
Approximating Average Parameters of Graphs
In Memory of Shimon Even (1935–2004)

Oded Goldreich∗

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

Dana Ron†

Department of EE–Systems

Tel-Aviv University

Ramat-Aviv, Israel.

danar@eng.tau.ac.il

August 1, 2005

Abstract

Inspired by Feige (36th STOC, 2004), we initiate a study of sublinear randomized algorithms
for approximating average parameters of a graph. Specifically, we consider the average degree
of a graph and the average distance between pairs of vertices in a graph. Since our focus is on
sublinear algorithms, these algorithms access the input graph via queries to an adequate oracle.

We consider two types of queries. The first type is standard neighborhood queries (i.e., what
is the ith neighbor of vertex v?), whereas the second type are queries regarding the quantities
that we need to find the average of (i.e., what is the degree of vertex v? and what is the distance
between u and v?, respectively).

Loosely speaking, our results indicate a difference between the two problems: For approxi-
mating the average degree, the standard neighbor queries suffice and in fact are preferable to
degree queries. In contrast, for approximating average distances, the standard neighbor queries
are of little help whereas distance queries are crucial.

Note: Part of this work (i.e., the material in Section 3.1) was posted on ECCC (as TR04-013).

Keywords: Sublinear-time algorithms, randomized approximation algorithms

∗Part of this work was work done while being a fellow of the Radcliffe Institute for Advanced Study, Harvard
University. The research was supported in part by the Israel Internet Association (ISOC-IL).

†Part of this work was done while being a fellow of the Radcliffe Institute for Advanced Study, Harvard University.
The research was supported in part by the Israel Internet Association (ISOC-IL).

1

Dagstuhl Seminar Proceedings 05291
Sublinear Algorithms
http://drops.dagstuhl.de/opus/volltexte/2006/553

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In a recent work [7], Feige investigated the problem of estimating the average degree of a graph
when given direct access to the list of degrees (of individual vertices). He observed two interesting
(“phase transition”) phenomena. Firstly, in contrast to the problem of estimating the average value

of an arbitrary function d : [n]→ [n−1] (where [n]
def
= {1, ..., n}), sublinear-time approximations can

be obtained when the function d represents the degree sequence of a simple graph over n vertices.1

Secondly, whereas a (2+ε)-approximation can be obtained in O(
√

n)-time, for every constant ε > 0,
a better approximation factor cannot be achieved in sublinear time (i.e., a (2−o(1))-approximation
requires time Ω(n)).

Feige’s work views the problem of estimating the average degree of a graph as a special case of
estimating the average value of an arbitrary function d : [n]→ [n−1]. Our perspective is different:
We view Feige’s work as a sublinear algorithm for a natural graph theoretic problem, which brings
up two (open-ended) questions:

1. What type of operations (i.e., direct access queries to the input graph) are natural to consider
for such an algorithm?

2. What other natural “average graph parameters” (i.e., averages of vertex-based quantities) are
of interest?

In the following two subsections we briefly address these questions, and afterwards we present our
results that refer to various combinations of “answers” to these questions.

1.1 Types of direct access queries

When viewing the problem of estimating the average degree in a graph as a special case of the
problem of estimating the average value of an arbitrary function d : [n]→ [n−1], it seems natural
to restrict the algorithm to “degree queries”. However, from the point of view of sublinear-time
algorithms for graphs (cf., e.g., [9, 10, 13, 2, 12]), it is natural to allow also other types of queries
to the graph. The most natural queries are neighbor queries; that is, queries of the form (v, i) that
are answered by the ith neighbor of v (or by a special symbol that indicates that v has less than i
neighbors). In case of relatively dense graphs, it is also natural to consider adjacency queries (i.e.,
are vertices u and v adjacent in the graph). Thus, we consider two basic types of queries:

1. Standard neighbor (and adjacency) queries, which are natural in any algorithmic problem
regarding graphs.

2. Problem-specific queries that associate values to vertices (or to sets of vertices), where our
aim is to compute the average of these values. For example, in the case of approximating the
average degree we consider degree queries.

We comment that degree queries can be emulated by a logarithmic number of neighbor queries
(i.e., via binary search).

1 Here we also assume that there are no isolated vertices in the graph (i.e., each vertex has degree at least 1).

1

1.2 Other natural averaging problems

In addition to the average degree of a graph, we consider two problems regarding distances in a
graph. The first is approximating the all-pairs average distance in the graph, and the second is
approximating the average distance of a fixed vertex to all the graph vertices. We refer to these
problem by the terms all-pairs and single-source, respectively.

In addition to the standard neighbor queries, for the average distance approximation problems,
we will also consider distance queries. That is, in both cases, we will consider queries of the form
(u, v) that are answered by the distance between u and v in the graph.

1.3 Our results

Our results indicate that for one problem (i.e., approximating the average degree) augmenting the
problem-specific oracle with neighbor queries helps, whereas for the other problems (i.e., approxi-
mating average distances) such an augmentation does not help. Moreover, as noted above, degree
queries are not of great help (for approximating the average degree), whereas distance queries are
crucial to approximating average distances in sublinear-time. In both cases, our algorithms do not
use adjacency queries (and our lower bounds show that these queries do not help).

1.3.1 Approximating the Average Degree of a Graph

We present a sublinear algorithm that obtains an arbitrarily good approximation of the average
degree, while making only neighbor queries. Specifically, for every constant ε > 0, we obtain a
(1 + ε)-approximation to the average degree of a graph G = (V,E) in Õ(

√
|V |)-time, where the

O-notation hides a polynomial dependence on ε.

Our result should be contrasted with Feige’s results [7]: Recall that Feige showed that, when
using only degree queries, a (2−o(1))-approximation (of the average degree of G = (V,E)) requires
time Ω(|V |). Thus, neighbor queries are essential for sublinear-time algorithms that provide a
(2− o(1))-approximation. On the other hand, he showed that (for every constant ε > 0) a (2 + ε)-
approximation can be obtained in O(

√
|V |)-time (using only degree queries).

The running-time of our algorithm is essentially optimal: any constant-factor approximation of
the average degree requires making Ω(

√
|V |) queries of some graph G = (V,E), even when allowed

both neighbor and degree queries. Furthermore, a (1+ε)-approximation requires Ω(
√
|V |/ε) queries.

