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Abstract

The ability to capture, store, and manage massive amounts of data is changing virtually every
aspect of science, technology, and medicine. This new 'data age' calls for innovative methods to
mine and interact with information. VisuaLyzer is a platform designed to identify and investigate
meaningful relationships between variables within large datasets through rapid, dynamic, and
intelligent data exploration. VisuaLyzer uses four key steps in its approach:

1. Data management: Enabling rapid and robust loading, managing, combining, and altering
of multiple databases using a customized database management system.

2. Exploratory Data Analysis: Applying existing and novel statistics and machine learning
algorithms to identify and quantify all potential associations among variables across
datasets, in a model-independent manner.

3. Rapid, Dynamic Visualization: Using novel methods for visualizing and understanding
trends through intuitive, dynamic, real-time visualizations that allow for the simultaneous
analysis of up to ten variables.

4. Intelligent Hypothesis Generation: Using computer-identified correlations, together with
human intuition gathered through human interaction with visualizations, to intelligently
and automatically generate hypotheses about data.

VisuaLyzer's power to simultaneously analyze and visualize massive amounts of data has
important applications in the realm of epidemiology, where there are many large complex datasets
collected from around the world, and an important need to elicit potential disease-defining factors
from within these datasets. Researchers can use VisuaLyzer to identify variables that may directly,
or indirectly, influence disease emergence, characteristics, and interactions, representing a
fundamental first step toward a new approach to data exploration. As a result, the CDC, the
Clinton Foundation, and the Harvard School of Public Health have employed VisuaLyzer as a
means of investigating the dynamics of disease transmission.
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Chapter 1: Introduction

1.1 A New Approach to Data

We live in the most measured age in history. Our ability to capture and store data is

revolutionizing science, technology, and medicine and is changing our ability to answer

fundamental questions about our world. In this data deluge, information has changed

from a matter of three- or four-dimensional taxonomy to an interconnected web of

detailed statistics. The sheer quantity of collected information necessitates a new

approach to understanding and utilizing data: viewing it mathematically first, and

establishing a context for it later.

This approach has already proven its merits in multiple arenas. For example, the world of

internet advertising was revolutionized without the study of the culture or conventions of

advertising, but rather with applied mathematics. Internet advertising campaigns simply

relied on better data and better analytical tools to match ads to content without any

knowledge or assumptions about either. This approach enables the generation and

prioritization of interesting hypotheses faster than ever before, based on uncovered trends

rather than painstakingly constructed models. This mindset gave rise to the human

genome project: information was collected with the idea that the sheer quantity of data

would birth interesting hypotheses and findings. The expectation was correct--what

followed was an explosion in medicine, biology, and even ethics. Today's data age makes

truly agnostic science a realistic possibility, and consequently we must consider a shift in

paradigm from hypothesis-driven science to hypothesis-generating science.



1.2 Epidemiology in the Data Age

This wealth of new data will change our ability to combat the public health challenges of

today as well as those of the future.

1.2.1 A Better Understanding of Disease Emergence and Progression

Despite the scientific information explosion, we still have a great deal to learn about

parameters of disease emergence and progression. For example, our understanding of

infectious disease outbreaks has evolved from a simple organism-host interaction to a

complex microbiological and ecological relationship involving adaptable genomes,

microbial development, host variables, and environmental factors. As a result, scientists

have sampled hundreds of environmental and clinical factors, from fluctuations in climate

to human traffic to syndromic surveillance during periods of epidemics, in an attempt to

provide more proactive public health measures to combat disease. In turn, the

identification of potentially predictive environmental variables and the calculation of the

efficacy of specialized treatments has become computationally difficult and time

consuming. This rapidly growing, massive corpus of data calls for an environment that is

capable of manipulating and presenting large amounts of data in an easily-accessible,
interactive graphic format allows for the rapid identification of the primary variables that define

epidemic outbreaks.

1.2.2 Rapid Response to Emerging Epidemics

As the experience with SARS, foot and mouth disease (FMD), and other emerging

epidemics has made clear, the emergence or reemergence of infectious diseases places

significant demands on public health agencies as they try to respond rapidly while

maintaining situational awareness and tailoring interventions to the current status of the

outbreak. In addition to the difficulties inherent in responding to a crisis in real time, this

work has been hampered to some extent by the need to develop new methods while the

outbreak evolved (Keeling, Woolhouse et al. 2001; Lipsitch, Cohen et al. 2003; Riley,

Fraser et al. 2003; Wallinga and Teunis 2004) or even to make an appropriate choice of

existing methods. A famous example of the difficulties caused by this lack of

preparedness is the fluctuation in estimates of the case-fatality ratio for SARS, interpreted



by many observers as indicating changes in virulence in the virus, whereas in fact it was

attributable to inadequate adjustment for dependent censoring (Donnelly, Ghani et al.

2003). These experiences point to the need for a system to allow public health officials

and data analysts to visualize and clearly interpret trends in the midst of an epidemic, and

to make appropriate estimates of how limited, controlled resources can best be targeted.

1.3 VisuaLyzer: A Platform for Exploratory Data Analysis and
Visualization

This thesis introduces VisuaLyzer (Visual + Analyzer), a computational tool for the rapid

visual and statistical analysis of large-scale datasets. Furthermore, this thesis examines

the specific application of this platform and its unique approach to data analysis toward

mining complex epidemiologic and public health data, in order to generate and ultimately

test hypotheses about infectious disease transmission.

1.3.1 The VisuaLyzer Approach to Data Analysis

The VisuaLyzer tool is intended to provide an intuitive understanding of all meaningful

relationships between variables within large datasets through rapid, dynamic, and

intelligent data exploration. Fundamentally, VisuaLyzer provides four major utilities:

1. Data management: The ability to load, manage, combine, and alter multiple

databases using a customized database management system

2. Exploratory Data Analysis: The ability to apply both existing and novel statistical

and machine learning algorithms toward identifying all potential dependencies

among variables

3. Rapid, Dynamic Visualization: The ability to simultaneously, visually analyze

multiple factors

4. Intelligent Hypothesis Generation: The usage of automated methods to suggest

potentially interesting relationships to users

This platform for data mining and exploration aims to wed the power of computation and

the human visual-perceptive system to generate hypotheses in real-time, allowing

scientists to ask questions of the data rather than simply confirming what they think are

the answers.



The VisuaLyzer approach to data analysis involves four primary steps that stem directly

from the above functionality: 1) importing, combing, and manipulating datasets in

preparation for analysis, 2) identifying clusters of correlated variables for analysis; 3)

visualizing the most significant relationships between variables in identified clusters; and

4) using intelligent algorithms to suggest relationships for exploration to guide hypothesis

generation.

1.3.2 Step 1: Data Management

In order to provide the user with the ability to manipulate, analyze, and interact with data,

VisuaLyzer includes a specifically designed database management system (DBMS), Viz,

which is based on a column-store infrastructure (Stonebraker et al., 2005). Due to the

demands of the visualization environment, which often makes complex queries on the data

and requires fast query response times, this DBMS is optimized for speed. However, the

inherent Viz infrastructure also allows for a significant level of data compression. Finally,

VisuaLyzer includes a robust aggregator, which allows the user to modify, combine,

remove, or introduce new variables into databases stored in Viz. The ability to manipulate

and intuitively interact with data provided by Viz and the VisuaLyzer aggregator are

essential to its exploratory data analysis capabilities.

1.3.3 Step 2: Identifying Clusters of Dependent Variables for Analysis

To determine which groups of variables from potentially multiple datasets to visualize, it

is necessary to systematically identify all the relationships between all variables within

these datasets. Furthermore, it is necessary to be able to compare the relative strengths of

each of these relationships, independently of whether the two relationships being

compared are of the same type (i.e. linear, exponential, etc).

To identify all associations between all pairs of variables within a dataset, independently

of the type of relationship between the pairs of variables, two novel exploratory data

analysis algorithms are introduced. The first is based on the information theory metric,

mutual information, and second on the correlation ratio statistic. These algorithms are

designed to return a 'correlation coefficient' for each relationship between pairs of

variables that is agnostic to the type of relationship between the variables. In other words,



this correlation coefficient only ranks the strength of the relationship, making it possible

to compare the relative strengths of, for example, different linear, exponential, and

sinusoidal relationships.

To enable an intuitive and efficient interpretation of the output of these algorithms, a

novel, specialized visualization called a "Gravity Graph" is introduced, in which the

variables in the data set are represented by nodes, and the relationships between them are

represented by edges. As indicated by its name, the graph is based on a gravitational

model, in which every aspect of a physical, gravitational system between the nodes is

dependent on a parameter from the algorithms (for example, the correlation coefficients

are used to set gravitational field strengths). Users can interact with this graph by adding

or removing variables or relationships between variables and seeing how the gravitational

model reacts to these changes. Finally, interesting clusters of related variables can be

selected and the most relevant dimensions within these clusters can be identified for analysis.

This first step of the VisuaLyzer approach aims to intelligently reduce the amount of

dimensions in the dataset, making essential relationships abundantly clear.

Additionally, VisuaLyzer's analytic environment contains a suite of standard algorithms

for clustering variables and finding correlations among them, including several clustering

algorithms, principle components analysis (PCA), regression analysis, and the ability to

calculate multiple correlation coefficients. VisuaLyzer also includes a powerful

aggregator and database manipulation machinery to allow users to interact easily with

their data.



1.3.4 Step 3: A Rapid, Dynamic Visualization Environment

The second component of the VisuaLyzer approach is a clear visualization environment

for the rapid analysis of multi-dimensional data. This component aims to do just the

opposite of the first: to increase the number of dimensions that can easily be analyzed by a

human. Well-designed innovative, visualizations will allow the researcher to see up to as

many as ten dimensions at a time in a dynamic, interactive manner, as compared to the

traditional two or three in a static manner. This will allow for the analysis of as many of

the essential dimensions selected in the first step of the VisuaLyzer approach as possible

at a time. In creating intelligent and intuitive visualizations of multi-dimensional data,

patterns become obvious within the data and previously unnoticed relationships emerge.

VisuaLyzer's use of intuitive graphics to visualize the complex relationships found

between data provides the ability to explore relationships that define the current and future

states of diseases. For example, what relationships exist between the introduction of a

new drug into a region and disease prevalence in that region, among treated and untreated

individuals? What other factors have an impact on this relationship?

Gravity Graph
This is a screenshot of a sample
'gravity graph' that is produced by
running mutual information-based
correlation algorithm. Each variable
in the dataset is a node, and each
correlation found is represented as an
edge. Nodes' gravitational attraction,
color, size, etc. are all set by
parameters from the algorithm. This
particular graph shows all the
relationships between the prevalence
of flu (central node), and other
variables. Note the highlighted
cluster of red (highly correlated)
variables that is selected for further
analysis. Further details on the
mutual information-based algorithm
and gravity graphs are presented in
Chapter 3.



A sample screenshot of a "Map View" is shown in the figure below. Despite the fact that the

screenshot is static, the scrollbar at the bottom of the view is actively moving through the

selected independent variable (in this case, time). In the figure below, as the scrollbar

moves through time, the circles grow and shrink according to, for example, the prevalence

of a disease at a given location at a particular time point, and change color according to

temperature at that location at that particular time point. Several more variables could be

loaded onto such a visualization for simultaneous viewing.

Sample Map View
This is a screenshot of a sample Map View. In this particular view, number of cases of influenza (size of bubbles)
and temperature (color of bubbles) are being displayed for every state in the United States. Furthermore, the
scrollbar and controls at the bottom of the view allow the user to 'play' backwards and forwards through an
independent variable (in this case, time) and to watch as the bubbles are 'animated' to create an animation of how
the disease evolves over time. Further details on the visualization environment and Map Views are presented in
Chapter 3.



The ability to view these types of trends rapidly and dynamically provides a powerful tool

for identifying confounding factors and generating new ideas about the mechanisms that

define public health dynamics.

1.3.5 Step 4: Intelligent Hypothesis Generation

Thus far, the VisuaLyzer's new approach to exploratory data analysis and visualization

involves identifying all possible correlations between variables within a dataset in a

computationally rigorous fashion, and using dynamic visualizations to explore the

identified relationships of interest. The final component of this approach is to use

randomized and machine learning algorithms to identify further variables of interest based

on user-behavior. In other words, when a user loads a set of variables of interest into a

visualization, VisuaLyzer's Relationship Suggestor algorithm runs in the background,

searching for new variables that would be of interest to the user based on which variables

he is currently viewing. This crucial final step of the VisuaLyzer approach is intended to

search the space of variables not being examined by the user to find potentially critical

relationships that may be affecting the relationships being viewed. Another way of

looking at this is that by loading specific variables of interest into a visualization, the user

is helping to direct the computer's search for relationships that may be of interest.

1.4 Problem Domain

While every dataset is unique, the VisuaLyzer platform provides a framework for a

general approach to exploratory data analysis that remains the same across datasets and

across domains. This thesis focuses on the application of this approach toward analyzing

epidemiologic and public health data to answer questions like "How does a new influenza

strain migrate from Southeast Asia to California?" and furthermore, "What specific

conditions contributed to its emergence?" Furthermore, this thesis will explore the

application of VisuaLyzer to examine an emerging epidemic, HIN1 (swine flu), and to

help design a rapid response strategy to the epidemic in conjunction with the Centers for

Disease Control (CDC).

The chapters that follow describe the design and implementation of the VisuaLyzer tool

and demonstrate its use on several large-scale epidemiological datasets. Chapter 2



describes the inner workings of VisuaLyzer stores, compresses, manipulates, and interacts

with databases. Chapter 3 presents the novel mutual information- and correlation ratio-

based algorithms for identifying groups of dependent variables for analysis. Chapter 4

introduces the visualization environment. Chapter 5 presents the algorithms behind

VisuaLyzer's intelligent hypothesis generating capabilities. Chapter 6 presents a case

study of the VisuaLyzer tool using a combination of approximately 200 independent

databases of world health indicators. Finally, Chapter 7 presents conclusions and

reflections on the VisuaLyzer approach.
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Chapter 2: Data Management

2.1 Viz: A Column-Oriented Database Management System

Developing a successful data analysis and visualization platform requires particularly fast

data processing and querying capabilities. Thus to facilitate and optimize VisuaLyzer's

performance, Viz is introduced, which is a database management system (DBMS)

specifically optimized for epidemiologic data compression and efficient access by the

VisuaLyzer system. Despite being optimized to compress epidemiological data, Viz

produces significant compression rates on a wide range of data from varying fields. The

following sections will discuss the design of the Viz DBMS and analyze its performance

relative to a standard mySQL database.

