) + d(1, k)), k ∈ [2, n]

and the shortest cycle is obtained in the standard way of dynamic programming.
Therefore, we have proved the following theorem.

Theorem 2. Given a distance matrix D, the shortest g-pyramidal cycle (or shortest twisted
sequence) can be computed in O(n6) time and O(n4) space.
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As a consequence of this theorem, the BTSP for a complete bipartite graph G satisfying
the quadrangle property can be solved in O(n6) time. If d(i, j) is the distance between
vertices i and j of G, we only need to apply the previous algorithm with a distance matrix
D′ defined by d′(i, j) = d(i, j) if i and j have different colors and d′(i, j) =∞ if they have
the same color. Therefore, we have the following theorem.

Theorem 3. Let G = (R∪B,E) be a complete bipartite graph such that R∪B is a partition
of V = {1, 2, . . . , 2n}, with |R| = |B| = n. Assume that G satisfies the quadrangle property
with respect to the cyclic order (1, 2, . . . , 2n). Then, a shortest Hamiltonian alternating
cycle in G can be computed in O(n6) time.

4. Some particular cases satisfying the quadrangle property

This section describes some particular cases of the BTSP satisfying the quadrangle
property.

4.1. The BTSP for Kalmanson matrices

A 2n× 2n symmetric distance matrix D is a Kalmanson matrix if

d(i, j) + d(k, l) ≤ d(i, k) + d(j, l) and d(i, l) + d(j, k) ≤ d(i, k) + d(j, l)

for all i, j, k, l with 1 ≤ i < j < k < l ≤ 2n. Kalmanson matrices are popular in the
literature because the special structure of these matrices allows one to polynomially solve
particular cases of certain problems. In Operations Research, the prize-collecting TSP [14]
or the quadratic assignment problem [17] are some examples. In particular, if the distance
matrix for the TSP is a Kalmanson matrix, then a shortest tour is the identity permutation
[25]. Kalmanson matrices belong to a larger family of well-structured matrices defined by
the so-called four-point inequalities. We refer the reader to [16] for a complete description
of this family and the computational complexity of the TSP when the distance matrix
belongs to the family.

The inequalities defining a Kalmanson matrix are quadrangle inequalities. Thus, as-
suming that (1, 2, . . . , 2n) is a cyclic order, it is clear that a complete graph satisfies the
quadrangle property if and only if its underlying distance matrix is a Kalmanson matrix.

Let G = (V,E) be a complete graph on the set of vertices V = {1, 2, . . . , 2n} and let
V = R∪B be a partition of the vertices of G into red and blue vertices, with |R| = |B| = n.
Regardless of the partition of V into two sets R and B of equal size, if the complete graph
G satisfies the quadrangle property with respect to the cyclic order (1, 2, . . . 2n), then the
corresponding complete bipartite graph G′ = (R ∪ B,E ′) also satisfies it. As looking for
the shortest Hamiltonian alternating cycle in G is equivalent to looking for the shortest
Hamiltonian alternating cycle in G′, we have the following result by Theorem 3.

Corollary 1. Let G = (V,E) be a complete graph satisfying the quadrangle property with
respect to the cyclic order (1, 2, . . . , 2n) (or equivalently, whose underlying distance matrix
is a Kalmanson matrix). Let V = R ∪B be a partition of the vertices of V into two color
classes R and B such that |R| = |B| = n. Then, a shortest Hamiltonian alternating cycle
in G can be computed in O(n6) time.
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The following lemma shows an additional property for an optimum Hamiltonian alter-
nating cycle C in a complete graph satisfying the quadrangle property: C cannot contain
three edges crossing each other. This result is applied in the next section to give a better
algorithm when solving the BTSP for a circular graph.

A similar result is proved in [13] when computing a Hamiltonian alternating path P ,
minimizing the number of crossings in a bicolored convex point set in the plane: P cannot
contain three edges crossing each other. Using Observation 1, the proof given in [13] can
be carried over to prove Lemma 4. For the sake of completeness, we include a proof which
follows the lines of the proof appearing in [13] with some minor changes.

Lemma 4. Let G = (V,E) be a complete graph satisfying the quadrangle property with
respect to the cyclic order (1, 2, . . . , 2n). Let V = R ∪B be a partition of the vertices of V
into two color classes R and B such that |R| = |B| = n. Then, no optimum Hamiltonian
alternating cycle C in G can contain three edges (i1, j1), (i2, j2) and (i3, j3) crossing each
other.

