208 research outputs found

    Dynamic Physiological Partitioning on a Shared-nothing Database Cluster

    Full text link
    Traditional DBMS servers are usually over-provisioned for most of their daily workloads and, because they do not show good-enough energy proportionality, waste a lot of energy while underutilized. A cluster of small (wimpy) servers, where its size can be dynamically adjusted to the current workload, offers better energy characteristics for these workloads. Yet, data migration, necessary to balance utilization among the nodes, is a non-trivial and time-consuming task that may consume the energy saved. For this reason, a sophisticated and easy to adjust partitioning scheme fostering dynamic reorganization is needed. In this paper, we adapt a technique originally created for SMP systems, called physiological partitioning, to distribute data among nodes, that allows to easily repartition data without interrupting transactions. We dynamically partition DB tables based on the nodes' utilization and given energy constraints and compare our approach with physical partitioning and logical partitioning methods. To quantify possible energy saving and its conceivable drawback on query runtimes, we evaluate our implementation on an experimental cluster and compare the results w.r.t. performance and energy consumption. Depending on the workload, we can substantially save energy without sacrificing too much performance

    Effizienz in Cluster-Datenbanksystemen - Dynamische und ArbeitslastberĂĽcksichtigende Skalierung und Allokation

    Get PDF
    Database systems have been vital in all forms of data processing for a long time. In recent years, the amount of processed data has been growing dramatically, even in small projects. Nevertheless, database management systems tend to be static in terms of size and performance which makes scaling a difficult and expensive task. Because of performance and especially cost advantages more and more installed systems have a shared nothing cluster architecture. Due to the massive parallelism of the hardware programming paradigms from high performance computing are translated into data processing. Database research struggles to keep up with this trend. A key feature of traditional database systems is to provide transparent access to the stored data. This introduces data dependencies and increases system complexity and inter process communication. Therefore, many developers are exchanging this feature for a better scalability. However, explicitly managing the data distribution and data flow requires a deep understanding of the distributed system and reduces the possibilities for automatic and autonomic optimization. In this thesis we present an approach for database system scaling and allocation that features good scalability although it keeps the data distribution transparent. The first part of this thesis analyzes the challenges and opportunities for self-scaling database management systems in cluster environments. Scalability is a major concern of Internet based applications. Access peaks that overload the application are a financial risk. Therefore, systems are usually configured to be able to process peaks at any given moment. As a result, server systems often have a very low utilization. In distributed systems the efficiency can be increased by adapting the number of nodes to the current workload. We propose a processing model and an architecture that allows efficient self-scaling of cluster database systems. In the second part we consider different allocation approaches. To increase the efficiency we present a workload-aware, query-centric model. The approach is formalized; optimal and heuristic algorithms are presented. The algorithms optimize the data distribution for local query execution and balance the workload according to the query history. We present different query classification schemes for different forms of partitioning. The approach is evaluated for OLTP and OLAP style workloads. It is shown that variants of the approach scale well for both fields of application. The third part of the thesis considers benchmarks for large, adaptive systems. First, we present a data generator for cloud-sized applications. Due to its architecture the