The above represents a simplified account of the results. We recall that Feige [7] has provides
his algorithm with a lower bound on the average degree of the input graph. This auxiliary input
allows also to handle graphs that have isolated vertices (rather than assuming that each vertex
has degree at least 1) and yields an improvement whenever the lower bound is better (than the
obvious value of 1). Specifically, given a lower bound of ` (on the average degree), the complexity of
Feige’s algorithm is related to

√
|V |/` rather than to

√
|V |. The same improvement holds also for

our algorithms. Furthermore, we observe that our algorithms (as well as Feige’s) can be adapted
to work without this lower bound. Specifically, the complexity of the modified algorithm, which
obtains no a priori information about the average degree, is related to (|V |/d)1/2, where d denotes
the actual average degree (which is, of course, not given to the algorithm). Thus, we get:

2

Theorem 1.1 There exists an algorithm that makes only neighbor queries to the input graph and
satisfies the following condition. On input G = (V,E) and ε ∈ (0, 1), with probability at least 2/3,
the algorithm halts within Õ((|V |/d)1/2 ·poly(1/ε)) steps and outputs a value in [d, (1+ε) ·d], where
d = 2|E|/|V |.

Again, this running-time is essentially optimal in the sense that a (1 + ε)-approximation requires
Ω((|V |/(εd))1/2) queries, for every value of |V | and d ∈ [2, o(|V |)] and ε ∈ [ω(|V |−1/4), o(|V |/d)].

1.3.2 Approximating Average Distances

We present a sublinear algorithm that obtains an arbitrarily good approximation of the average
(all-pairs and single-source) distances, while making (only) distance queries. Specifically, we obtain
a (1+ ε)-approximation of the (relevant) average distance of a graph G = (V,E) in time O(

√
|V |) ·

poly(1/ε). Actually, as in the case of approximating the average degree, we obtained an improved
performance as a function of the actual average distance.

Theorem 1.2 There exists an algorithm that makes only distance queries to the input graph and
satisfies the following condition. On input G = (V,E) and ε ∈ (0, 1), with probability at least 2/3,
the algorithm halts within O((|V |/dG)1/2 · poly(1/ε)) steps and outputs a value in [dG, (1 + ε) · dG],
where dG is the average of the all-pairs distances in G. A corresponding algorithm exists for the
average distances to a given vertex s ∈ V .

This running time is essentially optimal: any constant-factor approximation of the average distance
in G = (V,E) requires making Ω((|V |/dG)1/2) queries, even when allowed both distance and neigh-
bor queries. Furthermore, a (1 + ε)-approximation requires Ω((|V |/(εdG))1/2) queries, for every
value of |V | and dG = o(|V |) and ε = ω(|V |−1).

We show that distance queries are essential for sublinear-time algorithms that provide any
constant-factor approximation of the average distances. Specifically, when using only neighbor
queries, a k-approximation of the average distance in G = (V,E) requires making Ω(|E|/k2 log k)
queries. In the case of the single-source problem, this means that (when using only neighbor queries)
a constant-factor approximation is as hard to obtain as the exact value. In the case of the all-pairs
problem, by emulating distance queries in a straightforward manner, we can obtain a (1 + ε)-
approximation in time O(

√
|V | · |E|) · poly(1/ε) when using only neighbor queries. For moderately

sparse graphs, this yields an improvement over the straightforward approach of computing (or
approximating) all pair-distances and computing the average of these |V |2 values. Details follow.

If |E| � |V |7/2 then our O(
√
|V | · |E|) · poly(1/ε)-time (1 + ε)-approximation is definitely

preferable to computing the average of |V |2 approximate values regardless of how the latter are
obtained. On the other hand, if |E| > |V |emm−0.5, where emm ∈ [2, 2.376) is the matrix multiplication
exponent (cf. [3]), then one can find all pair-distances as well as their average faster than the
time it takes our algorithm approximates the latter (cf. [8, 14]). In the intermediate range2 (of
|V |3/2 � |E| � |V |emm−0.5, where emm − 0.5 < 1.876), our algorithm should be compared against
a host of all-pairs approximate distance algorithms and the preference may depend on additional
parameters (e.g., the approximation sought and a priori bounds on the average all-pairs distance).
Specific algorithms that may be relevant include those of [5, 4]. (The interested reader is referred
to Zwick’s survey [15] of algorithms for finding exact and approximate distances in graphs.)

2Indeed, the intermediate range exists provided emm > 2 (or rather than emm = 2 is not known).

3

1.4 Related Work

In addition to the work of Feige [7], we are aware of two other related results on estimating average
parameters of graphs. Indyk [11] considers the problem of estimating the average distance in a
distance metric over n points. In particular, such a metric is defined by the shortest distances
in a connected weighted graph. Indyk gives a (1 + ε)-approximation algorithm that runs in time
O(n/ε7/2). This algorithm is linear in the number of points, but sublinear in the size of the input,
which is an n× n matrix.

Bădoiu et. al. [1] consider the problem of computing the optimal cost of the metric facility
location problem in sublinear time. It follows from their analysis that it is possible to obtain a
(1+ ε)-approximation of the average degree of a graph in time Õ(n/ε2) in the following model: The
algorithm does not have access to degree queries nor to neighbor queries, but rather is only allowed
to traverse the incidence list of a vertex according to a fixed order. By definition, in this model it
takes Θ(d(v)) time to compute the degree d(v) of a vertex v. This algorithm is sublinear in the
size of the input when the graph is not sparse.

2 Preliminaries

Throughout the work, all algorithms are probabilistic and have direct access to their input. That is,
such algorithms are actually probabilistic oracle machines that have access to one or more oracles.
These oracles will typically represent a graph in a way to be understood from the context. For
example, we consider oracles that answer queries such as neighbor queries and degree queries.
The explicit input to these algorithms will consist of relevant parameters that always include the
number of vertices in the graph, which in turn determines the vertex set (i.e., for simplicity, we

assume that all n-vertex graphs have [n]
def
= {1, ..., n} as their vertex set). As the basic definition

of approximation algorithms, we use the following standard one.

Definition 2.1 For ε > 0, a (1+ε)-approximation of a quantity q : {0, 1}∗ → (0,∞) is an algorithm
that on input x, with probability at least 2/3, outputs a value in the interval [q(x), (1 + ε) · q(x)].

The error probability can be decreased to 2−k by invoking the basic algorithm for O(k) times and
outputting the median value. At times, when ε � 1, for simplicity of presentation we allow the
algorithm to output a value in the interval [(1 − ε) · q(x), (1 + ε) · q(x)]. (Indeed, the output can
be “normalized” by division (by 1 − ε).) Our algorithms will all be uniform in the sense that we
actually present an algorithm that takes ε as a parameter.