2.2 Factors That Shaped the Design of Viz

There are a few specific characteristics of epidemiologic data and the VisuaLyzer work

load that heavily influenced Viz's design:

1. Viz is a fusion between a data warehouse and a search engine, and has little in

common with typical online transaction processing (OLTP) databases.

Epidemiology data is collected and uploaded to the system in the bulk rather than

through frequent updates. Hence, Viz effectively treats the epidemiology datasets

used as static.

2. Large numbers of columns in epidemiology data have relatively few distinct

values (for example, binary indicator variables).



3. The VisuaLyzer system's visualizations have a limited set of query types that are

run often and could be optimized.

4. The VisuaLyzer system's exploratory data analysis algorithms required sorting and

calculating correlations between various combinations of variables. These

statistical algorithms access and sort every variable in the epidemiology data,

frequently.

These observations drove many of the design decisions made and will be revisited

throughout this chapter.

2.3 Adapting C-Store: A First Step Toward Compression and

Speed

2.3.1 Column Encodings

Given the needs of the VisuaLyzer system and the profile of epidemiologic data, Viz is

designed as a customized column-oriented, read-optimized database similar to that

described in C-Store (Stonebraker et al., 2005). Since Viz's target data is read-only, it

does not contain a Writeable Store, but rather only a Read-Optimized Store. Viz also

utilizes the compression schemes described in C-Store to reach a high level of

compression on many of the columns in epidemiological data given the minimal distinct

values. Viz implements three of the four encoding types described in C-Store.

The first type of encoding, Type 1, is applied to columns that contain relatively few

distinct values, in sorted order. Type 1 encoding compresses long sequences of the same

value into a single triple: <value, starting index, number of occurrences>. Thus, for

every distinct value in the column, only one triple is stored. This encoding is indexed on

value using a B+ tree. The distinct values are used as indices for the B+ tree to optimize

returning results for queries base on a particular distinct value. Additionally, Viz's

implementation of a B+ tree links the leaves of the tree, allowing it to return all the values

in the column within a desired range. Figure 2.1 below shows the structure of a Type I

column, which is frequently used for sorted columns of data, and features optimizations

for its common usages.
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Figure 2.1. Data Storage of a Type 1 Column
On the left is a sorted Type 1 column. Note the repetitions of many consecutive values. The B+ tree representation
of that column is shown on the right. The B+ tree stores the triplets of <value, starting index, number of
occurrences> on the leaf nodes, and entire tree is indexed on the value field of the triplet.

The second type of encoding, Type 2, is applied to columns that are not sorted. Type 2

creates a bitmap for each distinct value that indicates the value's location in the index (see

Figure 2.2 below). Since the bitmap has the potential to become very long (a bit for every

row in the column), Type 2 is only used when the number of distinct values is less than an

eighth of the number of total rows. Since the smallest used types are integers and floats,

which are four bytes, the encoded column requires at most four times the space of the

original data. The last encoding type, which corresponds to Type 4 from C-Store, simply

stores the column of values in an array.



Values Bitmap

1 0 [00100101001100]

2 0 [01000010100010]

3 - [10011000010001]

2.3.2 Using Encoded Columns to Answer Common Queries

In addition to the compression offered by the above column encodings, a column-oriented

design offers performance enhancements for many of the queries made by VisuaLyzer's

visualizations. Most of the visualizations allow the user to view how a selected set of

variables vary depending on the value of another particular variable, like time. A column-

oriented design allows these frequent queries to be answered by retrieving only the

necessary columns, instead of having to read in the entire dataset row by row. Figure 2.3

below shows a screenshot of a VisuaLyzer Scatter View and the various dynamic filters it

uses to create its queries. Figure 2.4 shows a sample query in SQL that represents the type

of queries that the visualizations make.

Figure 2.2. Data Storage of a Type 2 Column
On the left is an unsorted Type 2 column. Note the repetitions of values dispersed throughout the column. The

column is stored as a mapping from each distinct value to bitmaps of their locations on the column. The bitmap has

a length equal to the number of values in the column. Thus, the Type 2 Column is only useful in cases where there

are a low number of distinct values relative to the length of the column.



Figure 2.3. A Screenshot of a VisuaLyzer Visualization
This screenshot of a 2-D Scatter Visualization shows the selected set of variables that the user is interested in

visualizing, highlighted by green ellipses, depending on the value of another particular variable, in this case, time,

highlighted by a red ellipse. The variable on the slider encircled by the red ellipse is termed the slider variable, and

is especially significant. All these variables represent filters that are used to construct a query.

SELECT fluData.percentFlu, fluData.numPatientVisits,

fluData.minTemp, fluData.week,

fluData.populationDens, fluData.populationFlow
FROM fluData

WHERE percentFlu < 90 AND

percentFlu >10 AND
numPatientVisits < 20 AND

numPatientVisits > 0 AND

minTemp < 75 AND
minTemp > -10 AND
week = 199745 AND

populationDens < 2K AND

populationDens > 1K AND
populationFlow < 500 AND

populationFlow >47 AND
ORDER BY week

Figure 2.4. A Sample Visualization Query Translated into SQL

This is the standard structure of a query constructed from a visualization, which seeks values for specific variables

for items selected given a set of filters. The VisuaLyzer system requires that such queries be answered on the order

of ~.02 seconds, even for very large datasets.



2.4 Projections

Instead of implementing join indices as described in C-Store, Viz implements a new idea

called projections (Figure 2.5 below). Each data set loaded into Viz is stored in two

different ways:

1. A master table (or master projection): A master projection contains all the

columns of a data set and an additional column, corresponding to row number,

which serves as the primary key of the master table (called the 'Generated Unique

ID'). The columns in the master table are all Type 2 and Type 4 (because Typel

cannot be applied to the unsorted columns), depending on the number of distinct

values in a column.

2. Helper projections: For every single column in the entire master table (i.e. - for

every variable in the dataset), a helper projection is created. Helper projections

store the columns of the table in sorted order. This is a way of absorbing the cost

of sorting the master table by each of its columns ahead of time, and only once.

These helper projections consist of two columns: the first is the "variable column,"

and is a copy of one of the non-primary key columns in the master projection. The

second column, the "generated unique ID column," consists of the row at which

the variable value appears in the master projection. Both of the columns are sorted

on the variable column, meaning that we can often encode the variable column

with a Type 1 encoding, while the foreign key column is always Type 4 as it is

unsorted and has many unique values.



F Unique ID

E Unique ID

D Unique ID

C Unique ID

B Unique ID

A Unique ID

1 5

1 10mm
1 18

1 9

2 4

2 8

2 13

2 11

Projections Master Table

Projections are designed to optimize the combinatorial algorithms and visualization

performance. More specifically, VizuaLyzer's exploratory data analysis algorithms

require sorting by and calculating the correlation between every possible pair of columns

within the dataset, over many different ranges of particular variables. Additionally, the

most common operation for visualization is to request the records of a certain column that

fall within a desired range, then retrieve corresponding values from these records in the

master table for other variables of interest. This becomes a much quicker operation given

a sorted copy of every column from which to retrieve the initial range of values and its

corresponding primary key in the master projection table.

Given that each variable must be sorted eventually, partitions were chosen as a

performance enhancement to avoid repetitive work and as a form of pre-computation to

decrease system lag in visualizations. However, creating the necessary projections

duplicates each column in the master table. This is a tradeoff between space usage and

Index A B C D E F

0

1

M mmmmmm
4

5

6

7

8

9

Figure 2.5. Projections
Each projection's Unique ID column stores the row on the master table to which the corresponding value in the

projection's Variable column belongs. Using the Type 1 Column to filter out rows by value is efficient because of

the B+ tree structure. From those row values filtered, the Unique ID for each is used to find other values in that

row, in this case B, D, and E. Note that there exists a projection for every variable in the table.

00



running time, but given the efficiency of Viz's compression schemes on epidemiology

data, it was hypothesized that the size of the dataset would not grow uncontrollably large

relative to its original uncompressed form. Furthermore, creating the master table and the

collection of helper projections versus the standard projections created by C-Store requires

twice the number of lookups in order to save space (from n2 to 3n, where n is the number

of columns in the data set).

2.5 Partitioned Projections

In addition to the master projection and the collection of helper projections, Viz

implements a set of partitioned projections to optimize further common visualization

queries. Partitioned projections are helper projections that are further binned by a second

variable (see Figure 2.6 below). Range queries performed on the various variables of

interest motivated the creation of helper projections sorted on the variables of interest. In

a similar vein, to speed up range queries that check how a given variable varies on the

value of another variable (the variable on the slide-bar encircled in red in Figure 2.3

above), two rounds of sorting can be performed: 1) on the slider variable, and 2) on the

variable of interest. Thus projections whose index columns are first sorted on the slider

variable and then sorted on a variable of interest can be produced, and are called

partitioned projections.



Slider Val A Unique ID

2003 1 10
1 2
1 9
2 8

2004 1 5
1 18
2 13
2 11

2005 1 4

Partitioned Projection

Figure 2.6. Partitioned Projections
This is an example representation of a partitioned projection where the slider value is 'year.' Note that for each
year, the matching rows of A and Unique ID form two small columns that create a "mini-projection" for that year.
Additionally, note that within each year partition, the two other columns are sorted on the variable column (column
'A' in this case).

To create a partitioned projection on variable A partitioned on slider variable B:

1. Initialize a number of bins corresponding to number of distinct values that B has.

2. Scan through the helper projection of A (HPA), looking up the corresponding

value of variable B in the master table for each entry in HPA

3. Place the entry from HPA in the appropriate bin in the new partitioned projection.

4. Concatenate the bins into one projection

The resulting projection is sorted first on B and then on A. Since this is an integer sort, it

requires O(n) time.



2.6 Usage-Driven Creation of Partitioned Projections and Buffer

Pool Memory Management

Given a mechanism for creating partitioned projections, the key to performance

enhancement is an intelligent method for deciding which partitioned projections to create.

In a table with n columns, there would be O(n2) possible partitioned projections.

Furthermore, some datasets are too large to fit all projections (helper and partitioned) in

memory. As a solution, Viz bases the creation of partitioned projections on usage

statistics.

Each time a variable, denoted here as A, is used in a visualization or statistical algorithm,

its ideal projection type is recorded. For example, given a visualization using slider

variable B, Viz increments a count for a projection of A partitioned on B. Each projection

can be specified by a pair <slider variable, variable>. For this purpose,

helper projections are considered to be partitioned on null.

2.6.1 Usage Statistics

Usage patterns show that about four to five variables are typically used as slider variables

within a dataset that has on the order of 100 variables. This is due to the fact that only a

handful of variables can be intuitively 'scrolled through' on the slider. Thus, one criterion

for creating a partitioned projection is that the variable by which the projection is

partitioned be used as the slider variable more than 1/5 of the time. Another criterion is

that the variable whose values make up the index column of this partitioned projection be

frequently used. Assuming a uniform distribution of variable usage, the expected

frequency of usage would simply be 1/n. Viz defines 'frequently used' as more than twice

the expected frequency, or 2/n. Thus, Viz creates partitioned projections if the usage

count for a combination of a slider variable with a second variable exceeds 2/(5n) of the

total variable usage. Varying this criterion threshold would trade off one-time CPU costs

of creating the partitioned projection versus the additional cost of using regular

projections in place of a partitioned one.

Choosing the number of partitions in a partitioned projection is another interesting

tradeoff. If the number of partitions increase, then the computation time for searching for



the results decreases proportionally; however, storage space on disk increases due to the

fact that one large sorted column is broken into many smaller sorted columns. Viz chooses

to proportionally increase the number of partitions based on the number of distinct values

of the variable used for partitioning.

2.6.2 Buffer Pool Management

Usage statistics are also employed by Viz to maintain a buffer pool for memory

management and to define an eviction policy. Given the usage statistics, Viz maintains a

priority queue of projections, both helper and partitioned, in sorted order. The creation

and eviction of partitions according to usage statistics and memory availability is as

follows:

1. If database has never been loaded before

a. Create Master Projection (add to memory)

b. Create Helper projections (add as many as can fit to memory)

2. If database has been loaded before, master table, helper and partitioned

projections, and previous usage statistics (that were previously created) are loaded

from disk into the buffer pool based on previous usage frequency.

3. User begins using VisuaLyzer

a. As usage statistics accumulate, partitioned projections are created and

loaded into the buffer pool

i. If the buffer pool is full, the least used helper or partitioned

projection is evicted

Note that Viz's buffer pool also takes into account which variables are used in the current

visualization and does not evict those from memory.

2.7 Selectivity Estimates

To further improve Viz's query response time, very simple selectivity estimates are

implemented. These are intended to inform Viz of which filters would be advantageous to

apply using projections and when to quit and revert to the master projection to find its



results. These basic selectivity estimates simply assume an even probability distribution

of data values for each variable. Thus, if variable A's range were from 1 to 100, and a

filter on variable A were set from 1 to 50, then the selectivity of that filter would be 0.5.

Using these selectivity estimates, Viz decides to use projections to calculate the result-set

of filters who have a selectivity estimate of < l/x, where x is the number of filters in the

query. Thus, if using projections for all the filters would cost approximately the same

number or less lookups than performing a sequential scan through the master table, Viz

uses projections. By only applying filters whose selectivity is < l/x using partitions, Viz

generates a sub-set of records from these filters to look-up in the master table, rather than

having to perform an entire sequential scan of the master table. If no filter has a

selectivity < l/x, then Viz simply reverts to performing a sequential scan of the master

table. Thus, Viz theoretically never performs more work than one sequential scan through

the data per query.

2.8 Aggregation

The Viz DBMS is accompanied by a flexible data aggregator. This aggregator allows a

user to manipulate raw data in any way that suits his analysis. A database can be

aggregated over any set of variables (for example, by city, each week). Furthermore, the

user can specify how individual variables being aggregated should be aggregated. A

given variable can be aggregated in one of five ways:

1. Max Value: Store the maximum value for this variable in each given aggregation

2. Min Value: Store the minimum value for this variable in each given aggregation

3. Average Value: Store the average value for this variable in each given aggregation

4. Threshold Count: Store the count of the number of times this variable was greater

than a user-defined threshold, in each given aggregation

5. Threshold Percent: Store the percentage of times this variable was greater than a

user-defined threshold, in each given aggregation

This aggregator also allows the user to create new variables that are aggregates of multiple

variables in a given database, and to join databases on common variables using a simple

JOIN algorithm.



2.9 Analysis of Viz Performance

2.9.1 Compression

Viz's C-store-based compression schemes were a great success. As shown below in

Figure 2.7, storing data using Viz (master table and all helper projections) requires

reliably less disk/memory space than simply storing a copy of the uncompressed data. As

shown below, the compression scheme resulted in regular compression of the master table

(an entire copy of the dataset) to less than 1/4 the original data size, allowing for leeway in

creating projections.