data generator can easily be extended and configured. A key feature is the high degree of parallelism that makes linear speedup for arbitrary numbers of nodes possible. To simulate systems with user interaction, we have analyzed a productive online e-learning management system. Based on our findings, we present a model for workload generation that considers the temporal dependency of user interaction.Datenbanksysteme sind seit langem die Grundlage für alle Arten von Informationsverarbeitung. In den letzten Jahren ist das Datenaufkommen selbst in kleinen Projekten dramatisch angestiegen. Dennoch sind viele Datenbanksysteme statisch in Bezug auf ihre Kapazität und Verarbeitungsgeschwindigkeit was die Skalierung aufwendig und teuer macht. Aufgrund der guten Geschwindigkeit und vor allem aus Kostengründen haben immer mehr Systeme eine Shared-Nothing-Architektur, bestehen also aus unabhängigen, lose gekoppelten Rechnerknoten. Da dieses Konstruktionsprinzip einen sehr hohen Grad an Parallelität aufweist, werden zunehmend Programmierparadigmen aus dem klassischen Hochleistungsrechen für die Informationsverarbeitung eingesetzt. Dieser Trend stellt die Datenbankforschung vor große Herausforderungen. Eine der grundlegenden Eigenschaften traditioneller Datenbanksysteme ist der transparente Zugriff zu den gespeicherten Daten, der es dem Nutzer erlaubt unabhängig von der internen Organisation auf die Daten zuzugreifen. Die resultierende Unabhängigkeit führt zu Abhängigkeiten in den Daten und erhöht die Komplexität der Systeme und der Kommunikation zwischen einzelnen Prozessen. Daher wird Transparenz von vielen Entwicklern für eine bessere Skalierbarkeit geopfert. Diese Entscheidung führt dazu, dass der die Datenorganisation und der Datenfluss explizit behandelt werden muss, was die Möglichkeiten für eine automatische und autonome Optimierung des Systems einschränkt. Der in dieser Arbeit vorgestellte Ansatz zur Skalierung und Allokation erhält den transparenten Zugriff und zeichnet sich dabei durch seine vollständige Automatisierbarkeit und sehr gute Skalierbarkeit aus. Im ersten Teil dieser Dissertation werden die Herausforderungen und Chancen für selbst-skalierende Datenbankmanagementsysteme behandelt, die in auf Computerclustern betrieben werden. Gute Skalierbarkeit ist eine notwendige Eigenschaft für Anwendungen, die über das Internet zugreifbar sind. Lastspitzen im Zugriff, die die Anwendung überladen stellen ein finanzielles Risiko dar. Deshalb werden Systeme so konfiguriert, dass sie eventuelle Lastspitzen zu jedem Zeitpunkt verarbeiten können. Das führt meist zu einer im Schnitt sehr geringen Auslastung der unterliegenden Systeme. Eine Möglichkeit dieser Ineffizienz entgegen zu steuern ist es die Anzahl der verwendeten Rechnerknoten an die vorliegende Last anzupassen. In dieser Dissertation werden ein Modell und eine Architektur für die Anfrageverarbeitung vorgestellt, mit denen es möglich ist Datenbanksysteme auf Clusterrechnern einfach und effizient zu skalieren. Im zweiten Teil der Arbeit werden verschieden Möglichkeiten für die Datenverteilung behandelt. Um die Effizienz zu steigern wird ein Modell verwendet, das die Lastverteilung im Anfragestrom berücksichtigt. Der Ansatz ist formalisiert und optimale und heuristische Lösungen werden präsentiert. Die vorgestellten Algorithmen optimieren die Datenverteilung für eine lokale Ausführung aller Anfragen und balancieren die Last auf den Rechnerknoten. Es werden unterschiedliche Arten der Anfrageklassifizierung vorgestellt, die zu verschiedenen Arten von Partitionierung führen. Der Ansatz wird sowohl für Onlinetransaktionsverarbeitung, als auch Onlinedatenanalyse evaluiert. Die Evaluierung zeigt, dass der Ansatz für beide Felder sehr gut skaliert. Im letzten Teil der Arbeit werden verschiedene Techniken für die Leistungsmessung von großen, adaptiven Systemen präsentiert. Zunächst wird ein Datengenerierungsansatz gezeigt, der es ermöglicht sehr große Datenmengen völlig parallel zu erzeugen. Um die Benutzerinteraktion von Onlinesystemen zu simulieren wurde ein produktives E-learningsystem analysiert. Anhand der Analyse wurde ein Modell für die Generierung von Arbeitslasten erstellt, das die zeitlichen Abhängigkeiten von Benutzerinteraktion berücksichtigt