When stating lower bounds that depend on several parameters, we mean that these bounds hold
uniformly for all choices of these parameters (or all choices satisfying explicitly stated conditions).
That is, when we say that a (1 + ε)-approximation of q requires Ω(f(n, ε, p)) queries, we means
that there exists a constant c > 0 such for any possible value of the parameters n, ε and p and
any (1 + ε)-approximation algorithm A of the quantity q, there exists an n-vertex graph G with
q(G) = p such that A makes at least c · f(n, ε, p) queries. (Since all our lower bounds refer to the
query complexity of algorithms, linear speed-up phenomena do not arise.)

Throughout this work, we assume that the neighbors of each vertex are listed in arbitrary
order. This reasonable assumption facilitates the proofs of the lower bound, which can be modified
to handle also the case where the said lists are sorted.

4

3 Approximating the Average Degree of a Graph

Let G = (V,E) be a simple graph (i.e., having no parallel edges and no self-loops), where |V | = n,

and let d(v) denote the degree of vertex v∈V in G. We denote by d
def
= 1

n

∑
v∈V d(v) the average

degree in G. An algorithm for estimating d is allowed to perform two types of queries: degree
queries and neighbor queries. Namely, for any vertex v of its choice the algorithm can obtain d(v),
and for any v and j ≤ d(v), the algorithm can obtain the j th neighbor of v. Actually, when degree
queries are allowed then it suffices to allow the algorithm to obtain a random neighbor of any
desired (i.e., queried) vertex.

We start by describing an algorithm that is provided with an a priori known lower bound ` on
the value of d. We later eliminate the need for this a priori knowledge. We close this section with
a proof that our algorithm has almost optimal running-time (when referring to its dependence on
the size of the graph).

3.1 The Algorithm

Our algorithm is inspired by the work of Kaufman et. al. [12], and more specifically, by a subroutine
presented in [12] for sampling edges “almost uniformly”. The basic idea of our algorithm is to sample
vertices and to put them into “buckets” according to their degrees such that in bucket Bi we have
vertices with degree between (1 + β)i−1 and (1 + β)i (where β = ε/c for some constant c > 1). If S
is the sample, then we denote by Si the subset of sampled vertices that belong to Bi. We will focus
on the sets Si that are sufficiently large, because we want |Si|/|S| to be a good approximation of
|Bi|/n. Let us denote the set of the corresponding i’s by L.

Suppose we take (1/|S|)
∑

i∈L |Si|(1+β)i−1 as our estimate for the average degree of the graph.
Note that the expected value of |Si|/|S| is |Bi|/n and that (1/n)

∑
i |Bi|(1+β)i−1 ≤ d. Hence, with

high probability, for a sufficiently large sample S, we would be overestimating the average degree
by a factor of at most (1 + ε). The source of the overestimation is only the error in approximating
|Bi|/n by |Si|/|S|. However, we may underestimate d by a factor of roughly 2. The reason is
that the edges between large buckets and small buckets are only counted once, rather than twice,
and the edges with both endpoints in small buckets are not counted at all. Yes, the “threshold of
largeness” is set such that the number of vertices in small buckets is so small that we can discard
all possible edges that have both end-points in small buckets. (This calls for taking a sample of size
Õ(
√

n), setting the threshold at poly(log n), and concluding that the number of vertices in small
buckets is at most

√
n.)

So far we have described a procedure that approximates d up to a factor of 2 + ε while using
only degree queries (i.e., we obtain Feige’s result [7] using a different analysis). To get beyond
the “factor 2 barrier” we observe that the main source of approximation error is due to edges
with one endpoint in a large bucket and the other endpoint in a small bucket. These edges were
counted once (in our estimate for d), whereas they need to be counted twice. Thus, we merely
need to estimate the number of such edges, which can be done by estimating, for each large bucket,
the fraction of edges that are incident to vertices in the bucket and whose other endpoint is in a
small bucket. This estimate cannot be obtained using degree queries, but it can be obtained using
“random neighbor” queries. Specifically, for every vertex v in a large Si, we select uniformly a
neighbor of v and check whether this neighbor resides in a small bucket. Adding our estimate of
the number of edges between large buckets and small buckets to (n/|S|) ∑

i∈L |Si|(1 + β)i−1 yields

5

a (1 + ε)-approximation of 2|E| (and hence a (1 + ε)-approximation of d = 2|E|/n).

We are now ready to present and analyze the algorithm in full detail. For t = dlog(1+β) ne+ 1,
we define a partition of V into the following buckets:

Bi =
{

v : d(v) ∈
(
(1 + β)i−1, (1 + β)i

]}
, for i = 0, 1, . . . , t− 1 . (1)

The algorithm refers to an a priori lower bound ` on d, and the reader may think of ` = 1 as
in the foregoing motivating discussion. We will consider Bi to be large (and put i ∈ L) if the

sample S contains at least Ω(
√

ε
t ·

|S|√
n/`

) representatives of Bi. For a large Bi, we let α̃i denote our

approximation of the fractions of edges incident at Bi that have their other endpoint in a small
bucket.

Average Degree Approximation Algorithm

1. Uniformly and independently select K = Õ
(√

n/` · poly(1/ε)
)

vertices from V , and let S

denote the (multi-)set of selected vertices.

2. For i = 0, 1, . . . , dlog(1+β) ne, let Si = S ∩Bi.

3. Let L =
{

i : |Si|
|S| ≥ 1

t ·
√

ε
6 · `

n

}
, where t

def
= dlog(1+β) ne+ 1.

4. For every i ∈ L and every v ∈ Si, select at random a neighbor u of v, and let χ(v) = 1 if
u ∈ ⋃

j /∈L Bj, and χ(v) = 0 otherwise. For every i ∈ L, let α̃i = |{v∈Si : χ(v)=1}|/|Si|.

5. Output 1
K ·

∑
i∈L(1 + α̃i) · |Si| · (1 + β)i.

Lemma 3.1 For every ε < 1/2 and β ≤ ε/8, the above algorithm outputs a value d̃ such that, with
probability at least 2/3, it holds that (1− ε) · d < d̃ < (1 + ε) · d.

Proof: By definition of the buckets (i.e., Bi’s), it holds that

d ≤ 1

n

t∑

i=1

|Bi| · (1 + β)i ≤ (1 + β) · d . (2)

Let ρ
def
= (1/t)

√
(ε/8) · `/n be a density threshold. By our choice of the sample size K we have that

with high probability,

∀i s.t. |Bi| ≥ ρ · n :
(
1− ε

4

)
· |Bi|

n
≤ |Si|

K
≤

(
1 +

ε

4

)
· |Bi|

n
(3)

and

∀i s.t. |Bi| < ρ · n :
|Si|
K

<
1

t

√
(ε/6) · `/n (4)

In particular, in the latter case we have that i /∈ L. Thus, with high probability, for every i ∈ L
we have that |Si|/K is close to its expected value. Let us assume from this point on that this is in
fact the case.