Data Compression in Viz
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Figure 2.7 Data Compression Results
These are measurements of the size of data sets in both standard Java arrays and in Viz after depression. The
epidemiology data sets used in this example were ideal for our compression system, as they contained few distinct

values in comparison to the number of total values. Creating the master table was reliably below a quarter of the
size of the uncompressed equivalent. When the size of additional created projections was included, the total

memory used by Viz was consistently still less than storing the data sets uncompressed.



2.9.2 VisuaLyzer's Exploratory Data Analysis Algorithms

Viz's specialized column- and projection-based architecture is also successful in

generating tangible performance enhancements for VisuaLyzer's mutual information- and

correlation ratio-based exploratory data analysis algorithms (see Chapter 3). The usage of

projections, which supplies sorted lists of any given variable, proves to be

overwhelmingly useful as a means of pre-computation. In a comparison against a

VisuaLyzer's implementation that uses the mySQL DBMS, using a dataset containing 21

variables for -36k items, Viz is clearly superior:

Sample Algorithm mySQL Runtime(mins) Viz Runtime(mins)

Correlation-Ratio Algorithm 7.72 0.32

Mutual Information Algorithm 12.82 0.37

Table 2.1. Performance Comparison of VisuaLyzer Algorithms Using Viz and mySQL
Two of the major algorithms used to compute correlations between variables in the VisuaLyzer system
significantly perform faster using the Viz DBMS over the mySQL DBMS. The correlation-ratio-based
algorithm ran approximately 25x faster, while the mutual information-based algorithm ran approximately 35x
faster.

The up-front cost of creating projections upon loading a data set results in a significant

improvement in algorithmic runtime. This is valuable given the desired user experience

on the VisuaLyzer system.

2.9.3 Visualizations: Start-up Delay

A noticeable performance gain to the VisuaLyzer visualization environment is that using

the mySQL DBMS, creating each visualization caused a few second delay (proportional to

the size of the dataset; = 3.4s for database of 32.1MB) in order to create a table with the

relevant portions of the data for that particular visualization. Creating visualization using

the Viz DBMS is instantaneous, as all projections and the relevant partitioned projections

are created as an un-front cost when the database is loaded.

2.9.4 Visualizations: Frame-Rate Comparison

Viz's performance depends on the size of database used. The maximum frame-rate

(frames per second = queries per second) attained by a VisuaLyzer visualization is useful



as a benchmark for testing the speed of the underlying database management system. As

shown in Figure 2.8 below, the Viz DBMS outperforms the mySQL DBMS for databases

of all sizes. Furthermore, when tested over a long period of time (loading the same four

variables on and off five times with the same slider variable), Viz begins intelligently

creating partitioned projections and further outperforms mySQL. As a point of interest,

frame-rates of approximately greater than -20 frames per second appears completely

smooth to the user and are therefore desirable.
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Figure 2.8 VisuaLyzer Performance Using Various DBMSs
This graph shows Viz clearly producing better VisuaLyzer performance than the mySQL DBMS for databases of
all sizes (in terms of number of frames displayed per second, which is limited by the number of queries the
system can make per second). Furthermore, once enough usage statistics accrue for Viz to intelligently create
and load partitioned projections, its performance increases further.

2.9.5 Visualizations: Sample Query Suite

As a more direct measure of DBMS performance, the Viz DBMS and the mySQL DBMS

are compared using a suite of five queries of the format showed in Figure 2.4 above, each

with nine WHERE clauses. The performance profile closely mimics that shown in Figure

2.8 above, with Viz outperforming mySQL. The average query response times for the test

suite on a -~67MB dataset were 3.1 seconds, 0.05 seconds, and 0.03 seconds for mySQL,

Viz, and Viz with partitioned projections, respectively.



2.9.6 Visualizations: Selectivity Estimates

Even given the simplicity of Viz's selectivity estimates, they appear promising. As shown

by Figure 2.9 below, on a -67MB database, the query strategy that employed selectivity

estimates outperforms all three of the above described DBMS implementations, averaging

0.02 seconds on the query test suite (approximately 44 frames per second).

VisuaLyzer Speed By DBMS

-- mySQL DBMS

- Viz DBMS

- Viz DBMS with

Paritioned
Projections

-- Viz DBMS with
Paritioned
Projections &
Selectivity Estimates

0.022 3.3 32.1 67
Size of Data Set (MB)

Figure 2.9 VisuaLyzer Performance Using Various DBMSs

This graph shows a further performance increase conferred by applying selectivity estimates using the Viz DBMS.

With partitioned projections and selectivity estimates, Viz outperforms mySQL for databases of all sizes (that were

tested). In the current implementation, selectivity estimates simply assume an even probability distribution of data

values for each variable.

2.10 Potential Improvements to Viz

By most metrics, the design of the Viz DBMS is a success. Viz system performance

deteriorates slightly for very large datasets, but this deterioration is very slow, and is seen
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in other comparable DBMSs. Viz's column- and projection- based architecture is

extremely successful for VisuaLyzer's exploratory statistical algorithm suite as well as for

generating fast results for visualizations of large datasets. While partitioned projections

and basic filter selectivity estimates proved to be significant performance enhancers, there

is still room for system optimization. For example, creating more accurate selectivity

estimates by attempting to learn the true probability distribution for values of every

variable might confer further performance increases. This could be implemented using

statistical counts similar to those used for projection generation to sample variable

distributions. Alternatively, system down-time could be used to "buffer/pre-compute"

results for likely future system queries. Designing and implementing Viz was a practical

challenge that could serve as a launching point for designing a specialized DBMS for

analyzing and visualizing large epidemiologic datasets.
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Chapter 3: Exploratory Data Analysis

To aid in the choice of variables for visualization and analysis, VisuaLyzer uses a suite of

analytical and statistical approaches for detecting groups of correlated variables that may

be of interest. The VisuaLyzer analytic environment contains implementations of several

common algorithms for the purpose of identifying relationships between variables,

including k-means clustering, self-organizing maps, regression analysis, principal

components analysis, and the ability to calculate standard statistical quantities such as

Pearson correlation coefficients.

However, this chapter focuses on a novel family of measures, based on concepts from

both statistics and information theory, which efficiently and agnostically quantify the

"relatedness" (association) between pairs of variables. Because these methods are

grounded in concepts from information theory, they do not need to assume a certain model

or regression in order to quantify relatedness between variables. As a result, for instance,

a strong sinusoidal relationship, a strong quadratic relationship, and a strong exponential

relationship between two variables will all receive high scores when evaluated by these

measures. Because of this "agnostic" property, the algorithms involved are quite powerful

for automatically pulling out the most striking relationships in a dataset without the need

for any information about the mechanisms through which the variables might be related.

This property, coupled with the fact that these methods are extremely fast, allows

VisuaLyzer to run the algorithms involved on all possible pairs of a set of potentially

thousands of variables in order to find, for example, the top ten most related pairs. This

chapter describes two novel algorithms that incorporate this family of measures: the 2-

dimensional correlation ratio-based algorithm (CR2), and the 3-dimensional mutual

information-based algorithm (MI3).



3.1 An Introduction to Correlation, Correlation Ratio, and Mutual

Information

3.1.1 Pearson Correlation Coefficient

Oftentimes, it is useful to be able to identify the relationships (deviations from

independence) between multiple variables. A standard method for measuring the strength

of such a relationship between two random variables X and Y with expected values gx and

Ry and standard deviations ax and y is to calculate the Pearson correlation coefficient p:

cov (X, Y) E ((X - x) (Y - Ly))
Px, - -

PTxXy =OxU'y Eq. 3.1

where cov(X, Y) is the covariance between X and Y, and E is the expected value operator.

Pearson correlation coefficients can be used to measure the strength and direction of a

linear relationship between two variables, but in many cases relationships between

variables of interest are non-linear (see Figure 3.1).
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..... __ " 2007) the variance of Y is zero.

(Imagecreator, 2007)

Metrics such as correlation ratio statistic and the entropy-based mutual information can be

used to detect more general dependencies in data (nonlinear as well as linear

relationships).

3.1.2 Correlation Ratio

Correlation ratio (CR) is a measure of the relationship between the statistical dispersion

within individual categories and the dispersion across an entire sample. This measure can

be applied to data that is categorized, such as test scores among students in different math



classes (each class would correspond to a separate category). For a given observation yxi

where x indicates the category (class) to which this observation belongs and i indicates the

label (individual student), let nx be the number of observations in category x, and the mean

of category x and the mean of the whole population be

E4 YXi E______s

- ' and .x n, Eqns 3.2 and 3.3

respectively. For this data, the correlation ration (Ti) is defined as

2-

x1,i(yxi ) 2  Eq.3.4

and can be thought of as the weighted variance of the category means divided by the

variance of all samples. The correlation ratio i1 takes values between 0 (signifying no

dispersion among the means of different categories) and 1 (signifying no dispersion within

the different categories).

3.1.3 Mutual Information

Mutual information (MI) is an information theory metric that measures the mutual

dependence of two random variables. The mutual information of two discrete random

variables X and Y, I(X; Y), is defined as

I(X; Y) - p(x. y)log ( 4  Ey).

yEY xEX Y' log (1() Eq. 3.5

where p(x,y) is the joint probability distribution function of X and Y and pl(x) and p2(Y) are

the marginal probability distribution functions of X and Y, respectively. Intuitively, MI

measures how much knowing one of these variables reduces the uncertainty about the

value of the other. For example, if X and Y are independent, then knowing X does not give

any information about Y and vice-versa, thus the MI of these two variables would be 0.

On the other hand, if X and Y are identical, then knowing one immediately determines the

value of the other, thus their MI would be 1.

MI can also be expressed in terms of the entropies of X and Y



I(X;Y) = H(X) - H(XIY)

H(Y) - H(Y X)

= H(X) + H(Y) - H(X, Y)

H(X, Y) - H(XIY) - H(Y X), Eq. 3.6

where H(X) and H(Y) are the marginal entropies of X and Y, H(XI Y) and H(YIX) are the

conditional entropies of X and Y, and H(X, Y) is the joint entropy of X and Y (J. Liu et al.,

2001). If entropy is regarded as a measure of uncertainty about a random variable, then

H(XIY) can be thought of as the amount of uncertainty remaining about X after Y is

known, and thus the above equation shows that the MI between X and Y translates to the

amount of uncertainty in X which remains after Y is known.

3.2 Standard Uses of Correlation Ratio and Mutual Information

CR and MI were traditionally intended for analyzing relationships between an ordered

variable (which contains an inherent distance metric that captures the closeness between

two of its values) and a second variable which is a member of an unordered set. For

example, CR or MI can be used to detect the dependence between different math classes

(unordered variable) and student test scores (ordered, real-valued, 'finite' variable which

represents some sampling of an unknown underlying distribution). However, in many

settings such as epidemiology, finance, and biology, we wish to analyze the relationships

between multiple ordered (finite) variables. For example, in the epidemiological analysis

of disease risk factors, applying MI and CR to identify relationships between resistance

levels of different strains of a disease (both ordered 'finite' variables) could be

tremendously useful.

Thus, in the past decade, several methods have been developed for estimating CR and MI

on finite data, all of which are centered around the concept of partitioning the data with

respect to one variable (effectively simulating an unordered variable). The most basic

technique used to apply CR/MI to a pair of ordered variables is to use fixed width

intervals to 'bin' the data along one axis, and then to use the resulting histogram to

estimate mutual information (Silverman, 1986). Moreover, instead of the fixed width

intervals, the data can be adaptively partitioned based on the distribution of the data (Rapp

1994, Schreiber 2000).



3.3 A Novel Application of Correlation Ratio and Mutual

Information to Identifying Dependencies among Finite, Real-

Valued Data

This thesis introduces a novel method for applying the correlation ratio (CR) and mutual

information (MI) statistics toward identifying dependencies among real-valued variables

that represent a finite sampling from an unknown distribution. Instead of searching for an

optimal number of partitions in order to apply CR/MI to a given finite variable, this new

approach sequentially applies multiple numbers of partitions to the data, analyzing the

resulting characteristic curve of the CR/MI score as a function of the number of partitions.

Two novel algorithms that incorporate that incorporate successive binning to attempt to

deduce dependencies based on the CR/MI score as a function of number of bins are

included in the VisuaLyzer analysis environment. The first is a 2-dimenssional

correlation ratio-based algorithm, CR2, and the second is a 3-dimenssional mutual

information-based algorithm, MI3, which varies the number of bins for two variables at a

time. In designing these algorithms, two key issues are addressed: 1) how to determine

partitions sizes and boundaries, and 2) what properties of the graph of CR/MI as a

function of the number of bins are most telling of the relationship between two variables.

3.3.1 Partitioning (Binning)

Despite the fact that CR2 and MI3 use a spectrum of binnings to infer relationships

between variables, they must still use a method to determine how to create each binning.

There are three simple methods of splitting up the points [(xi, yi) : 1 <= i <= n} into m

bins:

1. Binning by Range: Divide the range of the xi and into m equal pieces of size

(max([xi }) - min({xi })/m and then let the k-th bin be all the data points with x

values in the k-th piece of the range (see Figure 3.1).

2. Binning by Rank-Order: Sort the xi and then let the k-th bin be the k-th set of n/m

points.

3. Adaptive Binning by Rank-Order: Find values [ bi : 0 <= i <= m} with bo =

min([xi}) and bm = max([xij) such that the k-th bin is all the data points with x

values falling between btk - 1) and bk , and such that the number of points in each

bin is as balanced as possible.
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In weighing the advantages and disadvantages of each of these three binning strategies,

the following three datasets will be considered:

1. Do = { 20 points with x-value 0, and 40 points with x-value 1 },

2. D1 = {(0,0), (0.1, 0.1), (1,0.2)}; and

3. D2 = {(0,0), (0.1,0.1), (0.2,0.2)}

In considering these three examples, it is clear that Binning by Rank-Order produces

undesirable results, as it will put data points with the same x-values in different bins. For

example, when binning into two bins, it would be desirable to split Do into its natural two

categories, and furthermore, it is not good to have any bins that contain points from the

x=0 set and the x=1 in the same bin. Binning by Rank-Order fails on both counts. It also

performs poorly when comparing the two data sets D1 and D2, because it treats them

identically even though one is clearly more correlated than the other. The only advantage

of this method is that the correlation ratio is 1 when the number of bins used is equal to

the number of points.