Proof. The proof of the lemma is again by contradiction: If there are three edges crossing
each other, then one can build a new cycle shorter than C. By Observation 1, we can
suppose that the vertices of V are points ordered clockwise on a unit circle, so crossing
edges are crossing segments.

Assume that C contains three edges (i1, j1), (i2, j2) and (i3, j3) crossing each other and
that C = (i1, j1), Pj1,i2 , (i2, j2), Pj2,i3 , (i3, j3), Pj3,i1 , where Pi,j is the path in C connecting i
to j. By Lemma 2, i1, i2 and i3 must have the same color, say red. Thus, j1, j2 and j3 are
blue. There are 8 possible cyclic orders of placing these six colored points i1, j1, i2, j2, i3, j3
such that edges (i1, j1), (i2, j2), (i3, j3) cross each other. By symmetry, they can be reduced
to study the following 4 clockwise orders: (1) i1, i3, i2, j1, j3, j2, (2) i1, i2, i3, j1, j2, j3, (3)
i1, j3, i2, j1, i3, j2 and (4) i1, i2, j3, j1, j2, i3. See Figure 4. In all cases, by applying the
quadrangle inequality two or three times, we can obtain a Hamiltonian alternating cycle
shorter than C, which is a contradiction.

In case (1) (see the top left part of Figure 4), we first replace edges (i2, j2) and (i3, j3)
by (i2, j3) and (i3, j2). Then, we replace (i1, j1) and (i3, j2) by (i1, j2) and (i3, j1) to ob-
tain a new cycle C ′ = (i1, j2), Pj2,i3(i3, j1), Pj1,i2 , (i2, j3), Pj3,i1 . By Lemma 1, C ′ is shorter
than C or has fewer crossings. In the figure, the dotted segments are the original edges
(i1, j1), (i2, j2) and (i3, j3), the dashed segment represents the intermediate edge appearing
after the first application of the quadrangle inequality, and the thick segments are the final
edges belonging to the new cycle. Paths Pj1,i2 , Pj2,i3 and Pj3,i1 are illustrated as curves.
Further, numbers 1 and 2 represent the intersection point of the segments to which we
apply the quadrangle inequality and the order in which we do it.

The constructions for the rest of the cases are summarized in Figure 4. In all cases, the
meaning of the dotted segments, dashed segments and numbers is the same as explained
previously in case (1).
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Figure 4: Constructing a new cycle with less length than C when three edges cross: (1) cyclic order
i1, i3, i2, j1, j3, j2, (2) cyclic order i1, i2, i3, j1, j2, j3, (3) cyclic order i1, j3, i2, j1, i3, j2 and (4) cyclic order
i1, i2, j3, j1, j2, i3.

4.2. The BTSP for a set of points in convex position

Let S be a set of 2n points in the plane in convex position. Aligned points are allowed,
so the points of S are vertices of the convex hull of S or are on the boundary of the convex
hull of S. Assuming that the distance between two arbitrary points is the Euclidean
distance, given a partition of S = R ∪ B into a set R of n red points and a set B of n
blue points, we look for the shortest Hamiltonian alternating cycle visiting the points of
S. Figure 1 shows the shortest Hamiltonian alternating cycles for those sets of points in
convex position.

Suppose that (p1, p2, . . . , p2n) is the clockwise order of the points of S. Given four
points pi1 < pi2 < pi3 < pi4 , clearly d(pi1 , pi4) + d(pi2 , pi3) ≤ d(pi1 , pi3) + d(pi2 , pi4) because
the Euclidean distance satisfies the quadrangle inequality. Thus, we have the following
corollary.

Corollary 2. Let S = R ∪ B be a bicolored convex point set in the plane such that |R| =
|B| = n. Then, a shortest Hamiltonian alternating cycle visiting the points of S can be
computed in O(n6) time.
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Figure 5: The shortest Hamiltonian alternating cycle q1, q2, q3, q9, q7, q5, q4, q6, q8, q11, q10, q12 for the simple
polygon q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12.

4.3. The BTSP for a simple polygon

Let S be a set of points in the plane (not necessarily in general position) and let Q be
a simple polygon whose vertices are the points of S. In a simple polygon Q, the distance
between any two vertices of Q is the geodesic distance, that is, the (Euclidean) length of
the shortest path inside Q between the two vertices. This path is called the geodesic path
or edge between the two vertices. Given a partition S = R∪B of the vertices of Q into red
and blue vertices, with |R| = |B|, in the BTSP for Q we look for the shortest alternating
cycle C inside Q visiting its vertices. See Figure 5. Note that, in C, a red vertex p is visited
after a blue vertex q, but, since the path from q to p is a geodesic path, it can contain some
red and blue points not necessarily visited in an alternating way. For example, in Figure 5,
the geodesic path from q6 to q8, the path q6, q7, q8, passes through consecutive blue points.

