46,764 research outputs found

    Approximating Average Parameters of Graphs

    Get PDF
    Inspired by Feige (36th STOC, 2004), we initiate a study of sublinear randomized algorithms for approximating average parameters of a graph. Specifically, we consider the average degree of a graph and the average distance between pairs of vertices in a graph. Since our focus is on sublinear algorithms, these algorithms access the input graph via queries to an adequate oracle. We consider two types of queries. The first type is standard neighborhood queries (i.e., what is the i\u27th neighbor of vertex v?), whereas the second type are queries regarding the quantities that we need to find the average of (i.e., what is the degree of vertex v? and what is the distance between u and v, respectively). Loosely speaking, our results indicate a difference between the two problems: For approximating the average degree, the standard neighbor queries suffice and in fact are preferable to degree queries. In contrast, for approximating average distances, the standard neighbor queries are of little help whereas distance queries are crucial

    Representation Learning on Graphs: A Reinforcement Learning Application

    Full text link
    In this work, we study value function approximation in reinforcement learning (RL) problems with high dimensional state or action spaces via a generalized version of representation policy iteration (RPI). We consider the limitations of proto-value functions (PVFs) at accurately approximating the value function in low dimensions and we highlight the importance of features learning for an improved low-dimensional value function approximation. Then, we adopt different representation learning algorithm on graphs to learn the basis functions that best represent the value function. We empirically show that node2vec, an algorithm for scalable feature learning in networks, and the Variational Graph Auto-Encoder constantly outperform the commonly used smooth proto-value functions in low-dimensional feature space

    Approximating Subdense Instances of Covering Problems

    Full text link
    We study approximability of subdense instances of various covering problems on graphs, defined as instances in which the minimum or average degree is Omega(n/psi(n)) for some function psi(n)=omega(1) of the instance size. We design new approximation algorithms as well as new polynomial time approximation schemes (PTASs) for those problems and establish first approximation hardness results for them. Interestingly, in some cases we were able to prove optimality of the underlying approximation ratios, under usual complexity-theoretic assumptions. Our results for the Vertex Cover problem depend on an improved recursive sampling method which could be of independent interest

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176
    • …
    corecore