6

For V1, V2 ⊆ V , we denote by E(V1, V2) the set of all ordered pairs of adjacent vertices with the
first vertex in V1 and the second vertex with V2; that is,

E(V1, V2)
def
= {(v1, v2) : v1∈V1 & v2∈V2 & {v1, v2}∈E} . (5)

For each i, let Ei
def
= E(Bi, V); that is, Ei is the set of all ordered pairs of adjacent vertices such

that the first vertex is in Bi. Thus, the Ei’s are disjoint and each edge contributes two pairs to the
set

⋃
i Ei. Also,

|Bi| · (1 + β)i−1 < |Ei| ≤ |Bi| · (1 + β)i (6)

Let U
def
= {v∈Bi : i /∈L} denote the set of vertices that reside in buckets that are deemed small by

the sample S. Then, with high probability,

|U | ≤
∣∣∣
{

v∈Bi : |Bi|≤(1/t) ·
√

(ε/4) · n · `
}∣∣∣ ≤

√
(ε/4) · n · ` (7)

because if |Bi|
n ≥ (1/t) ·

√
(ε/4) · `/n then |Si|

|S| ≥ (1/t) ·
√

(ε/6) · `/n. Now, let E ′
i

def
= E(Bi, U) ⊆ Ei

and αi = |E′
i|/|Ei| ≤ 1. That is, for i ∈ L, the set E ′

i contains only pairs of adjacent vertices with
a single endpoint in V \ U , and the corresponding edge is counted only once in the sum

∑
i∈L |Ei|

(and similarly in
∑

i∈L |E′
i|). Thus:

∑

i∈L

|E′
i| = |E(V \ U,U)| and

∑

i∈L

|Ei \ E′
i| = 2|E(V \ U, V \ U)| (8)

By our choice of the sample size, K, we have that with high probability, for every i ∈ L such
that αi ≥ ε/8, (

1− ε

4

)
· αi ≤ α̃i ≤

(
1 +

ε

4

)
· αi (9)

and if αi < ε/8 then α̃i < ε/4.

Thus, with high probability, all the estimates that the algorithm has are quite good, in which
case the following holds:

d̃ =
1

K
·
∑

i∈L

(1 + α̃i) · |Si| · (1 + β)i (10)

≤ 1

n
·
∑

i∈L

(1 + α̃i) ·
(
1 +

ε

4

)
· |Bi| · (1 + β)i (11)

≤ 1 + ε/4

n
·
(∑

i∈L

αi≥ε/8

(1 + (1 + ε/4) · αi) · (1 + β) · |Ei|

+
∑

i∈L

αi<ε/8

(1 + ε/4) · (1 + β) · |Ei|
)

(12)

<
(1 + ε/4)2 · (1 + β)

n
·
∑

i∈L

(1 + αi) · |Ei| (13)

7

where Eq. (11) uses our assumption that |Si|/K is close to its expected value for every i ∈ L, and
Eq. (12) uses Eq. (6) and our assumption on the estimates α̃i. Similarly,

d̃ ≥ (1− ε/4)2

n
·
∑

i∈L

(1 + αi) · |Ei| (14)

Using β ≤ ε/8 and |E ′
i| = αi · |Ei|, we have

d̃ =
(1± (ε/4))2 · (1± ε/8)

n
·
∑

i∈L

(1 + αi) · |Ei| (15)

=
1± (3ε/4)

n
·
(∑

i∈L

|Ei \E′
i|+

∑

i∈L

|E′
i|+

∑

i∈L

αi · |Ei|
)

(16)

=
1± (3ε/4)

n
·
(∑

i∈L

|Ei \E′
i|+ 2

∑

i∈L

|E′
i|
)

(17)

Using Eq. (8) it follows that

d̃ =
1± (3ε/4)

n
·
(
2|E(V \ U, V \ U)|+ 2|E(V \ U,U)|

)
(18)

=
1± (3ε/4)

n
·
(
2|E(V, V)| − 2|E(U,U)|

)
(19)

=
1± (3ε/4)

n
·
(
dn± |U |2

)
(20)

Recalling (cf. Eq. (7)) that |U |2 ≤ (ε/4) · `n (and ` ≤ d), we get d̃ = (1 ± ε) · d. The lemma
follows.

Working without a degree lower bound. For sake of simplicity, we start by modifying the
algorithm so that when given a valid lower bound `, it does not output an overestimation of the
average degree (except with small probability). This is done by simply decreasing the output by
a factor of 1 + ε. Thus, the output, d̃, of the algorithm satisfies Pr[(1 − 2ε)d < d̃ < d] ≥ 2/3).
Furthermore, by O(1) + log log n repetitions, we may reduce the probability of error to below
1/(6 log n).

An interesting feature of our algorithm is that, with high probability, it does not output an
overestimate of d even in case it is invoked with a parameter ` that is higher than the average
degree d (i.e., is not a valid lower bound). To verify this feature, observe that the only place in the
analysis where we rely on the assumption ` ≤ d is in bounding the underestimation error (i.e., when
bounding the total number of edges with both endpoints in U). (We comment that also Feige’s
algorithm [7] has this feature, but for different reasons.)

This feature allows us to present a version of our algorithm that does not require an a priori
lower bound on the average degree. Specifically, let our algorithm be denoted by A. Then, starting
with ` = n/2, we may proceed in at most 2 log2 n iterations as follows. We invoke A with the current
value of `, and let d̃ denote the output obtained. If d̃ ≥ ` then we halt and output d̃, otherwise
we proceed to the next iteration while setting ` ← `/2. In case all iterations were completed and
still d̃ < ` in the last iteration (i.e., d̃ < 1/2n) then the graph must have no edges and we halt
outputting d̃ = 0.

8

Let `j = n/2j be the parameter used in the j-th invocation of algorithm A, and let d̃j denote
the corresponding output. Then, with probability at least 2/3, for every iteration j that took place,
it holds that d̃j ≤ d and if d ≥ `j then d̃j ≥ (1 − 2ε)d. In this case, assuming the graph contains
any edges at all,3 the algorithm will stop after at most log(n/d) + O(1) iterations, and will output
a value that is in the interval [(1 − 2ε)d, d]. Thus, the overall running-time of the algorithm is

poly(ε−1 log n) ·
√

n/d. Theorem 1.1 follows.