Given four vertices q1, q2, q3, q4, ordered clockwise on Q, it is well-known by the Jordan
curve theorem that the geodesic edges q1q3 and q2q4 must necessarily cross and can even
share some segments, but geodesic edges q1q2 and q3q4 (or q1q4 and q2q3) can share some
segments but they never properly cross. As a consequence, it is also well-known that the
geodesic distance satisfies the quadrangle inequality, that is, if d(qi, qj) is the geodesic
distance between vertices qi and qj, then, d(q1, q4) + d(q2, q3) ≤ d(q1, q3) + d(q2, q4). This
last result follows from the fact that the geodesic edges q1q3 and q2q4 cross at a (first) point
p. Then, one can define a path c1 from q1 to q4, consisting of the part of q1q3 from q1 to
p and the part of q2q4 from p to q4, and a path c2 from q2 to q3, consisting of the part of
q2q4 from q2 to p and the part of q1q3 from p to q3. Obviously, the sum of the lengths of
c1 and c2 coincides with d(q1, q3) + d(q2, q4), so d(q1, q4) + d(q2, q3) ≤ d(q1, q3) + d(q2, q4) by
the minimality of the geodesic edges q1q4 and q2q3.

Therefore, since the complete graph G = (S,E) satisfies the quadrangle property with
the geodesic distance and the clockwise order of the vertices of Q, the following result
holds.

Corollary 3. Let S = R∪B be a bicolored point set such that |R| = |B| = n and the points
of S are the vertices of a simple polygon Q. Then, a shortest Hamiltonian alternating cycle
inside Q can be computed in O(n6) time.
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Given an n-vertex simple polygon Q, we remark that the geodesic distance between
two arbitrary vertices can be computed in O(log n) time, after a linear preprocessing (see
for example [22] for details). Thus, all the geodesic distances can be precomputed in
O(n2 log n) time. We also remark that a similar result is obtained when n red points and
n blue points are placed on the boundary of a k-vertex simple polygon Q and one looks
for the shortest Hamiltonian alternating cycle C inside Q visiting the 2n points: C can be
computed in O(n6 + n2 log k + k) time.

4.4. The BTSP for a circular graph

Let G = (V,E) be an undirected graph, with V = {1, 2, . . . , n} as its set of n vertices.
Assuming that n is followed by 1, G is called a circular graph if E consists of the n edges
(i, i+ 1) = (i+ 1, i), for i = 1, . . . , n. For every edge (i, i+ 1), a non-negative real number
li, the length of the edge, is given. As in the case of the simple polygon, we define the
geodesic edge (i, j) between vertex i and vertex j (or shortest path from i to j in G), as
path i, i+ 1, . . . , j if

∑k=j−1
k=i lk ≤ ∑k=i−1

k=j lk, and path j, j+ 1, . . . , i otherwise. The geodesic
distance between i and j is the sum of lengths of the edges in (i, j). Note that geodesic
edges (i, j) and (j, i) coincide, so the geodesic distances between i and j and between j
and i also coincide. For a partition of the set of vertices V = R ∪B (the red and the blue
vertices), with |R| = |B| = n, in the BTSP for a circular graph we look for the shortest
Hamiltonian alternating cycle.

All the geodesic distances can be precomputed easily in O(n2) time and it is quite clear
that the geodesic distance for a circular graph also satisfies the quadrangle inequality,
that is, d(i1, i4) + d(i2, i3) ≤ d(i1, i3) + d(i2, i4) for any four vertices i1, i2, i3, i4 such that
i1 < i2 < i3 < i4 cyclically. Therefore, the complete graph K consisting of the vertices of G
satisfies the quadrangle property with respect to the cyclic order (1, 2, . . . , n) on its vertices
and the distance between two vertices of K defined as the geodesic distance between these
two vertices in G. By Lemmas 2 and 4, and Theorems 1 and 3, the following result holds.

Corollary 4. Let G = (V,E) be a bicolored circular graph such that V = R ∪ B and
|R| = |B| = n. If C is an optimum Hamiltonian alternating cycle in G then:

i) C cannot contain a five-point star.
ii) If the directed geodesic edges (i, j) and (i′, j′) of C cross, then i, i′ have the same

color.
iii) C cannot contain three geodesic edges crossing each other.
Moreover, a shortest Hamiltonian alternating cycle in G can be computed in O(n6)

time.