Binning by Range most obviously corresponds to the spatially-intuitive way to bin a

dataset. Furthermore, it treats D1 and D2 differently: it suggests that one is more

correlated than the other. This means that it is not oblivious to the horizontal distribution

of the data in the way that the Binning by Rank-Order is. It also never splits up D_0 in an

Figure 3.1. Binning by Range
This plot of 300 randomly generated
points is binning using the Binning by
Range approach (in this case, into 10 bins
each). This approach simply divides the
range of each variable into a given number
of equally-sized bins. (R. Steuer et al.,
2002)



undesirable way. The primary disadvantage of this method is that it absolutely ignores the

distribution of the data, meaning that some bins might have one point while others have

fifty, which might not be good because those are not things that should be compared,

statistically speaking. This is because if some bins are allowed to contain one point while

other are allowed to contain 50 points, single outliers can dominate a given bin if they are

allowed to be the only point in that bin. Finally, using this method, some of the bins may

be empty. This is fine; they are just ignored, which is natural given the statistics being

used.

Finally, Adaptive Binning by Range also corresponds to a spatially-intuitive way to split

up a dataset in the sense that no two points with the same x-value will ever lie in different

bins. Also, the number of points in each bin will be balanced, which is good in a

statistical sense because outliers are not allowed to disproportionately affect the results.

For these reasons, both CR2 and MI3 use Adaptive Binning by Range. MI3 employs a

further improvement on binning, which is discussed in Section 3.5.1.

3.3.2 Using a Sequence of Binnings (Partitions) to Infer Relationships

Instead of using just one binning, as is the current standard, CR2 and MI3 utilize a

spectrum of binnings (i.e. 1 bin, 2 bins, 3 bins, ..., [number of distinct values of a variable]

bins).

The CR2 algorithm produces a graph of the number of bins on the x-axis and the

corresponding CR score on the y-axis, which presents several interesting characteristics

that can be used to judge the strength of a relationship between two variables. This graph

is termed the characteristic curve produced from CR2. Examples of the characteristic

curves for a randomly generated cloud and a perfect linear relationship are shown in

Figure 3.2 B and Figure 3.3 B, respectively. For the randomly generated cloud, the CR

increases approximately linearly from 0 to 1 with increasing bin numbers, whereas for a

highly [linearly] correlated pair of variables, it appears to approach 1 exponentially.

The MI3 algorithm resembles the CR2 algorithm in many ways; however, it utilizes a

third dimension. Using the MI3 algorithm, the graph produced by plotting the number of

bins of one variable on the x-axis, the number of bins of a second variable on the y-axis,



and the corresponding MI score for that combination of bins on the z-axis presents

similarly interesting characteristics, which can be used to judge the strength of a

relationship between two variables. This graph is termed the characteristic manifold

produced from MI3. Examples of the characteristic manifolds for a randomly generated

cloud and a perfect linear relationship are shown in Figure 3.2 C and Figure 3.3 C,

respectively. For the randomly generated cloud, this manifold fairly steadily increases

toward a maximum value with increasing bin numbers, whereas for a highly [linearly]

correlated pair of variables, it appears to approach 1 instantly and to proceed to flatten

thereafter.
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Figure 3.2 A. A Randomly Generated Cloud of 8000 Points
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Figure 3.2 B. Characteristic Curve Generated by CR2 for a Random Cloud

This is the characteristic curve generated by CR2 for the random cloud shown in Figure 3.2A. This particular

run of CR2 was allowed to proceed through 100 binnings (1 bin, 2 bins, ... , 100 bins). Note the slow increase

in CR score as the number of bins increases.
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Figure 3.2 C. Characteristic Manifold Generated by MI3 for a Random Cloud

This is the characteristic manifold generated by MI3 for the random cloud shown in Figure 3.2A. This particular run

of MI3 was allowed to proceed through 30 binnings for each variable {(1 bin, lbin), (1 bin, 2 bins), (2 bins, 2 bins),

... , (30 bins, 30 bins)). Note the fairly slow increase in MI score as the number of bins increases.
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Figure 3.3 A. A Perfectly Linear Relationship of 1000 Points
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Figure 3.3 B. Characteristic Curve Generated by CR2 for a Linear Relationship
This is the characteristic curve generated by CR2 for the linear relationship shown in Figure 3.3A. This
particular run of CR2 was allowed to proceed through 100 binnings (1 bin, 2 bins, ... , 100 bins). Note the
very rapid initial increase in CR score as the number of bins increases.



MI Algorithm Characteristic Manifold (Score = 1.00)
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3.3.3 Properties of the CR2 Characteristic Curve and M13 Characteristic

Manifold

There are several interesting properties of the characteristic curves/manifolds produced by

CR2 and MI3, such as average value, variance, area/volume under the curve/manifold,

and maximum derivative. Furthermore, the latter two identify and assign a relative

strength to dependencies between variables, independent of the type of dependency.

The maximum slope of the function of MI/CR score is the most telling characteristic, and

works tremendously well across virtually all tested types of relationships. The intuition

behind this metric can be explained using the following example. Given a random cloud,

the maximum MI/CR score attainable is 1, which is attained when the number of bins

approaches the number of points in the cloud. Furthermore, at no point does increasing

Figure 3.3 C. Characteristic Manifold Generated by MI3 for a Linear Relationship

This is the characteristic manifold generated by MI3 for the linear relationship shown in Figure 3.3A. This

particular run of MI3 was allowed to proceed through 30 binnings for each variable {(1 bin, lbin), (1 bin, 2

bins), (2 bins, 2 bins), ... , (30 bins, 30 bins)). Note the rapid initial increase in MI score as the number of bins

increases.
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the number of bins by one gain a significant level of information. In contrast, given a

highly correlated pair of variables, a high MI/CR score will be attained with a relatively

small number of bins, so removing just one of these bins will result in a large change of

score. In a sense, this statistic captures the minimal ratio of the number of bins to the

number of data points that is required to describe the relationship between two variables.

In other words, if not many bins are required to capture a relationship between two

variables, the points that form this relationship must be organized in a very structured

manner which can be captured in only a few bins.

A second useful statistic is over-under area/volume. This metric is intended to capture the

over-under area/volume between the characteristic curve/manifold of a pair of variables,

and the characteristic curve/manifold of a random cloud (that is comprised of the same

number of data points). This quantity literally represents the perturbation of the

characteristic curve/manifold from that of a random cloud, and intuitively corresponds to

the quantity of information contained in the relationship between these two variables.

However, while this quantity is finite, its bounds vary between datasets, and there is no

convenient normalization that maps it to consistent bounds. Thus, this metric is harder for

novice users to interpret, and the maximum slope metric is the official output returned by

CR2 and MI3.

3.4 The CR2 Algorithm

The CR2 algorithm takes as input a database of v variables, and produces as output a list

of triples of the form <Varl, Var2, CR2 Score>, where CR2 Score is a new

correlation coefficient between 0 and 1. In other words, the algorithm quantifies the

absolute strength of every pair of variables in the dataset. An interesting note is that CR is

not symmetric (which variable is chosen to be binned affects the resulting CR).

Therefore, for each pair of variables the algorithm is run twice, each time binning a

different one of the two variables. The algorithm then returns the maximum of the two

scores calculated for the pair of variables. The pseudo-code for the CR2 algorithm is

presented in Figure 3.4 below. The time complexity of the algorithm is 0(2.

maxNumBins-v2).



For all pairs of variables (vi, vj), where i # j

For numBins = 1 to maxNumBins

Ci = CR(vi, vj) for numBins bins of vi

Cj = CR(vj, vi) for numBins bins of vj

CRScores[numBins] = max(Ci, Cj)

Figure 3.4. Pseudo-Code for the CR2 Algorithm
This is the pseudo-code for CR2. CR(x,y) is a function that calculates the correlation ratio of variables x and

y by binning x into numBins bins. For a dataset of v variables CR2 produces as output a list of 2 triples

of the form <Varl, Var2, CR2 Score>, where CR2 Score is a new correlation coefficient between 0

and 1.

3.5 The M13 Algorithm

The MI3 algorithm takes as input a database of v variables, and produces as output a list

of triples of the form <Varl, Var2, MI3 Score>, where MI3 Score is a new

correlation coefficient between 0 and 1. Similarly to the CR2 algorithm, this algorithm

quantifies the absolute strength of every pair of variables in the dataset, but according to

the MI statistic. The pseudo-code for the MI3 algorithm is presented in Figure 3.5 below.

The time complexity of the algorithm is O(maxNumBins 2 v2).



For all pairs of variables (vi, vj), where i # j

3.5.1 An Improvement to M13: Randomized Binning on One Axis

The above implementation of M13 produces fantastic results on all classes of functions
except aperiodic even functions. This exception is due to the fact that an aperiodic even
function has an axis of symmetry. In the case where two bins are used, the bin boundary
between these two bins will fall on the axis of symmetry, thus returning a very low mutual
information score for this binning configuration. To get around this glitch, MI3 can be
improved by binning the first variable using Adaptive Binning by Range, and binning the
second variable randomly multiple times. In other words, for a deterministic binning of
the first variable, each of the second variable's bin boundaries are decided randomly, n
times (where n is 0(100)). The MI3 score that is then returned from this configuration of
i bins of the first variable and j bins of the second variable is the maximum mutual

For numBinsi = 1 to maxNumBins

For numBinsj = 1 to maxNumBins

MIi,j = MI(vi, vj) for

numBinsi bins of vi and

numBinsj bins of vj

MIScores[numBinsi, numBinsj] = MIi,j

Figure 3.4. Pseudo-Code for the MI3 Algorithm
This is the pseudo-code for MI3. MIS, j = MI (vi, vj)is a function that calculates the mutual
information of vi and vj by binning vi into numBinsi bins and vj into numBinsj bins. For a dataset of v

variables MI3 produces as output a list of 2 triples of the form <Varl, Var2, MI3 Score>, where

MI3 Score is a new correlation coefficient between 0 and 1.



information of the two variables from all n random trials of i bins of the first variable (the
same every trial) andj bins of the second variable (different each trial). This conveniently

avoids using an axis of symmetry as a bin boundary, and thus avoids artificially returning

a low MI3 score for a given bin configuration. Unfortunately, this increases the runtime

of MI3 (by n-fold), but the performance increase is worth the cost. The results of this

improved MI3 algorithm (MI3+) are demonstrated in the sections below.

3.6 A Comparison of CR2 and M13

In being able to bin both variables, the MI algorithm has access to more information about

the relationship between the two variables, as this combinatorial binning creates a

potentially asymmetrical manifold, rather than merely a cross-section of that manifold

(CR2 output). For this reason, the MI3 algorithm is significantly more accurate than the

CR2 algorithm, but also has a longer runtime. Thus, the CR2 algorithm is a more casual,
quick-and-dirty glance into the relationships between different variables, while MI3

produces robust results, as demonstrated in Section 3.7 below.

3.7 Analysis of Results of CR2 and M13

CR2 and MI3 are designed to be able to identify and rank the absolute strength of

dependencies between variables, regardless of the type of relationship between the

variables. This ability is afforded by the fundamental mathematical quantities on which

they are based. This section is intended to evaluate their ability to rank the absolute

strength of a class of different relationships. Section 3.2.2 already demonstrated the

algorithms' performance on a random cloud (MI Score = 0.002, CR Score = 0.02) and a

linear relationship (MI Score = 1.0, CR Score = 0.87). This section will demonstrate the

algorithms' performance, which is summarized in Table 3.1 below, on power,
exponential, sinusoidal, and parabolic (aperiodic even) functions. Furthermore, it will
explore the power (sensitivity) of the algorithms.



3.7.1 CR2, M13, and M13+ Performance on a Suite of Relationships

This section will demonstrate the CR2, MI, and MI3+ algorithms' performance on a suite

of test relationships, which do not contain noise. Table 3.1 summarizes the results of

running the algorithms on several different types of linear and non-linear relationships.

CR2 returns a very low score for a random cloud, and fairly high scores for all other

relationships. Furthermore, MI3 returns practically perfect scores for a random cloud and

all other relationships, with the exception of a half sine wave (due to its axis of

symmetry). However, the MI3+ algorithm (MI3 with randomized binning for one

variable) outperforms both other algorithms, returning practically perfect values for all

functions, including a half sine wave.

Scores of CR2, MI3, and MI3+ Algorithms for Various
Relationship Type CR2 Score MI3 Score

Random Cloud 0.02 0.002

Linear (y=x) 0.87 1.0000

Power (y=x2) 0.84 1.0000

Exponential (y=ex) 0.85 1.0000

Sinusoidal (y=sin(x)) 0.90 0.999

Parabolic (y=sin(x)), 0.73 0.579

Relationships
MI3+ Score

0.004

1.000

1.000

1.000

0.999

0.999

Half Period

Figures 3.5, 3.6, and 3.7 show the corresponding characteristic curves and manifolds for

the power, sinusoidal, and parabolic functions used to generate the data in Table 3.1,
respectively.

Table 3.1. CR2, MI3, and MI3+ Performance on Various Functions
This table contains the scores returned by the CR2, MI3, and MI3+ (MI with randomized binning for one
variable) on various relationships. Note that all of these relationships do not contain noise. For sensitivity
analysis, see section 3.7.2. Note that CR2 returns a very low score for a random cloud, and fairly high scores
for all other relationships. Furthermore, MI3 returns practically perfect scores for a random cloud and all
other relationships, with the exception of a half sine wave (due to its axis of symmetry). However, the MI3+
algorithm outperforms both other algorithms, returning perfect values for all functions, including a half sine
wave.



Power (X^2) Relationship

Figure 3.5 A. A Perfect Power Relationship (y = x2) of 1000 Points
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Figure 3.5 B. Characteristic Curve Generated by CR2 for a Power Relationship

This is the characteristic curve generated by CR2 for the power relationship shown in Figure 3.5A. This

particular run of CR2 was allowed to proceed through 100 binnings (1 bin, 2 bins, ... , 100 bins). Note the

fairly rapid initial increase in CR score as the number of bins increases.
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MI Algorithm Characteristic Manifold (Score = 1.00)
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Figure 3.6 A. A Perfect Sinusoidal Relationship (y = Sin(x)) of 1000 Points

Figure 3.5 C. Characteristic Manifold Generated by MI3 for a Power Relationship
This is the characteristic manifold generated by MI3 for the power relationship shown in Figure 3.5A. This
particular run of MI3 was allowed to proceed through 30 binnings for each variable {(1 bin, lbin), (1 bin, 2
bins), (2 bins, 2 bins), ... , (30 bins, 30 bins)). Note the rapid initial increase in MI score as the number of bins
increases.
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CR Algorithm Characteristic Curve (Score = 0.899)
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Figure 3.6 B. Characteristic Curve Generated by CR2 for a Sinuisodial Relationship
This is the characteristic curve generated by CR2 for the sinusoidal relationship shown in Figure 3.6A. This
particular run of CR2 was allowed to proceed through 100 binnings (1 bin, 2 bins, ... , 100 bins). Note the
very rapid initial increase in CR score as the number of bins increases.