    Building Wavelet Histograms on Large Data in MapReduce

    Full text link
    MapReduce is becoming the de facto framework for storing and processing massive data, due to its excellent scalability, reliability, and elasticity. In many MapReduce applications, obtaining a compact accurate summary of data is essential. Among various data summarization tools, histograms have proven to be particularly important and useful for summarizing data, and the wavelet histogram is one of the most widely used histograms. In this paper, we investigate the problem of building wavelet histograms efficiently on large datasets in MapReduce. We measure the efficiency of the algorithms by both end-to-end running time and communication cost. We demonstrate straightforward adaptations of existing exact and approximate methods for building wavelet histograms to MapReduce clusters are highly inefficient. To that end, we design new algorithms for computing exact and approximate wavelet histograms and discuss their implementation in MapReduce. We illustrate our techniques in Hadoop, and compare to baseline solutions with extensive experiments performed in a heterogeneous Hadoop cluster of 16 nodes, using large real and synthetic datasets, up to hundreds of gigabytes. The results suggest significant (often orders of magnitude) performance improvement achieved by our new algorithms.Comment: VLDB201

    Approach for rapid visualization and analysis of epidemiological data

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 112-113).The ability to capture, store, and manage massive amounts of data is changing virtually every aspect of science, technology, and medicine. This new 'data age' calls for innovative methods to mine and interact with information. VisuaLyzer is a platform designed to identify and investigate meaningful relationships between variables within large datasets through rapid, dynamic, and intelligent data exploration. VisuaLyzer uses four key steps in its approach: 1. Data management: Enabling rapid and robust loading, managing, combining, and altering of multiple databases using a customized database management system. 2. Exploratory Data Analysis: Applying existing and novel statistics and machine learning algorithms to identify and quantify all potential associations among variables across datasets, in a model-independent manner. 3. Rapid, Dynamic Visualization: Using novel methods for visualizing and understanding trends through intuitive, dynamic, real-time visualizations that allow for the simultaneous analysis of up to ten variables. 4. Intelligent Hypothesis Generation: Using computer-identified correlations, together with human intuition gathered through human interaction with visualizations, to intelligently and automatically generate hypotheses about data. VisuaLyzer's power to simultaneously analyze and visualize massive amounts of data has important applications in the realm of epidemiology, where there are many large complex datasets collected from around the world, and an important need to elicit potential disease-defining factors from within these datasets.(cont.) Researchers can use VisuaLyzer to identify variables that may directly, or indirectly, influence disease emergence, characteristics, and interactions, representing a fundamental first step toward a new approach to data exploration. As a result, the CDC, the Clinton Foundation, and the Harvard School of Public Health have employed VisuaLyzer as a means of investigating the dynamics of disease transmission.by David N. Reshef.M.Eng

    How to manage massive spatiotemporal dataset from stationary and non-stationary sensors in commercial DBMS?

    Get PDF
    The growing diffusion of the latest information and communication technologies in different contexts allowed the constitution of enormous sensing networks that form the underlying texture of smart environments. The amount and the speed at which these environments produce and consume data are starting to challenge current spatial data management technologies. In this work, we report on our experience handling real-world spatiotemporal datasets: a stationary dataset referring to the parking monitoring system and a non-stationary dataset referring to a train-mounted railway monitoring system. In particular, we present the results of an empirical comparison of the retrieval performances achieved by three different off-the-shelf settings to manage spatiotemporal data, namely the well-established combination of PostgreSQL + PostGIS with standard indexing, a clustered version of the same setup, and then a combination of the basic setup with Timescale, a storage extension specialized in handling temporal data. Since the non-stationary dataset has put much pressure on the configurations above, we furtherly investigated the advantages achievable by combining the TSMS setup with state-of-the-art indexing techniques. Results showed that the standard indexing is by far outperformed by the other solutions, which have different trade-offs. This experience may help researchers and practitioners facing similar problems managing these types of data