5. An O(n2) algorithm for the BTSP in a circular graph

In this section we provide an O(n2) algorithm to solve the BTSP for a circular graph.
The algorithm is based on proving that, for any optimum cycle C, there is an edge of the
circular graph visited at most once in C. Then, the linear algorithm for the BTSP on a
line graph [31] can be used as a subroutine. The fact that an edge of the circular graph is
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visited at most once in optimum cycles is a consequence of the fact that, by Corollary 4,
such cycles do not contain either a five-point star or three edges crossing each other.

The next lemma gives a specific way in which the different indices are visited in a
g-pyramidal permutation.

Lemma 5. Let π = (i1, i2, . . . , in) be a g-pyramidal permutation and let A and B be the
intervals (i1, i2) and (i2, i1), respectively. Suppose that i1 and i2 are not consecutive indices
and that, after i2, an index in A is visited in π. Then, A and B can be divided into k
disjoint intervals A1 = [j1, i2), A2 = [j2, j1), . . . , Ak = (i1, jk−1) and B1 = (i2, j

′
1], B2 =

(j′1, j
′
2], . . . , Bk = (jk−1, i1), with i1 < jk−1 < jk−2 < . . . < j1 < i2 and i2 < j′1 < j′2 < . . . <

j′k−1 < i1, such that π visits the intervals in the order i1, i2, A1, B1, A2, B2, . . . , Ak, Bk.
Moreover, if the index visited in π before i1 belongs to A, then Bk = ∅.

Proof. After i2, the indices in A and B are visited alternately in π before reaching i1: after
i2, first a set A1 ⊆ A, followed by a set B1 ⊆ B, then a set A2 ⊂ A and so on until i1 is
reached either from an index in Ak (and then Bk = ∅) or from an index in Bk. Suppose
that Bk 6= ∅ (if Bk = ∅ the reasoning is analogous). Let Ii = A1 ∪ A2 ∪ . . . ∪ Ai and let si
be the index in Ii such that the interval (i1, si) does not contain any index of Ii. Let us
prove that, for i = 1, . . . , k, the set Ii consists of all the indices in the interval [si, i2). Let
bi be the first index of Bi visited in π from i2. If an index i3 in the interval [si, i2) is not
visited in π between i2 and bi, then the five indices i1 < si < i3 < i2 < bi are visited in π in
the order (i1, i2, . . . , si, . . . , bi, . . . , i3, . . .), contradicting that π is g-pyramidal. Therefore,
A1 = [j1, i2), A2 = [j2, j1), . . . , Ak = (i1, jk−1), with i1 < jk−1 < jk−2 < . . . < j1 < i2. The
same reasoning applies to show that B1 = (i2, j

′
1], B2 = (j′1, j

′
2], . . . , Bk = (jk−1, i1), with

i2 < j′1 < j′2 < . . . < j′k−1 < i1.

Using this result, Lemma 6 shows that, for an optimum Hamiltonian alternating cycle
C, there is an edge of the circular graph which is visited at most once in C.

Lemma 6. Let G = (V,E) be a bicolored circular graph such that V = R ∪ B and |R| =
|B| = n. Let C be an optimum Hamiltonian alternating cycle in G. Then, there is an edge
of G visited at most once in C.

Proof. Recall that a geodesic edge is the shortest path in G between the endpoints of the
geodesic edge. Thus, if l ≤ l′ < m′ ≤ m cyclically and l′ and m′ belong to the shortest
path from l to m, then the geodesic edge (l′,m′) is contained in the geodesic edge (l,m),
that is, the shortest path from l′ to m′ is included in the shortest path from l to m.

Suppose first that C = (1, 2, . . . , n), that is, the vertices of G are visited consecutively.
If the geodesic edge (i, i + 1) is the path i, i + 1, for all i, then every edge of G is visited
exactly once in C and the theorem holds. On the other hand, if a geodesic edge (i, i+ 1) is
the path i, i− 1, . . . , i+ 1, then any other geodesic edge (j, j + 1) of C must coincide with
the path j, j + 1. Hence, the edge (i, i+ 1) is not used in C and again the theorem holds.