MI Algorithm Characteristic Manifold (Score = .999)
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Figure 3.6 C. Characteristic Manifold Generated by MI3 for a Sinusoidal Relationship
This is the characteristic manifold generated by MI3 for the sinusoidal relationship shown in Figure 3.6A.
This particular run of MI3 was allowed to proceed through 30 binnings for each variable { (1 bin, I bin), (1 bin,
2 bins), (2 bins, 2 bins), ... , (30 bins, 30 bins)). Note the rapid initial increase in MI score as the number of
bins increases.
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Half-Sine (symmetric)

Figure 3.7 A. A Perfect Half Sine Wave (parabolic) Relationship (y = Sin(x)) of 1000 Points
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Figure 3.7 B. Characteristic Curve Generated by CR2 for a Parabolic Relationship
This is the characteristic curve generated by CR2 for the parabolic relationship shown in Figure 3.7A. This

particular run of CR2 was allowed to proceed through 100 binnings (1 bin, 2 bins, ... , 100 bins). Note the

rapid initial increase in CR score as the number of bins increases.



MI Algorithm Characteristic Manifold (Score = 0.579)

Figure 3.7 C. Characteristic Manifold Generated by MI3 for a Parabolic Relationship
This is the characteristic manifold generated by MI3 for the parabolic relationship shown in Figure 3.7A. This
particular run of MI3 was allowed to proceed through 30 binnings for each variable {(1 bin, lbin), (1 bin, 2
bins), (2 bins, 2 bins), ... , (30 bins, 30 bins)). Note that the rapid initial increase in MI score takes place over
a few different binning configurations, resulting in an unexpectedly low maximum slope, and therefore a low
M13 Score. MI3+ resolves this issue using randomized binning.
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Figure 3.7 D. Characteristic Manifold Generated by MI3+ for a Parabolic Relationship
This is the characteristic manifold generated by MI3+ for the parabolic relationship shown in Figure 3.7A.
This particular run of MI3+ was allowed to proceed through 30 binnings for each variable {(1 bin, lbin), (1
bin, 2 bins), (2 bins, 2 bins), ... , (30 bins, 30 bins)). Note that given the randomized binning on one variable,
the rapid initial increase in MI score takes more rapidly than using the MI3 algorithm, resulting in a more
reasonable MI3+ score.



This sample of the diverse class of functions that have been tested using the CR, MI3, and

MI3+ algorithms demonstrate the algorithms' ability to detect and measure the absolute

strength of virtually all correlations of interest from within a collection of variables.

3.7.2 CR2, M13, and M13+ Sensitivity to Noise

Most relationships that exist in real-world data are noisy, and therefore an important

property of the CR2, MI3, and MI3+ algorithms is how they perform on noisy

relationships. Tables 3.2 and 3.3, and Figures 3.8 and 3.9, show CR2 and MI3 scores for

various functions that contain varying levels of noise. Naturally, different types of

function react differently to noise, so it is expected that the CR2 and MI3 curves for

different functions behave differently once noise is introduced.

CR2 Score of Various Functions for Varying Noise (1000 points)

Graph / Noise 0% .5, 1% 5X 10W 20% X 50/ 70,% 100%
Cloud 0.074 0.067 0.070 0.060 0.058 0.052 0.086 0.050 0.060

Linear 0.866 0.866 0.866 0.856 0.826 0.741 0.396 0.282 0.275

Power 0.838 0.839 0.837 0.822 0.804 0.599 0.323 0.084 0.069
Exponential 0.493 0.494 0.494 0.483 0.534 0.403 0.155 0.085 0.084

Sin 0.900 0.900 0.900 0.897 0.889 0.837 0.591 0.277 0.100

Half Sin 0.728 0.728 0.728 0.709 0.669 0.502 0.187 0.071 0.057

Table 3.2. CR2 Scores of Various Functions for Varvine Levels of Noise
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Figure 3.8. CR2 Scores of Various Functions for Varying Levels of Noise

MI3 Score of Various Functions for Varying Noise (1000 points)

Graph / Noise 0% .5C 1% 5% 10% 20% 50% 70% 100%

Cloud 0.020 0.017 0.016 0.019 0.023 0.020 0.020 0.017 0.022

Linear 1.000 0.962 0.919 0.722 0.557 0.421 0.064 0.037 0.027

Power 1.000 0.947 0.906 0.689 0.482 0.229 0.042 0.018 0.019

Exponential 1.000 0.649 0.482 0.159 0.100 0.038 0.020 0.017 0.018

Sin 0.979 1.000 0.979 0.894 0.776 0.591 0.222 0.035 0.018

Half Sin 0.571 0.562 0.545 0.459 0.385 0.172 0.017 0.015 0.027

Table 3.3. MI3 Scores of Various Functions for Varvine Levels of Noise I
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Fieure 3.9. MI3 Scores of Various Functions for Varvine Levels of Noise

A second critical property is how consistent the results of the CR2, MI, and MI3+

algorithms are for similar functions. This can be tested by leave-out cross validation. As

an example, a perfect linear relationship containing 1000 points is created, and varying

levels of noise are introduced to it. For each level of noise that is introduced, 100 runs of

each algorithm are executed, each using a randomly selected sample of 500 of the original

1000 points. The means and standard deviations of each round of 100 trials are presented

in Tables 3.4 and 3.5 below. Note that the standard deviations for both algorithms are

relatively low, and that they increase slightly with noise as expected (until the functions

become so noisy that they start resembling a random cloud, which has a low standard

deviation).

Mean Scores of 100 Trials of 500 Randomly Selected Points

Algorithm / Noise .5% 1% 5% 10% 20% 50%

MI13 0.968 0.934 0.737 0.564 0.417 0.068

CR2 0.866 0.866 0.856 0.826 0.738 0.396

Table 3.4. Mean CR2 and MI3 Scores of 100 Trials on 500 Randomly Selected Points from 1000 Point
Relationshis with Varvine Levels of Noise



Standard Deviation of Scores of

Algorithm / Noise .5 ,
MI3 0.0230
CR2 0.0047

100 Trials of 500 Randomly Selected Points

1% 5c, 10% 20% 50%
0.0267 0.0300 0.0330 0.0293 0.0141
0.0058 0.0064 0.0092 0.0152 0.0231

Table 3.5. Standard Deviations of CR2 and MI3 Scores of 100 Trials on 500 Randomly Selected Points
from 1000 Point Relationshins with Varvine Levels of Noise

3.8 Interactively Selecting Clusters of Associated Variables for

Further Analysis (Gravity Graph)

The CR2, MI3, and MI3+ algorithms produce a clear list of relationships present in a

given dataset. However, while each of these relationships is potentially meaningful, it is

the interactions amongst groups of variables and relationships that are truly meaningful.

To enable an intuitive and efficient interpretation of how these different relationships are

related to each other, a novel, specialized, interactive visualization, called a Gravity

Graph, is introduced.

I



3.8.1 The Gravity Graph Visualization

A gravity graph is designed to be constructed using the output of the CR2, MI3, or MI3+

algorithms, but can also be constructed from the outputs of regressions or other clustering

algorithms. In a Gravity Graph, the variables in the data set are represented by nodes, and

the relationships between them are represented by edges. The graph is a dynamic physical

equilibrium based on a gravitational model, which is governed by forces that vary in

proportion to the strengths of relationships between variables. In other words, every

aspect of the physical, gravitational system between nodes is dependent on a parameter

from the CR2, MI3, or MI3+ algorithms. Users can intuitively interact with this graph by

adding or removing variables or relationships between variables and seeing how the

gravitational model reacts to these changes. For example, a user can create a Gravity

Graph that contains only a few variables (nodes) and relationships (edges), and can

progressively add more variables or relationships into the graph, to see how the physical

equilibrium shifts. Relationships can be added in random order, in order by descending

relationship strength, or between a specific variable of interest and other variables. An

example of the construction of a Gravity Graph for an influenza dataset provided by the

CDC is shown in Figure 3.10.
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Figure 3.10. The Construction of a Gravity Graph (US Influenza Data)
There are several 'screen shots' of Gravity Graph that is constructed from US (state-level) influenza data provided by

the CDC. The gravity graph is intended to be an interactive visualization of the relationships between variables. Thus,

the user can begin by graphing only a few variables (nodes) and the relationships between them (edges), show in (A).

This graph represents a physical equilibrium that is defined by the relationships between the variables being studied.

Thus, despite the fact that these screen shots are still, these equilibria shift each time the user adds a new variable or

relationship of interest to the graph, and the nodes appear to float and jostle into position until they settle in a 'low

energy equilibrium.' (B) and (C) show how the graph develops as the user continues to add variables. Finally, (D)

shows the final graph from (C) with a 'gravitational glow,' which is intended to help the user easily identify clusters of

highly interrelated variables. In this case, note the red/dark purple (highly correlated) cluster of variables that cluster

around the "Influenza Prevalence' node. The variables in this cluster include time, maximum and minimum

temperatures, patient visits in hospitals, population flux (travel in and out of a region), all of which help determine the

influenza epidemic dynamics.
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The following parameters of a Gravity Graph are determined by algorithmic output:

1. Gravitational Fields: The gravitational field of any node is proportional to the

average CR/MI correlation ratio between it and any other nodes (variables) to
which it is connected at a given time.

2. Edge Strengths: The length and thickness of a line (edge) that connects any two
nodes is proportional to the relationship between the two corresponding variables.
Thus, variables that are very related (have a high CR/MI correlation coefficient) lie
very close to each other and are connected by thick edges while weakly related
variables end up far away from each other and connected by weaker looking
edges.

3. Edge Viscosity: Edges are modeled by ideal springs. The spring constant of an

edge is proportional to the variance in the corresponding correlation. Note, this
parameter is only set when the strength of the relationship between two variables
can be assessed in multiple different scenarios (for example, for each year in a
dataset).

4. Coulombic Repulsions: Coulombic repulsions exist between every pair of nodes
that are not connected by an edge. This is to ensure that variables that are related
(have a high CR/MI correlation coefficient) cluster while unrelated variables do
not associate with each other.

5. Gravitational Glow: If the user activates the gravitational glow mode, each node's
gravitational field is depicted as a colorful gradient. The radius and color of this

circular gradient is proportional to the node's gravitational field and to the number
of other nodes to which it is connected. Red gravitational glows represent nodes
that are on average highly correlated with their neighboring nodes, while blue
gravitational fields represent nodes that are on average not highly correlated with
their neighboring nodes. A gravitational field that is a shade of purple indicates a
node that is highly correlated to some of its neighbors, and not highly correlated to
others. This gravitational glow redundantly highlights groups of highly
interrelated variables, allowing the user to select highly correlated 'red pockets'.

The Gravity Graph makes groups of interrelated variables immediately obvious and

therefore easy for the investigator to pick out of a huge initial list of variables and

relationships. Furthermore, interesting clusters of related variables can be selected and the

most relevant dimensions within these clusters can be identified for analysis. Together with the

CR2, MI3, and MI3+ algorithms, the Gravity Graph represents a fundamental step of the

VisuaLyzer approach, which aims to intelligently reduce the amount of dimensions in the

dataset, making essential relationships abundantly clear.

3.8.2 Gravity Graph Examples

Figure 3.11 below shows a larger view of a selected subgraph of the Gravity Graph

constructed from the output of MI3+ on influenza data. The nodes have jostled into a



'low energy equilibrium,' meaning that highly correlated variables (red) try to move

closer to each other, while uncorrelated variables are repelled. Furthermore, this graph is

shown in Gravitational Glow mode, in which each node's gravitational field is depicted as

a colorful gradient. This is intended to help the user easily identify clusters of highly

interrelated variables. In this case, note the red/dark purple (highly correlated) cluster of

variables that cluster around the "Influenza Prevalence' node. The variables in this cluster

include time, maximum and minimum temperatures, patient visits in hospitals, population

flux (travel in and out of a region), all of which help determine the influenza epidemic

dynamics.

Figure 3.11. An Influenza Gravity Graph (US Influenza Data)
There is a screenshot of Gravity Graph that is constructed from US (state-level) influenza data provided by the

CDC. This graph represents a physical equilibrium that is defined by the relationships between the variables

being studied. Thus, despite the fact that these screen shots are still, these equilibria shift each time the user

adds a new variable or relationship of interest to the graph, and the nodes appear to float and jostle into

position until they settle in a 'low energy equilibrium.' This graph is shown in Gravitational Glow mode,

which is intended to help the user easily identify clusters of highly interrelated variables (red pockets). In this

case, note the red/dark purple (highly correlated) cluster of variables that cluster around the "Influenza

Prevalence' node. The variables in this cluster include time, population density, maximum and minimum

temperatures, patient visits in hospitals, population flux (travel in and out of a region), all of which help

determine the influenza epidemic dynamics.



Figure 3.12 is a screenshot of a selected subgraph of the Gravity Graph constructed from

the output of MI3+ on cholera data from Bangladesh. Again, note the red cluster of

highly related variables which surround the 'cholera prevalence' node. In this case, the

Gravity Graph captures the factors that help define this particular cholera epidemic.

Muslims live in only one quadrant of this region of Bangladesh, at a population density

three times that of Hindus. Their increased population density is correlated with more

clinics and often access to safer water sources. Therefore, cholera is significantly more

rampant in the Hindu regions in this study. Correspondingly, the Gravity Graph shows

the cluster of cholera prevalence, religion, population density, distance to water sources,

number of clinics, and x and y GPS coordinates.
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Figure 3.12. A Cholera Gravity Graph (Bangladesh Cholera Data)
There is a screenshot of Gravity Graph that is constructed from household-lever cholera data provided by the
International Vaccine Initiative. The 'cholera prevalence' node is highlighted by the black arrow. In this
case, note the red/dark purple (highly correlated) cluster of variables that cluster around the 'cholera
prevalence' node. This Gravity Graph meaningfully captures the factors that help define this particular
cholera epidemic. Muslims live in only one quadrant of this region of Bangladesh, at a population density
three times that of Hindus. Their increased population density is correlated with more clinics and often access
to safer water sources. Therefore, cholera is significantly more rampant in the Hindu regions in this study.
Correspondingly, the Gravity Graph shows the cluster of cholera prevalence, religion, population density,
distance to water sources, number of clinics, and x and y GPS coordinates.
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3.8.3 The Usefulness of Gravity Graphs

As demonstrated in Section 3.8.2, Gravity Graphs can be very useful as a quick way to

understand the relationships between multiple factors that might be affecting an outcome

variable of interest. However, the real power of the VisuaLyzer approach lies in its use of

Gravity Graphs to select several interesting clusters of related variables for further

analysis. Chapter 4 covers how the relationships between variables in clusters of interest

can be examined rapidly and dynamically, using VisuaLyzer's visualization environment.