3.2 A Lower Bound

We observe that any constant approximation algorithm must perform Ω(
√

n) queries. A more
general bound, which depends also on the approximation parameter ε > 0 and on the actual degree
of the graph, is stated next.

Theorem 3.2 For any n, d ∈ [2, o(n)] and ε ∈ (ω(1/dn), o(n/d)), a (1 + ε)-approximation of the
average degree of G = (V,E) requires Ω((n/(εd))1/2) queries, where d = 2|E|/n. This holds even if
the algorithm is allowed neighbor and adjacency queries as well as degree queries.

Proof: For parameters n and k ∈ (d, o(n)), we consider (randomly labeled versions of) two
graphs. The first graph, denoted Gn,k, consists of a d-regular subgraph over n− k vertices and a
d-regular subgraph over the remaining k vertices (so that the two subgraphs are not connected).
This graph has average degree d. The second graph, denoted G′

n,k, consists of a d-regular subgraph
over n− k vertices, and a clique over the remaining k vertices. The graph G′

n,k has average degree

((n− k) · d + k(k− 1))/n = (1− o(1)) · (d + k2/n). In particular, if we let k = (εdn)1/2, then we get
an average degree of approximately (1 + ε)d. However, in order to distinguish between (random
labelings of) the two graphs, an algorithm must hit one of the k vertices in the small component,
and hence Ω(n/k) = Ω((n/(εd))1/2) queries are necessary.

On non-simple graphs. Recall that we required upfront that the graph be simple (i.e., have no
parallel edges or self-loops). We note that if parallel edges (or weighted edges) are allowed, then
estimating the average degree of a graph requires Ω(n) queries (even when both degree queries and
neighbor queries are allowed). Consider the following two graphs (or rather families of graphs):
one graph consists of a cycle over all vertices (with a single edge between each pair of consecutive
vertices) and the other consists of a cycle over n−2 vertices, and a pair of vertices with c ·n parallel
edges between them. The average degree in the first graph is 2 whereas the average degree in the
second graph is roughly 2 + c. But distinguishing between the two (families of) graphs requires
Ω(n) queries. Thus, there is a gap between the query complexity of estimating the average degree
of simple graphs and non-simple graphs.

3In case the graph contains no edges, the algorithm will complete all iterations with no output (because d = 0 < `j

whereas edj = 0 for each j ≤ 2 log n), and thus output the correct value (i.e., 0) at the last step. In this case, the overall
running-time of the algorithm is poly(ε−1 log n) · n. Clearly one can modify the algorithm so that its complexity is
never more that O(n) (i.e., the complexity of computing the exact average degree), by stopping once `j goes below
poly(ε−1 log n)/n for an appropriate polynomial in log n and ε−1.

9

4 Approximating the Average Distance from a Single Source

Let G = (V,E) be a simple undirected connected graph, where n = |V | and m = |E|. For some
given (“designated”) vertex s ∈ V we are interested in the average distance of s to the graph’s
vertices. That is, suppose we have access to an oracle that for any vertex v ∈ V provides us with
the distance, denoted distG(s, v), between s and v (in G). We would like to estimate the average
distance, denoted dG(s), of vertices in the graph from s; that is, dG(s) = 1

n

∑
v∈V distG(s, v).

We first consider algorithms that make only distance queries. We present an algorithm (in
Sec. 4.1) and a roughly matching lower bound (in Sec. 4.2). We later discuss the case in which the
algorithm is also allowed neighbor queries (resp., only allowed neighbor queries); see Sec. 4.3 (resp.,
Sec. 4.4).

4.1 An Algorithm

We start with the basic version of our result.

Theorem 4.1 There exists an algorithm that, for any given ε ∈ (0, 1), makes O
(√

n/ε2
)

distance
queries and provides a (1 + ε)-approximation of the average distance of a given vertex to all graph
vertices.

The algorithm merely selects uniformly and independently q = Θ
(√

n/ε2
)

vertices v1, ..., vq , per-
forms the distance queries distG(s, vi) for i = 1, ..., q, and outputs the average of the answers
received. We show that, with high probability, the algorithm’s output is an (1 + ε)-approximation
of dG.

Let dmax be the maximum distance of any vertex v from s. For each value i = 0, . . . , dmax

let pi denote the fraction of vertices at distance i from s. Let η be a random variable that takes
value i with probability pi, and let η1, . . . , ηq be independent random variables that are distributed
the same as η. By definition, Exp[η] = dG(s), and the output of our algorithm is distributed as
1
q

∑q
j=1 ηj . Hence, we are interested in upper bounding the probability that 1

q

∑q
j=1 ηj deviates

from its expected value, dG(s), by more than ε · dG(s). By Chebyshev’s inequality

Pr

∣∣∣∣∣∣
1

q

q∑

j=1

ηj − Exp[η]

∣∣∣∣∣∣
≥ ε · Exp[η]

 ≤ Var[η]

q · ε2 · Exp[η]2
(21)

Since q = Θ
(√

n/ε2
)
, it suffices to show that the ratio between Var[η] = Exp[η2] − Exp[η]2 and

Exp[η]2 is O(
√

n). This follows from the next lemma, by using ` = 1/2.

Lemma 4.2 For η and pi as defined above, Exp[η2] ≤
√

2n/` · Exp[η]2, for any ` ≤ Exp[η].

Since all distances are integers, and all are non-negative with the exception of dist(s, s) = 0, we
know that Exp[η] ≥ n−1

n ≥ 1/2, which means that ` = 1/2 can always be used. Thus, Theorem 4.1
follows from Lemma 4.2 (when specialized to the obvious case of ` = 1/2), but we will use the more
general statement of the lemma later.

10

Proof: By the definitions of η and dmax,

Exp[η2] =

dmax∑

i=0

pi · i2 ≤ dmax · Exp[η] (22)

We next observe that by definition of dmax, for every i ≤ dmax we have that pi ≥ 1/n, and so

Exp[η] =

dmax∑

i=0

pi · i >
d2
max

2n
(23)

By multiplying the bound Exp[η] ≥ ` (provided in the lemma’s hypothesis) by Eq. (23), we get

that Exp[η]2 ≥ `·d2
max

2n and so √
` · dmax√

2n
≤ Exp[η] (24)

Finally, we multiply Equations (22) and (24) and get that

Exp[η2] ·
√

` · dmax√
2n

≤ dmax · Exp[η]2 (25)

and the lemma follows.