Therefore, we may assume that C = (i1, i2, . . .), with i1 and i2 being non-adjacent
vertices of G. In addition, without loss of generality, we can suppose that the geodesic
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Figure 6: Edge (ji−1, ji) is visited exactly once in C and by the geodesic edge (i1, i2). The geodesic edges
are illustrated as curves.

edge (i1, i2) is the path i1, i1 + 1, . . . , i2− 1, i2 and that (i1, i2) is maximal in the sense that
the path i1, i1 + 1, . . . , i2 − 1, i2 is not contained in any other geodesic edge of C.

Let A and B be the sets of vertices {i1+1, i1+2, . . . , i2−1} and {i2+1, i2+2, . . . , i1−1},
respectively. By Corollary 4, C is g-pyramidal. Then, by Lemma 5, the sets A and B can be
decomposed into disjoint sets of consecutive vertices A1 = {j1, . . . , i2−1}, A2 = {j2, . . . , j1−
1}, . . . , Ak = {i1+1, . . . , jk−1−1} and B1 = {i2+1, . . . , j′1}, B2 = {j′1+1, . . . , j′2}, . . . , Bk =
{j′k−1+1, . . . , i1−1}, with i1 < jk−1 < jk−2 < . . . < j1 < i2 and i2 < j′1 < j′2 < . . . < j′k−1 <
i1, such that C visits the sets in the order i1, i2, A1, B1, A2, B2, . . . , Ak, Bk. See Figure 6.
We can suppose that Bk 6= ∅. If Bk = ∅ the reasoning is analogous.

Let (li,mi) be the geodesic edge connecting Ai to Bi, for i = 1, . . . , k, and let (m′i, l
′
i) be

the geodesic edge connecting Bi to Ai+1, for i = 1, . . . , k−1. By Corollary 4, three geodesic
edges cannot cross each other. Since (l1,m1) and (m′1, l

′
1) cross (i1, i2), then (l1,m1) and

(m′1, l
′
1) cannot cross, so the cyclic order of i1, i2, l1,m1,m

′
1, l
′
1 must be i1, l

′
1, l1, i2,m1,m

′
1.

For the same reason, as (m′1, l
′
1) and (l2,m2) cannot cross, the cyclic order of i1, i2,m

′
1, l
′
1, l2,m2

must be i1, l2, l
′
1, i2,m

′
1,m2. Iterating this reasoning for the rest of the geodesic edges

(li,mi) and (m′i, l
′
i), necessarily the cyclic order of the endpoints of these geodesic edges

is i1, lk, l
′
k−1, lk−1, . . . , l

′
1, l1, i2,m1,m

′
1,m2,m

′
2, . . . ,mk. Now, consider the following ordered

sequence of geodesic edges: SE = (lk,mk), (m′k−1, l
′
k−1), (lk−1,mk−1), . . . , (m′1, l

′
1), (l1,m1).

To show that an edge of G is visited at most once in C, we study several cases depending
on the way in which i1 and i2 belong to the geodesic edges of SE.

Suppose first that there exist two consecutive geodesic edges in SE, (m′i, l
′
i), (li,mi),

such that i1 belongs to (m′i, l
′
i) and i2 belongs to (li,mi), that is, (m′i, l

′
i) is the path

m′i,m
′
i + 1, . . . , l′i − 1, l′i and (li,mi) is the path li, li + 1, . . . ,mi − 1,mi. Let us see that
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edge e = (ji − 1, ji) is visited at most once in C. As the cyclic order of the endpoints of
the geodesic edges of SE is i1, lk, l

′
k−1, lk−1, . . . , l

′
1, l1, i2,m1,m

′
1,m2,m

′
2, . . . ,mk, then any

geodesic edge appearing in SE before (m′i, l
′
i) is contained in (m′i, l

′
i) and any geodesic edge

appearing in SE after (li,mi) is contained in (li,mi). As a consequence, edge e does not
belong to any geodesic edge of SE. By assumption, the geodesic edge (i1, i2) is the path
(i1, i1 + 1, . . . , i2 − 1, i2), so e belongs to the geodesic edge (i1, i2). But then, a geodesic
edge e′ of C connecting two vertices in B cannot contain e because, otherwise, the geodesic
edge (i1, i2) would be contained in e′, contradicting the maximality of (i1, i2). Moreover,
a geodesic edge e′ of C connecting two vertices in Aj, for all j, neither can contain e
because, otherwise, i1, i1 + 1, . . . , i2 − 1, i2 would not be the shortest path between i1 and
i2. Therefore, edge (ji− 1, ji) is visited exactly once in C and by the geodesic edge (i1, i2).