Additionally, using a case study, Chapter 6 discusses a larger, more complex usage of a

Gravity Graph together with the visualization environment.

3.9 Further Work

The CR2, MI3, and MI3+ algorithms and gravity graph presented in this chapter are a

crucial component of VisuaLyzer's exploratory and rigorous approach to data analysis.

Despite their successful performance, there are sever matters which could be further

investigated:

1. Rigorously defining what these algorithms target: It would be tremendously

useful to be able to define what these algorithms are looking for in a relationship

between two variables. For example, should a sine wave that is repeated for 10

periods return the same score a single sine wave? Are these relationships

identical, or is one intrinsically more 'complex' than the other? What is the

fundamental definition of 'complexity' that should be used to judge relationships?

2. Exploring other properties of the characteristic curve/manifold: While maximum

slope and over-under area/volume are very telling of relationships between

variables, other properties of this new family of characteristic curves/manifolds

should be investigated. There are likely properties other than maximum slope and

over-under area/volume that will provide useful information about these

characteristic curves/manifolds. It will be useful to identify other such key

characteristics, and to be able to provide a small set of useful metrics as output.

3. Method of Binning: This chapter laid the foundation for several binning

approaches that can be used in conjunction with CR2, MI3, and MI3+. However,

one additional binning approach could use k-means clustering to determine bin

boundaries. The performance of this approach should be compared MI3+'s



performance. This method should perform marginally better on functions like sine

waves with varying periods; however, it will be significantly more time-intensive.

This new class of algorithms involving a spectrum of correlation ratio and mutual

information calculations to detect dependencies among finite real-valued data has shown

great promise thus far as tools for data exploration, and should continue to be investigated

further.
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Chapter 4: A Dynamic, Rapid Visualization
Environment

VisuaLyzer includes a clear visualization environment for the rapid analysis of multi-

dimensional data. This component aims to do just the opposite of the first: to increase the

number of dimensions that can easily be analyzed by a human. Well-designed, innovative,

visualizations allow users to see as many as ten dimensions at a time in a dynamic, interactive

manner, as compared to the two or three dimensions that are traditionally viewed in a static

manner. This allows for the analysis of as many of the essential relationships identified by the

VisuaLyzer analytic suite (Chapter 3) as possible at a time. VisuaLyzer's intuitive multi-

dimensional visualizations allow for the rapid identification of trends and potentially for the

explanation of relationships between variables of interest. This chapter describes VisuaLyzer' s

visualization environment and explores its abilities through several examples.

4.1 The Visualization Workspace

VisuaLyzer's visualization environment is modeled as a workspace, which is intended to

resemble a 'virtual canvas' on which the user can create and modify various visualizations

that pertain to his analysis. This workspace is shown in Figure 4.1 below, and contains

several components.

4.1.1 The View Menu

The view menu is displayed across the bottom of the visualization environment when no

views are being viewed. This menu contains icons for the various views that are included

in the visualization environment. Furthermore, users can develop new views and add



them to this menu for use. Through this menu, users can launch new views of various

types for data exploration.

4.1.2 The Workspace Canvas

Once a view is created, it exists in the workspace and is displayed on the workspace

canvas. It can be engaged (viewed in full screen), or disengaged (viewed as a component,

alongside other components on the workspace canvas). Multiple views can be created and

modified at the same time using the workspace, and the workspace canvas is intended to

allow the user to explore the data through multiple views concurrently.

4.1.3 The Variable Menu

The variable menu is always displayed in the bottom left corner of the visualization

environment. It contains a list of all of the variables in a loaded database or set of

databases (joined on a primary key). These variables can be selected by the user to be

examined in a visualization.



Figure 4.1. The Visualization Workspace

This is VisuaLyzer's visualization workspace. The menu along the left side is the variable menu, the menu along the

bottom is the view menu, and the gray area is the workspace canvas. In this image, two views have been created,

4.2 Views

The visualization environment contains several views, which can be created from the view

menu. Views can be thought of as the equivalent of "documents," and can be created and

modified at any time. Different views are useful for exploring different data, and the

types of views available are discussed in the sections that follow. However, each view

contains three standard components that are used to interact with it.



4.2.1 The Encoding Menu

Views allow users to explore several dimensions of data simultaneously. This is achieved

by mapping different variables to various properties of objects being visualized in a view.

These mappings are called encodings, and are specific to each view. The encoding menu

contains all of the encodings available for a given view. To visualize a particular variable,

a user must drag a variable from the variable menu onto an encoding on the encoding

menu. Once a variable is loaded onto an encoding, the encoding's range is set to the range

of that particular variable. Furthermore, the encoding contains a slide bar with two filters,

which can be used to select a sub-range of the encoded variable to visualize. Figure 4.2

shows an encoding with a variable loaded and filters set.

Y-Axis (--NOT USED--)

Figure 4.2. A Sample Encoding

This is a part of an encoding menu from a Scatter

View, which contains a Y-Axis encoding, Radius

Radius Size (HIVintected) Size encoding, and a Color encoding. In this case, a

SS variable that represents HIV prevalence has been

loaded onto the Radius Size encoding, meaning that

0 co 28 920 in this particular scatter plot, in which each country

in the world is represented by a bubble, the size of

that bubble would correspond to that country's HIV

Color (--NOT USED--) * prevalence rate. Furthermore, a filter has been used

to select only countries whose HIV prevalence rate is

A user may visualize as many variables at a time as there are encodings for a given view.

Views have anywhere from six to ten encodings. The encoding menu is always displayed

in the top left corner of a view when the view is engaged.

4.2.2 The Global Scrollbar

Each view contains a "Global Scroll" encoding and a corresponding global scroll bar,

which is displayed directly below the plot in a given view. This "Global Scroll" encoding

is special in the sense that it can only be loaded with independent variables (for example,

with variables such as time or country). This variable must be independent because it is



the variable that is used to 'animate' the view using the View Controls (Section 4.2.3).

For example, if time is loaded onto the "Global Scroll," then a user can 'play' the

visualization forwards and backwards through time using the View Controls, and watch as

the data change at each time step.

4.2.3 The View Controls

The View Controls are used to animate a view. The View Controls contain Play, Step

Forward, Step Backwards, and Stop buttons. It also contains a frame-rate control slide

bar, which is used to set the speed at which the view animates (anywhere from 1 to 20

frames per second). The View Control effectively 'play' through the variable loaded onto
the Global Scroll.

For example, suppose that a circle is placed on every country on a world map, that the

circle's size is proportional to the prevalence of a disease in that country, and that the

variable "Year" is loaded onto the Global Scroll. In this case, the buttons in the View

Control could be used to 'play through time,' animating the circles on each of the

countries, which would grow and shrink according to the prevalence of the disease at each

country each year.



Figure 4.3. A Sample View (Histogram View)

This is a sample (engaged) view. The encoding menu is boxed in red, the Global Scroll is boxed in yellow,
and the View Controls is boxed in green.

4.3 The Map View

A Map View is a view which plots data onto a given map, and is designed for visualizing

spatial relationships (Fry, 2007). The Map View is particularly useful in exploring

epidemiological datasets as it can be used to elucidate the temporospatial dynamics of

diseases or large scale public health problems. For example, Map Views can be used to

answer questions like "What relationships exist between the introduction of a new drug

into a region and disease prevalence in that region, among treated and untreated

individuals?", and "What other factors have an impact on this relationship?"



4.3.1 Map View Encodings

Map Views contain the following eight encodings:

1. Space (by default): The user must specify what the 'items' are in a dataset being

viewed on the map (e.g. country, state, etc.).
2. Global Scroll: An independent variable must be loaded onto this encoding in

order to animate the map. In the case of the map view, a temporal variable is

usually used.

3. Radius Size A and Radius Size B: When a variable is loaded onto a Radius Size

encoding, a circular bubble will be displayed on each location on the map, whose

radius is proportional to the value of this variable. If variables are loaded onto

both Radius Size encodings, then two circular bubbles are shown at each location.

4. Color A and Color B: When a variable is loaded onto a Color encoding, the value

of that variable will be represented by the color of the circular bubble that is

displayed at each location on the map. This is done by mapping the minimum

value of the loaded variable onto one color (say, blue) and the maximum value of

the loaded variable onto another color (say, red), and interpolating between the

two colors based on the value of the loaded variable at each location. The Color A

encoding sets the color of the bubbles associated with Radius Size A encoding and

the Color B encoding sets the color of the bubbles associated with Radius Size B

encoding.

5. Opacity A and Opacity B: When a variable is loaded onto an Opacity encoding,
the value of that variable will be represented by the opacity of the circular bubble

that is displayed at each location on the map. The Opacity A encoding sets the

opacity of the bubbles associated with Radius Size A encoding and the Opacity B

encoding sets the color of the bubbles associated with Radius Size B encoding.



4.3.2 A Simple Map View Example: Influenza in the United States

A Map View can easily be used to examine the temporospatial dynamics of influenza in

the United States. A simple example of the Map View can be used to plot the prevalence

of influenza through time and space. Figure 4.4 contains three snapshots of an animated

Map View which shows an influenza wave passing through the United Sates from west to

east. In this view, influenza prevalence is loaded onto the Radius Size A encoding.

Despite the fact that these screenshots are static, the Global Scroll at the bottom is actively

moving through the selected independent variable (in this case, time), creating an

animation of this influenza epidemic over time. Finally, in this particular visualization,

note that only three variables are encoded (space, time, and influenza prevalence). More

complex Map Views can be constructed by loading more variables onto encodings. For

example, the dependence of influenza on temperature can be examined by loading a

temperature variable onto a Color encoding.



Figure 4A. A Map View: Influenza in
the United States

These are three screenshots of a Map
View that shows an influenza
epidemic spreading across the United
States from west to east in 2005. The
size of the bubble on each state is
proportional to the prevalence of
influenza in that state in a given
week. Each snapshot was taken two
weeks after the previous one. Despite
the fact that these screenshots are
static, the Global Scroll at the bottom
is actively moving through the
selected independent variable (in this
case, time), creating an animation of
this influenza epidemic over time.



4.3.3 A More Complex Map View Example: Gonorrhea in the United States

Significantly more complex Map Views than the one shown above can be constructed. For
example, a Map View can be used to study the temporospatial dynamics of drug-resistant

gonorrhea in the United States. Figure 4.5 below is a Map View plotting the prevalence of a

particular drug-resistant strain of gonorrhea, according to geographic region, versus drug

prevalence, stratified by gender and sexual orientation, and over time. Again, despite the

fact that these screenshots are static, the Global Scroll is actively moving through the

selected independent variable (in this case, time), creating an animation of the spread of

drug-resistant gonorrhea over time. The data in this figure is reported by 40 clinics

around the US and was provided by the CDC. The radius of the circles centered on each

major city represent the amount of drug-resistant gonorrhea in that city for a given week,
and their color represents the drug prevalence in that city for that week. The red/blue

bubbles represent the drug-resistant cases among homosexual men and the white/black

bubbles represent the drug-resistant cases among heterosexual men. As the scrollbar

moves through time, the circles grow and shrink according to number of cases of

gonorrhea, and change color according to drug usage. Notice how over time (from 2001

to 2006), drug usage has increased (circles become more red), while drug resistance

emerges particularly on the west coast (circles get larger), specifically within the

homosexual population (white circles still relatively small).
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Figure 4.5. A Map View: Drug-Resistant Gonorrhea in the United States

These are two snapshots of a Map View showing gonorrhea data from 40 clinics in major cities across the US. The radius of the red/blue
circles centered on each major city represents the prevalence of a drug-resistant strain of gonorrhea in the homosexual population for a
given week. The color of these circles represents amount of drug usage (interpolated between blue = 0% and red = 100%). The radius of
the white circles represents the prevalence of that same strain in the heterosexual population. The top snapshot is from early 2002, while
the bottom snapshot is from 2006. Notice how over time, drug usage has increased (circles becoming more red), while drug resistance
has emerged (circles getting larger) particularly on the west coast, specifically within the homosexual population (white circles still
relatively small).

crl x- . -I. 11 ' _ Wi

mlro__g 11 - -1 _ _ _ I _ ' _ - _ L" _ ' .I - . _ _ _

I;



4.4 The Scatter View

A Scatter View is a more general view than a Map View and is applicable to more types

of data. In this view, data is plotted on a 2-dimmensional plot as points (circular bubbles

or differing shapes). Several properties of each point can be encoded with a variable, and

the points can be animated by loading an independent variable onto the Global Scroll.

Scatter Views can be useful for plotting just about any kind of data (Rosling, 2007).

4.4.1 Scatter View Encodings

Scatter Views contain the following seven encodings:

1. X-Axis: When a variable is loaded onto the X-Axis encoding, the x-coordinate

of each item being plotted (circular bubble) is defined by the value of this

particular variable.

2. Y-Axis: When a variable is loaded onto the Y-Axis encoding, the y-coordinate

of each item being plotted is defined by the value of this particular variable.

3. Global Scroll: An independent variable must be loaded onto this encoding in

order to animate the scatter plot. Unlike in a Map View, any independent

variable can be 'played through'. For example, "Country" could be loaded

onto the Global Scroll, and when the plot is animated, it would scroll through

various country profiles.

4. Radius Size: When a variable is loaded onto the Radius Size encoding, the

size of each point on the scatter plot becomes proportional to the value of this

variable.

5. Color: When a variable is loaded onto the Color encoding, the value of that

variable will be represented by the color of the points on the scatter plot. This

is done by mapping the minimum value of the loaded variable onto one color

(say, blue) and the maximum value of the loaded variable onto another color

(say red), and interpolating between the two colors based on the value of the

loaded variable at each location.

6. Opacity: When a variable is loaded onto the Opacity encoding, the value of

that variable will be represented by the opacity of the points on the scatter plot.
7. Shape: When a variable is loaded onto the Shape encoding, each point on the

scatter plot is turned into a regular n-polygon where n is proportional to the value

of this particular variable.