    A PROCRUSTEAN APPROACH TO STREAM PROCESSING

    Get PDF
    The increasing demand for real-time data processing and the constantly growing data volume have contributed to the rapid evolution of Stream Processing Engines (SPEs), which are designed to continuously process data as it arrives. Low operational cost and timely delivery of results are both objectives of paramount importance for SPEs. Given the volatile and uncharted nature of data streams, achieving the aforementioned goals under fixed resources is a challenge. This calls for adaptable SPEs, which can react to fluctuations in processing demands. In the past, three techniques have been developed for improving an SPE’s ability to adapt. Those techniques are classified based on applications’ requirements on exact or approximate results: stream partitioning, and re-partitioning target exact, and load shedding targets approximate processing. Stream partitioning strives to balance load among processors, and previous techniques neglected hidden costs of distributed execution. Load Shedding lowers the accuracy of results by dropping part of the input, and previous techniques did not cope with evolving streams. Stream re-partitioning is used to reconfigure execution while processing takes place, and previous techniques did not fully utilize window semantics. In this dissertation, we put stream processing in a procrustean bed, in terms of the manner and the degree that processing takes place. To this end, we present new approaches, for window-based aggregate operators, which are applicable to both exact and approximate stream processing in modern SPEs. Our stream partitioning, re-partitioning, and load shedding solutions offer improvements in performance and accuracy on real-world data by exploiting the semantics of both data and operations. In addition, we present SPEAr, the design of an SPE that accelerates processing by delivering approximate results with accuracy guarantees and avoiding unnecessary load. Finally, we contribute a hybrid technique, ShedPart, which can further improve load balance and performance of an SPE

    Runtime Prediction for Scale-Out Data Analytics

    Get PDF
    Many analytics applications generate mixed workloads, i.e., workloads comprised of analytical tasks with different processing characteristics including data pre-processing, SQL, and iterative machine learning algorithms. Examples of such mixed workloads can be found in web data analysis, social media analysis, and graph analytics, where they are executed repetitively on large input datasets (e.g., "Find the average user time spent on the top 10 most popular web pages on the UK domain web graph."). Scale-out processing engines satisfy the needs of these applications by distributing the data and the processing task efficiently among multiple workers that are first reserved and then used to execute the task in parallel on a cluster of machines. Finding the resource allocation that can complete the workload execution within a given time constraint, and optimizing cluster resource allocations among multiple analytical workloads motivates the need for estimating the runtime of the workload before its actual execution. Predicting runtime of analytical workloads is a challenging problem as runtime depends on a large number of factors that are hard to model a priori execution. These factors can be summarized as workload characteristics (i.e., data statistics and processing costs), the execution configuration (i.e., deployment, resource allocation, and software settings), and the cost model that captures the interplay among all of the above parameters. While conventional cost models proposed in the context of query optimization can assess the relative order among alternative SQL query plans, they are not aimed to estimate absolute runtime. Additionally, conventional models are ill-equipped to estimate the runtime of iterative analytics that are executed repetitively until convergence and that of user defined data pre-processing operators which are not "owned" by the underlying data management system. This thesis demonstrates that runtime for data analytics can be predicted accurately by breaking the analytical tasks into multiple processing phases, collecting key input features during a reference execution on a sample of the dataset, and then using the features to build per-phase cost models. We develop prediction models for three categories of data analytics produced by social media applications: iterative machine learning, data pre-processing, and reporting SQL. The prediction framework for iterative analytics, PREDIcT, addresses the challenging problem of estimating the number of iterations, and per-iteration runtime for a class of iterative machine learning algorithms that are run repetitively until convergence. The hybrid prediction models we develop for data pre-processing tasks and for reporting SQL combine the benefits of analytical modeling with that of machine learning-based models. Through a training methodology and a pruning algorithm we reduce the cost of running training queries to a minimum while maintaining a good level of accuracy for the models
    • …
    corecore