An identical analysis can be done if there are two consecutive geodesic edges in SE,
(li,mi) and (m′i−1, l

′
i−1), such that i1 belongs to (li,mi) and i2 to (m′i−1, l

′
i−1): edge (j′i−1, j

′
i−1+

1) is visited at most once. Finally, edge (i2, i2 + 1) is visited at most once if i1 belongs to
all the geodesic edges of SE and edge (i1− 1, i1) is visited at most once if i2 belongs to all
the geodesic edges of SE.

Using this lemma, the O(n2) algorithm to solve the BTSP for a circular graph is as
follows. In [31], the authors give a linear algorithm to solve the BTSP on a line graph
LG. Their algorithm is based on giving a lower bound on the number of times that any
Hamiltonian alternating cycle must visit every edge of the line graph, and then on building
a cycle reaching that lower bound. If (1, 2), (2, 3), . . . , (n − 1, n) is the set of edges of the
line graph LG, the same approach works to find in linear time the shortest Hamiltonian
alternating path from vertex 1 to vertex n.

According to Lemma 6, there is an edge e = (i, i + 1) of G visited at most once in an
optimum Hamiltonian alternating cycle C. If e is not visited in C, then, by removing e,
the BTSP for a circular graph is equivalent to the BTSP for a line graph, which can be
solved in linear time.

Assume then that e is visited once in C and suppose without loss of generality that the
geodesic edge (j1, j2) of C is the only one containing edge e, and that j1 is blue and j2 is
red. From G, we can define a line graph LG as follows: We add two new vertices i′ and
i′ + 1 to G, color vertex i′ in red and vertex i′ + 1 in blue, remove the edge (i, i+ 1) with
length li, and add the edges (i, i′) and (i′ + 1, i+ 1), with length 0 each.

In linear time, we can find the shortest Hamiltonian alternating path P1 = i′, i1, . . . , in, i
′+

1 in LG, from vertex i′ to vertex i′ + 1. From P1, by removing the paths i′, i, . . . , i1
from i′ to i1 and in, in − 1, . . . , i + 1, i′ + 1 from in to i′ + 1, and by adding the path
i1, i1 + 1, . . . , i, i + 1, . . . , in in G from i1 to in, we obtain a Hamiltonian alternating cycle
C1 = (i1, . . . , in) in G. Note that li is the difference between the lengths of C1 and P1.

Now, observe that by removing the geodesic edge (j1, j2) from C and by adding the
paths j1, j1 + 1, . . . , i, i′ from j1 to i′ and j2, j2 − 1, . . . , i + 1, i′ + 1 from j2 to i′ + 1, we
obtain a Hamiltonian alternating path P in LG from i′ to i′ + 1. Again, the difference
between the lengths of C and P is li, so necessarily the length of C1 must coincide with
the length of C.
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Therefore, to solve the BTSP for a circular graph knowing the edge e = (i, i+ 1) which
is visited at most once in C, we only need to solve three instances of the BTSP for a line
graph. If e is not used in C, we solve the BTSP for a line graph after removing edge e. If e
is visited exactly once in C, we solve two instances of the BTSP for a line graph, coloring
i′ in red and i′ + 1 in blue or the opposite, because we do not know a priori the colors of
the endpoints of the geodesic edge of C using e. As there are n possible choices for e, the
following theorem holds.

Theorem 4. The BTSP for a circular graph can be solved in O(n2) time.

6. Concluding remarks

In this paper, we have shown that, if the quadrangle property holds in the BTSP for
a complete bipartite graph, any optimum cycle must be g-pyramidal. We have also shown
how to compute in O(n6) time the shortest g-pyramidal permutation, given a distance
matrix, hence this special case of the BTSP can be solved in O(n6) time. Moreover, using
some additional properties, it is possible to give an O(n2) algorithm to solve the BTSP in
a circular graph.

There are several interesting questions for future work, related to this research. A
first question is whether an algorithm to find the shortest g-pyramidal cycle whose time
complexity is less than O(n6) exists. If this is the case, any problem whose solution is
g-pyramidal could be solved with such complexity. A second question is whether Lemma
4 (or any other additional property) allows one to design a better algorithm to solve the
BTSP for a complete graph satisfying the quadrangle property, as we did for the case
of circular graphs. A third question is to find new problems admitting optimal solutions
which are g-pyramidal, so they could be solved in O(n6) time. In particular, the complexity
of the swapping problem and the k-DTSP for a circular graph are unknown, and perhaps
the ideas given in this paper could be useful for throwing light on this question.
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