4.4.2 A Scatter View Example

A Scatter View can be used to examine global public health trends. For example, Figure 4.6

below uses a Scatter View to show how the rates of breast cancer and cervical cancer compare

to each other in countries around the world, and uses the Global Scroll to show how these rates

have changed over the last twenty years. To attempt to explain the patterns in cancer rates over

these twenty years a more complex Scatter View can be constructed. Figure 4.7 demonstrates

the ability to visualize a higher number of dimensions using the Scatter View by encoding two

more variables. This figure shows how geography and average income relate to breast cancer

and cervical cancer rates around the world.
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Figure 4.6. A Scatter View: Breast Cancer and Cervical Cancer Around the World

There are two snapshots of a Scatter View showing breast cancer and cervical cancer rates for countries around the world. The number of
new cases in a given year of breast cancer is loaded onto the x-axis and the number of new cases in a given year of cervical cancer is
loaded onto the y-axis. These snapshots shows a circle for each country in the world (for which there exists data), placed on the plot
according to its cancer rates. The time variable "Year" is loaded onto the Global Scroll, and the plot can be animated to watch how these
cancer rates change over time. The top snapshot was taken when the Global Scroll was on the year 1980 and the bottom snapshot was
taken when the Global Scroll was on the year 2002. Note how the rates of both cancers have risen in these 22 years, but only amongst
specific countries in each case. See Figure 4.7 for a further investigation as to what other factors help explain this phenomenon.
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Figure 4.7. A Scatter View: Breast Cancer and Cervical Cancer Around the World, By Continent and Income Per Person
There are two snapshots of a Scatter View attempt to examine the pattern by which breast cancer and cervical caner rates have grown in
countries around the world. The number of new cases in a given year of breast cancer is loaded onto the x-axis and the number of new
cases in a given year of cervical cancer is loaded onto the y-axis. These snapshots shows a circle for each country in the world (for which
there exists data), placed on the plot according to its cancer rates. The time variable "Year" is loaded onto the Global Scroll, and these
snapshots were taken when the Global Scroll was on the year 2002. Furthermore, the color of each circle represents is geography (yellow
= Europe and Central Asia, green = Sub-Saharan Africa, purple = Northern Africa and the Middle East, cyan = North America, blue =
South America, red = Oceania). Note how these geographic regions cluster according to their cancer rates, with Africa having the lowest
breast cancer rates but the highest cervical cancer rates, and Europe and North America having low cervical cancer rates but high breast
cancer rates.
The Bottom plot also encodes the average income per person in each country as that country's bubble radius size. Again, there is a clear
trend. Rich countries tend to have higher breast cancer rates and lower cervical cancer rates, and poor countries tend to have lower breast
cancer rates and higher cervical cancer rates. These Scatter Views clearly show how different lifestyles affect cancer rates.



4.5 The Histogram View

A Histogram View is useful for exploring the distributions of variables, or for comparing

multiple similar variables. Similarly to a Scatter View, a Histogram View plots points on a 2-
dimensional scatter plot; however, in a Histogram View, multiple variables can be loaded onto
the y-axis to allow for comparisons between different variables' distributions. As with all
VisuaLyzer views, a Histogram view can be animated by loading an independent variable onto
the Global Scroll.

4.5.1 Histogram View Encodings

Histogram Views contain the following seven encodings:

1. X-Axis: When a variable is loaded onto the X-Axis encoding, the x-coordinate
of each item being plotted is defined by the value of this particular variable.

2. Variable 1, Variable 2, Variable 3, Variable 4, and Variable 5: When a
variable is loaded onto a Variable encoding, the y-coordinate of each item
being plotted is defined by the value of this particular variable. Up to five
different variables can be loaded onto Variable encodings, all of which are
mapped to the y-axis. Each different variable is plotted on the view as a
different series, using a unique color.

3. Global Scroll: An independent variable must be loaded onto this encoding in
order to animate the scatter plot. Unlike in a Map View, any independent
variable can be 'played through'. For example, "Country" could be loaded
onto the Global Scroll, and when the plot is animated, it would scroll through

the distributions of loaded variables for various countries.

Although a Y-Axis encoding appears on the Histogram View encoding menu, no variables can
be loaded onto this encoding. This encoding exists to give the user control over the total range
of the y-axis (if the various variables loaded onto the Variable encodings have different
ranges).



4.5.2 Histogram View Modes

Histogram Views can plot data in one of five ways:

1. bar graphs,
2. line graphs,
3. area plots (area under the curve),
4. scatter plots; and
5. curved line plots (polynomial fits).

In most cases, which mode to use is simply a matter of user preference.

4.5.3 Turning Variables On/Off

Given that it is possible to load up to five different variables onto the y-axis simultaneously, a

method for toggling variables' visibility on the histogram is necessary. For each variable

loaded onto a Variable encoding, a tab is displayed atop the histogram plot. If this tab is

clicked, it moves to the background, and its corresponding variable is not displayed on the

histogram (but remains encoded and retains all filters placed upon it). To show the variable

again, the tab must be clicked again.

4.5.4 Stacking Variables

For every variable that is loaded onto a Variable encoding, a small button with an "S" appears

to the right of the histogram plot. These buttons can be used to stack the distributions of

different variables on top of each other. This may be useful if, for example, variables are in

terms of percentages and stacking them would help show the relative proportion of each
variable.

4.5.5 Histogram View Example: Streptococcus pneumoniae in Kenya

A Histogram View can be used to examine trends in the prevalence of various strains of

Streptococcus pneumoniae extremely rapidly. Figure 4.7 compares the prevalences of
four different strains of Streptococcus pneumoniae in Kenya during different months of
the year. Again, while these snapshots are static, these plots can be animated to reflect the
rise and fall of the various strains throughout the different months of the year.



Figure 4.7. A Histogram View: Streptococcus pneumoniae in Kenya

These are two snapshots of a Histogram View showing the prevalence of four different strains of Streptococcus pneumoniae,

shown in different colors, from 198 zones in Kenya. The top snapshot shows the prevalence rates for a typical month of the

year, while the bottom snapshot shows that in October 2006, several strains (19F and 6A) were particularly prevalent.

Desoite the fact that these snanshots are static, these Dlots can be animated to reflect the rise and fall of the various strains
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4.6 Rapid Data Exploration

The VisuaLyzer visualization environment is designed to allow for the rapid, dynamic

exploration of data. The ability to create views, add and remove variables to views on the

fly, and animate views provides users with a powerful toolkit for data mining. Moreover,

the ability to interact with visualizations that are capable of intuitively displaying

anywhere from six to ten dimensions of data simultaneously provides an incredible

advantage over standard graphing techniques. The ability to view trends rapidly and

dynamically provides a powerful means for identifying confounding factors and

generating new ideas about the mechanisms that define public health dynamics.
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Chapter 5: Intelligent Hypothesis Generation

VisuaLyzer combines its analytical tools and visualizations to form an advanced mechanism

for guiding data exploration. Thus far, the VisuaLyzer approach to exploratory data analysis

involves identifying all possible correlations between variables within a dataset in a

computationally rigorous fashion, and using dynamic visualizations to explore the

identified relationships of interest. The final component of this approach uses the

algorithmically-identified associations, together with human intuition gathered through

human interaction with the visualizations, to intelligently and automatically generate

hypotheses that may be of interest to the user.

This final component of the VisuaLyzer approach is its Relationship Suggestor, which

employs randomized and machine learning algorithms to identify variable relationships of

interest. When a user loads a set of variables of interest into a visualization, VisuaLyzer's

Relationship Suggestor runs in the background, searching for new variables that would be

of interest to the user based on which variables are currently being viewed. This crucial

final step of the VisuaLyzer approach is intended to search the space of variables not

being examined by the user to find potentially critical relationships that may be affecting

the relationships being viewed. Another way of looking at this is that by loading specific

variables of interest into a visualization, the user is training the computer to search for

relationships that may be of interest to the user.

5.1 The Relationship Suggestor

VisuaLyzer's Relationship Suggestor is comprised of two algorithms, both of which work

together to help intelligently identify relationships that might be of interest to a user. The



first algorithm is a randomized algorithm that searches for variables that are dependent on

the variables being viewed, and the second is a machine learning algorithm that relies on

usage heuristics and collaborative filtering to identify variables that are most commonly

visualized with the variables currently being viewed.

5.1.1 Randomized Algorithm for Relationship Identification

As a first pass at guiding user exploration, the Relationship Suggestor employs a

randomized algorithm to search for variables that are related to the variables that a user

has deemed interesting (the variables he has chosen to visualize). This algorithm simply

randomly selects a variable from the set of variables that is being visualized and a second

variable from the set of variables that is not being visualized, and computes the CR2 and

MI3+ score for the relationship between the two. If either the calculated CR2 or MI3+

score is amongst the top 5% of CR2 or MI3+ scores in this dataset, then this relationship

is suggested to the user as a potential relationship of interest. The algorithm determines if

the CR2 or MI3+ score for a randomly selected relationship is in the top 5% by consulting

the lists of CR2 and MI3+ scores generated for the entire dataset from when these

algorithms were run on the entire dataset in the analytic environment. If the user did not

run the CR2 or MI3+ algorithm on this dataset, then the randomized algorithm simply

calculates the distribution of relationships in this dataset by randomly sampling a

significant proportion of pairs of variables and calculating their CR2 and MI3+ scores.

Note that this only has to be done once for a given dataset.

5.1.2 Variable-Based Collaborative Filtering

5.1.2.1 An Introduction to Collaborative Filtering

Collaborative filtering is a machine learning technique that involves the filtering of

information or patterns by using information from multiple data sources or users (G.

Linden et al, 2003). For example, collaborative filtering can be used to make automatic

predictions (filtering) about the interests of a user by collecting information about user-

preferences from many users (collaborating). The fundamental assumption made using

collaborative filtering is that those who agreed in the past tend to agree again in the future.
Collaborative filtering is used by several recommendation systems, including most

famously for movie recommendation by the movie rental company Netflix (A. Narayanan

et al., 2006).



5.1.2.2 An Adaptation of Collaborative Filtering

Traditionally, collaborative filtering is performed on a collection of user ratings or

preferences. However, VisuaLyzer uses an adaptation of collaborative filtering that is

based on the similarity of the usage of different variables in visualizations.(G. Linden et

al, 2003). VisuaLyzer's collaborative filtering algorithm stores a variable-variable matrix,

which stores counters that store the number of times each pair of variables has been

visualized together, as well as a variable-similarity table, which stores the 'similarity of

use' of each pair of variables (as calculated by the algorithm). These two tables are

created for each database that is loaded into VisuaLyzer, saved for the lifetime of the

database in the VisuaLyzer platform, and updated after the creation of use of every

visualization.

Each time a variable is loaded onto an encoding, VisuaLyzer's collaborative filtering

algorithm uses the variable-similarity table to find variables similar to the user's currently

loaded variables, aggregates those variables, and then recommends the variables that

would most likely be interesting to add to the current visualization. Unlike traditional

collaborative filtering, this algorithm performs well with limited usage data, producing

high-quality recommendations based on as few as two or three variables. Figure 5.1

contains the pseudocode for VisuaLyzer's iterative collaborative filtering algorithm.



For each variable vi that is loaded onto an encoding

For each variable vj that is simultaneously loaded

onto an encoding

Record that vi and vj were visualized together

(CF[I,j] += 1)

For each variable vj

Figure 5.1. Pseudo-Code for VisuaLyzer's Relationship Suggestor Collaborative Filtering Algorithm

5.1.2.3 Computing the Similarity between Two Variables

Each variable in the database is represented as a v-dimensional vector, where v is the

number of variables in the loaded database. This vector simply contains the counts of the

number of times this variable has been visualized with every other variable in the

database. The collaborative filtering algorithm computes the similarity between two

variables, A and B, by measuring the cosine of the angle between their respective v-

dimensional count vectors, as shown in Equation 5.1 below (G. Linden et al, 2003).

sinilarit{A, h) = cos-, h) = . B
IIAI* IBEq. 5.1

5.1.2.4 Scalability

VisuaLyzer's collaborative filtering algorithm creates its variable-similarity table offline

(whenever no visualizations are engaged). This component of the algorithm is O(v2),
where v is the number of variables in the loaded database. Given this variable-similarity

table, the algorithm's online component -- finding variables that are similar to the user's

currently loaded variables - scales independently of the size of the database. The online

component only depends on the number of variables which are currently loaded onto

encodings, which is never more than -10. Thus, the algorithm is fast even for extremely

large datasets with a large number of variables.



5.2 An Example of the Relationship Suggestor at Work

Figure 5.2 shows an example of the randomized algorithm of the Relationship Suggestor

applied to an aggregated version of the influenza dataset introduced in Chapter 4. The

figure contains snapshots of a Scatter View that is used to demonstrate the seasonality of

influenza in regions of the United States. The figure has six variables encoded: time,
space (different US regions depicted by different shapes), minimum temperature,
maximum temperature, the number of hospital patient visits, and influenza prevalence.

Once the view is animated, the Relationship Suggestor's randomized algorithm identifies

that population density is also highly correlated with influenza prevalence, and suggests

that the user add this variable to the visualization to gain a better understanding of the

underlying disease dynamics. Furthermore, if the user chooses to accept the Relationship

Suggestor's recommendation, VisuaLyzer helps the user by locating the variable from
within the variable menu.

An example of the Relationship Suggestor's collaborative filtering algorithm is provided

in the in-depth case study in Chapter 6.

5.3 Further Work

While VisuaLyzer's Relationship Suggestor manages to provide reasonable, and

frequently useful, recommendations to users, there is a tremendous amount of room for

improvement in this realm. Automated recommendation systems is a highly complex

field of machine learning that could certainly be used to improve VisuaLyzer's data

exploration-guiding abilities.
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Figure 5.2. VisuaLyzer's Relationship Suggestor (Randomized Algorithm)
These are two snapshots of the "Scatter View," showing influenza data from 9 regions across the US. The different shapes represent the
nine regions in the US, and their opacity (how dark they are) represents the amount of influenza in their corresponding regions (dark =
more influenza, clear = no influenza). The regions' position on the plot is determined by the minimum temperature for a particular week
(x-axis), and the maximum temperature in that region for that week (y-axis). Finally, the size of the shape is proportional to the number
of patient visits to hospitals in each reagion. As the scrollbar moves through time, the shapes move according to their x- and y- axis
values, and their colors change to reflect fluctuations in influenza prevalence. Notice that in the top snapshot, temperatures are high (thus
the regions are all in the upper right comer), and there is practically no influenza (all the shapes are completely clear). However, in the
bottom snapshot, once temperatures drop (the shapes all move toward the lower left corner), all the shaped become dark, showing high
levels of influenza.
The message box that is circled in green in the lower right corner is a correlation alert, which pops up in real-time to alert the user that
Relationship Suggestor's algorithms running in the background have found an additional variable that behaves similarly to those he is
visluali7ine (Ponulation Densitv~) Adding these automaticallyv identified variahles helnm the user ,ain a tnuer uunderstanding of the
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Chapter 6: A VisuaLyzer Case-Study

The power of the VisuaLyzer platform lies in its ability to integrate various types of analysis

through the VisuaLyzer approach. This chapter focuses on thoroughly exploring this approach

by walking through each step of the process using a case study. This case study will contain

the following steps:

1. A dataset will be introduced and manipulated for ease of analysis.
2. The dataset will be inputted into CR2 and MI3+ and their results will be visualized and

explored using a Gravity Graph.
3. A cluster of interrelated variables will be selected from the Gravity Graph for further

exploration using the visualization environment.
4. The relationships amongst the variables in the selected cluster will be explored using a

Scatter View; and
5. The Relationship Suggestor's collaborative filtering algorithm will suggest other

relationships that might be of interest based on the variables being explored.
These steps obviously do not utilize all of VisuaLyzer's functionality, but they certainly

embody the process by which a dataset may be explored using VisuaLyzer.