An improved algorithm. As in Section 3, a better algorithm can be obtained, provided we
are given an a priori lower bound on the average distance. Denoting such a lower bound by `,
Lemma 4.2 implies that using a sample of size q = Θ(ε−2 ·

√
n/`) will do. Actually, as in Section 3,

we do not actually need this lower bound, and the algorithm can function without it and perform
as well. That is:

Theorem 4.3 There exists an algorithm that, on input a graph G = (V,E), a vertex s and param-
eter ε ∈ (0, 1), makes O(ε−2(n/dG(s))1/2) distance queries and provides a (1 + ε)-approximation of
the average distance of vertices in G to s (i.e., dG(s)).

Proof: The algorithm proceeds in (1+log n) iterations. In the ith iteration, the algorithm behaves

as if `i
def
= n/2i is a lower bound on d. The algorithm uses the estimate obtained in the ith iteration

if and only if it exceeds `i by a factor of eight (otherwise it continue to the next iteration). (In the
last iteration, the estimate is used unconditionally.)

We first note that, with probability at least 3/4, the algorithm does not produce output in

any of the first t
def
= blog(n/d)c iterations (i.e., in any iteration i such that d < `i). The reason

being that in order to halt in such an iteration i ≤ t it must hold that the estimate is at least
8`i = (8`i/d) · d > 8d, and by Markov inequality this may happen with probability at most
d/8`i. Thus, the probability of the bad event is upperbounded by

∑t
i=1 d/8`i, which in turn equals

∑blog(n/d)c
i=1 (2id/8n) < 1/4. Finally, we observe that if this bad event does not occur then we are

exactly in the situation analyzed above (i.e., the generalization of Theorem 4.1 to an arbitrary valid
lower bound `, which follows by Lemma 4.2).

11

Reflection. Underlying the proof of Theorem 4.3 is a general phenomenon that can be applied to
any randomized approximation algorithm, and is beneficial provided that the algorithm performs
better when given a valid lower bound on the quantity it needs to approximate. We are unaware
of a prior use of this reasoning.

4.2 A Lower Bound

In this subsection we prove the essential optimality of the algorithm presented in the previous
subsection.

Theorem 4.4 For any n, d ∈ (2, o(n)) and ε ∈ (ω(1/dn), o(n/d)), any algorithm that performs
only distance queries and provides a (1 + ε)-approximation of the average distance of vertices in
G = (V,E) from s ∈ V , where dG(s) = d, must ask Ω((n/(εd))1/2) queries.

Proof: For parameters n and k ∈ (ω(1), o(n)), consider a (randomly labeled version of a) graph,
denoted Gn,k, consisting of a star of n−k vertices centered at s and a path of length k also starting
at vertex s. (The reader may think of such a graph as a broom; see Figure 1.)

. . .
s v1 v2 vk−1 vk

...

w1

w2

wn−k−1

Figure 1: An illustration of the “broom-like” graph Gn,k.

By definition, the average distance of Gn,k from s is

dGn,k
(s) =

(n− k − 1) · 1 +
∑k

i=1 i

n
= 1 +

k2 − k − 2

2n
= 1 + (1− o(1)) · k2

2n
(26)

Given d ∈ (2, o(n)) and ε ∈ (1/
√

dn, o(n/d)), we set k so that 1 + (k2/2n) = d (i.e., k ≈
(2(d − 1)n)1/2) and k′ ≈ (2((1 + ε) · d− 1)n)1/2. Thus, dGn,k

(s) = (1 − o(1)) · d and dGn,k′
(s) =

(1 + ε) · d. First, we observe that any (1 + ε)-approximation algorithm must make Ω(n/k ′) =
Ω((n/(1 + ε)d)1/2) queries in order to hit a vertex on the path (which is a necessary condition for
distinguishing Gn,k from Gn,k′). This establishes the claim for (say) ε > 1/10. For the case of
ε ≤ 0.1, we note that in order to distinguish Gn,k from Gn,k′ the algorithm must hit one of the
k′ − k vertices that are at distance greater than k from s in Gn,k′ , which yields the lower bound of
Ω(n/(k′ − k)) = Ω((n/εd)1/2).

4.3 Adding Access to Neighbor and Adjacency Queries

A natural question is whether providing access to neighbor and adjacency queries, in addition to
distance queries, can improve the query complexity of the average degree estimation problem. We
answer this question negatively.

12

Theorem 4.5 Let d ∈ (2, o(n)) and ε ∈ (ω(1/dn), o(n/d)), and consider algorithms that are al-
lowed distance queries, neighbor queries, adjacency queries and degree queries. Any such algorithm
that provides a (1 + ε)-approximation of the average distance of vertices in G = (V,E) from s ∈ V
where dG(s) = d, must perform Ω((n/εd)1/2) queries.

For k < k′ < n, consider the “broom-like” graphs Gn,k and Gn,k′ defined in the proof of Theorem 4.5.
Note that for an algorithm that is allowed neighbor and degree queries it is no longer true that
the algorithm cannot distinguish (randomly labeled versions of) these graphs in o(n/k ′) queries.
In particular, a single degree query at vertex s distinguishes the two graphs (because the degree
of s is n− k − 1 and n− k′ − 1, respectively). Thus, a modification of the construction is due for
proving Theorem 4.5. The proof follows.

Proof: We consider two cases depending on the value of ε. In case ε ≥ 1/4, we consider a

.

.

.

. . . .
.
.

w1

w2

wn−k−1

s v1 v2 v`−1 v`

vk

v`+2

v`+1

Figure 2: An illustration of the “two-edged broom” graph Gn,k,`.

“two-edged broom” graph Gn,k,` with a “stick” of length ` connecting a star of size n− k (centered
at s) and a star of size k − ` (on the other side); see Figure 2. That is, as in Gn,k, the designated
vertex s is the center of a star of n − k vertices, with leaves denoted w1, . . . , wn−k−1, and is the
origin of a path of length `, where the vertices on the path are v1, . . . , v`. In addition, v` is also the
center of a star, where the neighbors of v` are v`+1, . . . vk (as well as v`−1). Observe that for any
particular choice of n and k = o(n), the degree of s in Gn,k and in Gn,k,` is the same. Moreover, the
only difference between the two graphs is that in Gn,k,` the path starting at s does not have length
k but rather ends with a star after ` steps. It follows that (randomly labeled versions of) Gn,k and
Gn,k,` can only be distinguished by hitting a vertex that is not in the big ((n− k)-vertex) star. In
“hitting” a vertex we mean that the vertex either corresponds to a queried vertex (in any type of
query), or is the answer to a neighbor query. Thus, Ω(n/k) queries are required to distinguish the
aforementioned graphs.

Recall that dGn,k
(s) = 1 + (1− o(1)) · (k2/2n). By definition of Gn,k,`,

dGn,k,`
(s) =

n− k − 1 + `(`+1)
2 + (k − `)(` + 1)

n
(27)

=
n + k`− (`2/2)− `/2− 2

n
= 1 + (1− o(1)) · `(2k − `)

2n
(28)

Thus, given d ∈ (2, o(n)) and ε > 1/d
2
, we shall set k and ` such that dGn,k

(s) = (1 + ε)d while

dGn,k,`
(s) < d. In particular, we shall take k ≈

√
1 + ε · (2(d − 1)n)1/2, and ` ≈ (

√
1 + ε − √ε) ·

13

(2(d − 1)n)1/2. Under this setting (and ε ≥ 1/4), we have n/k = Ω((n/εd)1/2), and the theorem
follows for ε ≥ 1/4.

...

..
.

...

wn−t`−1

w2

w1

vt,1

vt,2

vt,`

...

v1,`

v1,2

v1,1

vt−1,`

vt−1,2

vt−1,1

s

...

..
.

wn−t`−1

w2

w1

v1,`

v1,2

v1,1

vt−1,1

.
.
.

vt,2

vt,1

vt,2`−1

s

Figure 3: The “multi-stick broom” graph G′
n,k,`.

We now turn to the case of ε < 1/4. In this case we use a different graph G′
n,t,` that consists of

a star of size n− t` centered at s and t paths, each of length `, emanating from s. That is, vertex s
is the center of a star of n− t` vertices, with leaves denoted w1, . . . , wn−t`−1, and t paths such that
the ith path is denoted vi,1, . . . , vi,` and vi,1 is connected to s. (See Figure 3.) We also consider the
graph G′′

n,t,` that is identical to G′
n,t,` except that the t−1st path has length 1 and the last path has

length 2`− 1. The average distance from s in G′
n,t,` (resp., G′′

n,t,`) is approximately 1 + (t · `2/2n)

(resp., 1 + (t · `2/2n) + (`2/n)):

dG′
n,t,`

(s) =
n− t`− 1

n
+

t · (1 + o(1)) · `2

2n
≈ 1 +

t · `2

2n
(29)

dG′′
n,t,`

(s) ≥ dG′
n,k,`

(s) +
(1 + o(1)) · (2`− 1)2

2n
− 2 · (1 + o(1)) · `2

2n
≈ dG′

n,k,`
(s) +

`2

n
(30)

Given d ∈ (2, o(n)) and ε ∈ (ω(1/dn), 1/4), we set the parameters such that t`2 ≈ 2(d − 1)n and

` =
√

εdn (i.e., t ≈ 2(d − 1)/(εd)). Thus, the ratio between the averages distances to s in the
two graphs is 1 + ε. In order to distinguish these graphs, the algorithm must hit a vertex on one
of the last two paths, which requires making Ω(n/`) queries, establishing the Ω((n/εd)1/2) lower
bound.

4.4 Using Only Neighbor and Adjacency Queries

If we allow only neighbor and adjacency queries, then the problem becomes significantly harder.

Theorem 4.6 Let k > 1 be a given approximation factor. Every algorithm that is allowed only
neighbor, adjacency and degree queries must perform Ω(m/(k log k)) queries in order to obtain a
k-approximation of dG(s) in graphs G with m edges, provided m ∈ (Ω(n), O(n2/k log k)).

14

Proof: Here too we consider two distributions over graphs, denoted D1 and D2. In both
distributions, the vertices are partitioned into t = Θ(k log k) equal-size subsets V1, . . . , Vt. Each Vj

is partitioned into two subsets, denoted Lj and Rj, where |Lj| = α · n/t and |Rj | = (1 − α) · n/t
for α ∈ (0, 0.5] that satisfies |Lj | · |Rj | = α(1 − α) · (n/t)2 = m/t. Such α exists provided that
(n/t)2/4 ≥ m/t (i.e., m ≤ n2/4t). The vertex s belongs to L1. The edges of the graphs in the
support of the two distributions are defined as follows: For each j = 1, . . . , t, there is an almost
complete bipartite graph between Lj and Rj; the only exception are two, randomly selected, missing

edges. When j = 1, these edges are restricted not to be incident to s. The end-points of these
missing edges are used to connect between vertices that belong to the different Vj’s.

.
.

.
.

.

.

Lt

Rt

L1

R1

L2

R2

L3

R3

s

Figure 4: An illustration for graphs in the support of D1.

Specifically, let the endpoints of these missing edges be denoted vj,1, vj,2 ∈ Lj and wj,1, wj,2 ∈ Rj .
We refer to these vertices as terminal vertices, and to the edges we put between them as connecting

edges. In D1 we add edges between the terminal vertices so as to form a cycle structure among
the Vj ’s. Namely, for each j = 1, . . . , t − 1, we put the edges (vj,1, wj,1) and (vj,2, wj,2), and we
put the edges (vt,1, w1,1), and (vt,2, w1,2). That is, the connecting edges are placed according to
the structure of a 4-regular (non-simple) t-vertex graph that forms a “double cycle” (i.e., a cycle
in which each edge appears with multiplicity 2). In D1 we connect the terminal vertices according
to some 4-regular expander graph with vertex set [t]. That is, if (i, j) is an edge of the expander
then we connect one of the (four) terminal vertices of Vi to one of the terminal vertices of Vj (while
using each terminal vertex exactly once). Thus, each graph in the support of each distribution is
determined by the choice of the missing edges within each Vj (which in turn determine the terminal
vertices of the graph as well as all connecting edges). For an illustration, see Figure 4.

By definition of D1, for every graph G in the support of D1, it holds that dG(s) = Θ(t). On
the other hand, since in D2 the edges between the terminal vertices are determined by a 4-regular
(t-vertex) expander graph, dG(s) = Θ(log t) holds for every graph G in the support of D2. Thus,
the ratio between the average distances is Ω(t/ log t) ≥ k, where equality holds for a suitable choice
of t = Ω(k log k).

Consider the execution of an algorithm that can perform only neighbor and adjacency queries.
As long as the algorithm does not perform a query concerning a connecting edge, the distribution
on the answers it gets is exactly the same for both distributions on graphs. Recall that there are

15

(m/t)− 2 non-connecting edges that are incident to vertices in each Vj and two connecting edges.
Thus, Ω(m/t) queries are required to distinguish between the two (graph) distributions. (Note that
degree queries are of no help towards distinguishing the two distributions, whereas a single distance
query (explicitly prohibited here) allows to distinguish these two distributions.) The lower bound
follows by our choice of t = O(k log k).

5 Approximating All-Pairs Average Distance

In continuation to Section 4, we now turn to the question of estimating the average distance between
all pairs of vertices. That is, for any given graph G over n vertices, let dG = 1

n2

∑
u,v∈V dist(u, v)

denote the average distance between pairs of vertices in the graph.

5.1 An Algorithm

We show that the result for estimating the average distance to a single source, which was stated in
Theorem 4.3, can be extended to estimating the average distance between all pairs of vertices.

Theorem 5.1 There exists an algorithm that, on input a graph G = (V,E) an a parameter ε ∈
(0, 1), makes O((n/dG)1/2/ε2) distance queries and provides a (1 + ε)-approximation of dG.

Proof: We focus on the basic version that is analogous to the one stated in Theorem 4.1, and
comment that its modification is analogous to the proof of Theorem 4.3. Here, the basic algorithm
takes a sample of Θ(

√
n/ε2) uniformly selected pairs of vertices, and outputs the average over the

distances between these pairs. Below we modify the proof of Theorem 4.1 to show that the foregoing
basic algorithm provides a (1 + ε)-approximation of dG.

Let dmax be redefined here to be the maximum distance between any pair of vertices, let pi

be the fraction of pairs of vertices (among all n2) that are at distance i and let η be distributed
according to the pi’s (i.e., Pr[η = i] = pi). Below we show that Exp[η2] = O(

√
n ·Exp[η]2), and the

correctness of the basic algorithm follows (as in the proof of Theorem 4.1). In fact, analogously to
Lemma 4.2, for any lower bound ` of dG, we prove that

Exp[η2] = O(
√

n/` · Exp[η]2) . (31)

Needless to say, the proof is analogous to the proof of Lemma 4.2. The main challenge is to establish
Exp[η] = Ω(d2

max/n), and the rest follows as before.4 Consider any pair of vertices v0 and vd that

are at distance d
def
= dmax from each other, and let v1, . . . , vd−1 be the vertices on the shortest path

between them. The main observation here is that, for every 1 ≤ i ≤ d/3, and every vertex w in the
graph, it holds that dist(vi, w) + dist(w, vd−i) ≥ d/3 (because dist(vi, vd−i) = d− 2i ≥ d/3 whereas
dist(vi, w) + dist(w, vd−i) ≥ dist(vi, vd−i)). Hence, here we have that

Exp[η] ≥
∑d/3

i=1

∑
w∈[n](dist(vi, w) + dist(w, vd−i))

n2
≥ (d/3) · n · (d/3)

n2
= Ω

(
d2
max

n

)
(32)

as claimed.
4 Eq. (22) hold as before by the definitions of dmax and η. Once we establish Exp[η] = Ω(d2

max/n), which is
analogous to Equation (23), we derive Equation (31) in the same manner that Lemma 4.2 was established.

16

5.2 Lower Bounds

It is not hard to verify that lower bounds analogous to the ones stated in Theorems 4.5 and 4.6 hold
also for approximating the average of all-pairs distances (i.e., dG). That is, for a graph G = (V,E),
any (1 + ε)-approximation algorithm that uses distance queries must make Ω((n/εdG)1/2) queries,
whereas any constant factor approximation algorithm that uses only standard queries must make
Ω(|E|) such queries. The bound is proved using the same graphs that were used in the proofs of
Theorems 4.5 and 4.6. We merely need to verify that the average all-pair distances of these graphs
essentially maintain the relative behavior of the single-source counterparts. This is most obvious
for the graphs used in the proof of Theorem 4.6. As for the graphs used in the proof of Theorem 4.5,
we note that

dGn,k
>

n− k − 1

n
· (1 + dGn,k

(s)) +
k

n
· k
2
≈ 2 +

k2

n
= 2 · dGn,k

(s) (33)

dGn,k,`
≤ n− k

n
· (1 + dGn,k,`

(s)) + (1 + o(1)) · (2k − `)`

2n
≈ 2 · dGn,k,`

(s) (34)

dG′
n,t,`

=
n− t`

n
· (1 + dG′

n,k,`
(s)) +

t`

n
· `2 + o(1) ≈ 2 · dG′

n,k,`
(s) (35)

dG′′
n,t,`

≥ dG′
n,k,`

+ 2 · `
2

n
≈ 2 · dG′′

n,k,`
(s) (36)

6 Extensions

The results of Sections 4 and 5 extend to the directed versions of these averaging problems: For the
all-pairs problem, we require that the directed graph be strongly connected (so that all distances
are defined). For the case of the single-source problem, it suffices to require that all vertices are
reachable from the source.

References

[1] M. Bădoiu, A. Czumaj, P. Indyk, and C. Sohler. Facility Location in Sublinear Time. In Proc. of
the 32nd ICALP, 2005.

[2] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the Minimum Spanning Tree Weight
in Sublinear Time. In Proc. of the 28th ICALP, pages 190–200, 2001.

[3] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progression. Journal
of Symbolic Computation, Vol. 9, pages 251–280, 1990.

[4] D. Dor, S. Halperin, and U. Zwick. All Pairs Almost Shortest Paths. SIAM Journal on
Computing , Vol. 29, pages 1740–1759, 2000.

[5] M. L. Elkin. Computing Almost Shortest Paths. Technical Report MCS01–03, Faculty of
Mathematics and Computer Science, Weizmann Institute of Science, 2001.

[6] S. Even. Graph Algorithms. Computer Science Press, 1979.

17

[7] U. Feige. On sums of independent random variables with unbounded variance, and estimating
the average degree in a graph. In Proc. of the 36th STOC, pages 594–603, 2004.

[8] Z. Galil and O. Margalit. All Pairs Shortest Paths for Graphs with Small Integer Length Edges.
Information and Computation, Vol. 54, pages = 243–254, 1997.

[9] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[10] O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs. Com-
binatorica, Vol. 19 (3), pages 335–373, 1999.

[11] P. Indyk. Sublinear Time Algorithms for Metric Space Problems. in Proc. of the 31st STOC,
pages = 428–434, 1999.

[12] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in General
Graphs. In Proc. of RANDOM’03, pages 341–353, 2003.

[13] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algorithms,
Vol. 20 (2), pages 165–183, 2002.

[14] R. Siedel. On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs. Journal
of Computer and System Sciences, Vol. 51, pages 400–403, 1995.

[15] U. Zwick. Exact and approximate distances in graphs - a survey. Proceedings of the 9th Annual
European Symposium on Algorithms (ESA), pages 33–48, 2001.

18