6.1 The Data

The dataset for this case study comprises over 200 separate datasets parsed and downloaded

from several sources at the World Health Organization and the United Nations (WHOSIS,
2009, UNdata, 2009, H Rosling, 2007). Each of these 200+ datasets contains yearly country-

level data for all countries around the world, starting back as far as the nineteenth century for

some countries. The period of time which will be analyzed in this case study is from 1960 to
2005, due to the amount of data available for certain datasets.

The datasets collected include major global indicators, which fall into several broad categories:



1. Demographic and socioeconomic statistics,
2. Health service coverage and resources,
3. Mortality and burden of diseases,
4. Risk factors (water and sanitation, nutrition, etc),
5. Education (literacy rates, math competencies, etc); and
6. Technology (number of cell phones, number of internet users, etc).

6.2 Data Management

The individual 200+ datasets were downloaded and imported into VisuaLyzer, where they

were all compiled into a single composite database. While these particular databases did not

need further aggregation, many datasets often do. This can be achieved using VisuaLyzer's

built-in aggregator at any time. Several of the datasets explored in earlier chapters were

aggregated in this manner.

6.3 Identifying Clusters of Associated Variables

The newly created composite database is incredibly rich and complex, containing over

200 dimensions. It is difficult to know how to begin analyzing this database, and it is for
this exact purpose CR2 and MI3+ were developed.

6.3.1 Applying CR2 and M13+

The composite database was inputted into both the CR2 and MI3+ algorithms in an

attempt to identify and quantify relationships between variables within it. The algorithms

evaluate the strength of the relationship between all pairs of variables, thus their output

was some -10,000 relationships. Plots of the lists of their respective correlation

coefficients are shown below. Note that these lists were sorted before plotting.
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Figure 6.1. CR2 Output for Composite Database
This plot contains the output produced when CR2 was run on the composite database. Each point represents a
relationship between a pair of variables, and it y-value is its CR2 score. Note that these results are sorted.
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Figure 6.2. MI3+ Output for Composite Database

This plot contains the output produced when MI3+ was run on the composite database. Each point represents
a relationship between a pair of variables, and it y-value is its MI3+ score. Note that these results are sorted.

6.3.2 Constructing a Gravity Graph

Both of these sets of results were then used to construct a Gravity Graph. Figure 6.3

below shows the construction of the Gravity Graph that was built using the CR2 output.

This graph was constructed by adding relationships in rank-order by strength. As more

relationships are added to the graph, clusters of interrelated variables begin to form.

Several noticeable clusters in this graph include:

1. An 'educational cluster' containing various variables like literacy rates, the rate of

children that complete primary school, 4 th grade math achievement, measles

immunization rate(!), etc.

2. An 'energy cluster' containing variables like CO2 emissions, oil production,

natural gas reserves, urban population percentage, number of roads paved,
population growth, etc.



3. Several different 'health clusters'. One in particular includes variables like infant
mortality rate, the number of children per woman, life expectancy, breast cancer

rate, the number of births attended by a skilled person, urban population growth,
the number of medical doctors, etc.

These are just a few of the various groups of variables that begin to form. In the interest

of relating to public health, the next section will explore the 'health cluster' listed above.

Total _C02 emissions

Primary energyconsumption

S Mt -rO

Numberof deaths from T13estmated

I/ Ltracyrate adult male

Lteracy rate yot_total Li ectancy at birth

Figure 6.3. The Construction of the Gravity Graph for the Composite Database

These four snapshots summarize the construction of the Gravity Graph using CR2 output. In the top left
image, only the first several relationships have been inserted. The top right image shows the interactive graph
after several more variables and relationships have been introduced into the graph. The lower left image
shows the graph when even more variables and relationships have entered the picture. At this point, it is easy
to identify the three major clusters that are listed in Section 6.3.2. The cluster of health-related variables that
is selected for further examination is circled in blue, and shown in detail in the lower right image. Note that
these variables are very correlated (close to pure red gravitational glow).

100

,Fixed line-andmobilephonesubscribers

Natural gas consumptionper_person
"Energy_use

Children_ delderly

eexpectancy at birth



6.4 Exploration using the Visualization Environment

A Scatter View is a good general-purpose view that can be used to explore the cluster of

variables selected using the Gravity Graph. CR2 reports that there is a particularly strong

relationship between the mortality rate of children under five years of age in a given

country and the average number of children born to each woman in that country. These

two variables can be loaded onto a Scatter View. The Scatter View will plot a bubble

(circle) to represent each country, and the geographic variable "Continent" can be loaded

onto the Color encoding in order to color the countries according to their geographic

region. Finally, the temporal variable "Year" can be loaded onto the Global Scroll, in

order to provide the ability to 'animate' the visualization by playing forward and

backward through time. Thus far, five variables are encoded (country, continent, time,
children per woman, and under five mortality rate).

Figure 6.4 below, which re-creates analysis performed by statistician Hans Rosling,
contains snapshots of this visualization (H. Rosling, 2007). In comparing the two plots, it
is evident that in 1961, the industrialized countries (mostly only Europe and North

America) had fewer than four children per woman, and an infant mortality rate of less

than about 12%. However, developing countries had on average at least five children per

woman, and an infant mortality rate of anywhere between 12 and 40%. The points on the

plot are animated when the "play" button on the View Controls is pressed and it is

possible to literally watch the data trends between these variables play out over time. In

2005, the world looks completely different. Almost all the countries around the world

have migrated into the lower left corner (low infant mortality, few children per woman)

previously only occupied by Europe and North America. The extremely noticeable

exception is Africa, which has started to migrate toward the lower left, but is lagging
behind the others.
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Figure 6.4. Scatter View - Infant Mortality and Children per Woman in 1961 and 2005
These are two snapshots of the "Scatter View." Each point is a country, whose color indicates its continent (purple = Middle East & North
Africa, yellow = Europe and central Asia, green = sub-Saharan Africa, cyan = North America, dark blue = South America, red = Oceania).
Each point's position is determined by the infant mortality rate for children under five (x-axis) and the number of children per woman (y-
axis) in the given country, for a given year. In the top snapshot (year = 1961) the industrialized countries (mostly only Europe and North
America) had fewer than four children per woman, and an infant mortality rate of less than about 12% (gray box in the lower-left corner).
However, developing countries had at least five children per woman, and an infant mortality rate of anywhere between 12 and 40% (black
box in the upper right). Forty years later, the bottom snapshot shows a completely different picture. Almost all the countries around the
world have migrated into the lower left corner previously only occupied mostly by countries in Europe and North America. The extremely
noticeable exception is Africa, which has started to migrate toward the lower left, but is lagging behind the others.



6.5 Intelligent Hypothesis Generation: The Relationship
Suggestor

Based on the usage of the composite database over multiple visualizations, VisuaLyzer's

Relationship Suggestor can intelligently recommend relationships that may be of interest

given the variables that are currently being visualized. During the visualization shown in

Figure 6.4, the Relationship Suggestor's collaborative filtering algorithm suggested two

new relationships for exploration: a country's life expectancy at birth, and the rate of new

cases of breast cancer per country (see Figure 6.5). Note that of these two variables, only

life expectancy was included in the cluster identified in Section 6.4. This indicates that in

recommending a variable that was not clustered with the variables currently being

visualized, the collaborative filtering algorithm takes advantage of the human intuition

used to create visualizations in making its suggestions, which CR2 and MI3+ could not

have done.
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Figure 6.5. Relationship Suggestor Recommending a New Relationship for Exploration (Relationship Alert Circled in Black)



To explore these relationships in relation to our current visualization, they can simply be

loaded onto a free encoding. In this case, Figure 6.6 shows the same Scatter View that

was shown in Figure 6.4, but with the life expectancy variable loaded onto the Radius Size

encoding (the size of each country's bubble is proportional to its average life expectancy),

and the rate of new cases of breast cancer is loaded onto the Opacity encoding (the darker

a country's bubble is, the higher the rate of breast cancer in that country). Note that in

1961, the industrialized countries (in the lower-left corner) all have relatively longer life

expectancies, while the developing counties, which have on average more children per

woman, all have relatively shorter life expectancies. Furthermore, the rate of breast

cancer is relatively low for most countries (there are no extremely dark bubbles). In 2002,

as the developing countries moved down into the lower-left corner by decreasing their

infant mortality rates and average children per woman, they also began having longer life

expectancies (their bubbles got larger). Furthermore, as most countries moved into the

lower-left corner, their bubbles became darker, indicating growing breast cancer rates.

This more complex Scatter View is allowing the exploration of seven dimensions

simultaneously, and yet the patterns in the data are still visually striking.

Figure 6.7 shows the same visualization as that shown in Figure 6.6, but with a maximum

filter placed on the X-Axis encoding, which zooms in on the lower-left corner of the plot

in order to allow better differentiation between countries.
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Figure 6.6. Scatter View - Infant Mortality, Children per Woman, Life Expectancy, and Breast Cancer Rate in 1961 and 2002
These are two snapshots of the same "Scatter View" shown in Figure 6.4. Each point is a country, whose color indicates its continent
(purple = Middle East & North Africa, yellow = Europe and central Asia, green = sub-Saharan Africa, cyan = North America, dark blue =
South America, red = Oceania). Each point's position is determined by the infant mortality rate for children under five (x-axis) and the
number of children per woman (y-axis) in the given country, for a given year. Furthermore, the point's size is proportional to the life
expectancy of the corresponding country and its opacity is proportional to the rate of new breast cancer cases in the corresponding country.
Note that in the top snapshot (1961), the industrialized countries (in the lower-left corner) all have relatively longer life expectancies, while
the developing counties, which have on average more children per woman, all have relatively shorter life expectancies. Furthermore, the
rate of breast cancer is relatively low for most countries (there are no extremely dark bubbles). In the bottom snapshot (2002), as the
developing countries moved down into the lower-left corner by decreasing their infant mortality rates and average children per woman, they
also began having longer life expectancies (their bubbles got larger). Furthermore, as most countries moved into the lower-left corner, their
bubbles became darker, indicating growing breast cancer rates.



Figure 6.7. Scatter View Zoom - Infant Mortality, Children per Woman, Life Expectancy, and Breast Cancer Rate in 2002
This snapshot is of the same Scatter View shown in Figure 6.6, but with a filter placed on the X-Axis encoding, which effectively selects
only the lower-left corner of the plot for visualization (zoom). This allows better differentiation between countries in that crowded
region. Also note the arrows on the right of the plot which point to the countries that are outside the selected zoom region.

6.6 The Result

Exploring just one avenue of this complex database through the VisuaLyzer approach has
elucidated so many relationships and inspired even more questions. The analysis
presented in this case study was completed in approximately ten minutes of exploration
with the system, which gives an idea just how rapidly this tool can mine data. The idea of
going through the process of exploring a dataset using the VisuaLyzer system is that even
if there is a preconceived result in mind, the tool will force critical thinking about aspects
of the dataset that had previously never been considered.
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Chapter 7: Reflections on the VisuaLyzer
Approach

The VisuaLyzer platform is designed as an intuitive and intelligent tool for simultaneously

managing, analyzing, visualizing, and exploring massive amounts of data. Its ability to

manipulate and present large amounts of data in an easily-accessible, interactive, graphic

format allows for the rapid identification of significant or interesting relationships among

variables. Moreover, it is the VisuaLyzer's seamless blend of analytic and visual

environments that makes it such a powerful investigative tool.

The VisuaLyzer approach of identifying all relationships within a dataset in a

computationally rigorous fashion and thereafter investigating interesting ones in a guided

manner represents a fundamentally new approach to data analysis. Traditionally, the idea

of blindly searching for correlations within a dataset seems like nonsense. Scientists have

been conventionally trained that correlation is not causation, that no conclusion should be

drawn simply on the basis of correlation between variables X and Y. After all, it could

just be a coincidence. Rather the scientific method dictates that scientists should

understand underlying mechanisms, establish a model, then test a hypothesis. However,

using cutting-edge tools and principles similar to the VisuaLyzer approach, it is possible

to generate and prioritize interesting hypotheses infinitely faster than ever before. By the
principles of the data age, correlation instead of causation becomes the entry point to

science, causing a shift in paradigm from hypothesis-driven science to hypothesis

generating science.
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7.1 This is not a Tool for Answers, but for Exploration

VisuaLyzer is fundamentally a tool for asking questions of data. It allows users to explore

data with extraordinary flexibility and breadth. However, the VisuaLyzer approach is

designed for exploring data, rather than for calculating answers and coming to

conclusions. The platform is intended to be used for searching the space of all

relationships that exist within a dataset to identify and explore those which are particularly

interesting. The exploration of these relationships is intended to identify patterns and

trends that might inspire hypotheses about the underlying scientific mechanisms, which

can be tested. The idea behind this approach is that by asking enough questions,

eventually the right questions will be asked.

7.2 Using VisuaLyzer to Inspire Analysis

The questions generated about data using the VisuaLyzer approach can help drive the

process of analyzing data. As a primary example, the VisuaLyzer platform is in use by

the CDC in numerous disease studies including gonorrhea, influenza, and the recent

emerging swine flu epidemic. Regarding gonorrhea, the platform's exploratory capability

helped generate hypotheses that informed models of the spread of drug-resistant strains of
gonorrhea. By exploring the temporospatial dynamics of the interactions of several drug-

resistant strains of gonorrhea, as well as the relationships between these strains and other

potential intrinsic and extrinsic factors, the CDC is generating ideas regarding intelligent

interventions to stop their spread. In a more time critical scenario, the VisuaLyzer's rapid

approach toward data exploration is being employed for understanding and approximating

the severity of the recent outbreak of swine flu. Again, the expectation is that this type of
rapid exploration will generate interesting hypotheses, which can be further investigated.

Results from the swine flu analysis are not presented in this thesis as the analysis is still
ongoing.
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7.3. The VisuaLyzer Approach in Epidemiology and Public Health

With an increasing number of epidemiological studies being performed around the world,
and the rapidly accelerating ability to capture and store immense datasets of all kinds, the
wealth of collected data in public health has become overwhelming. In turn, the discovery

of potential disease-defining factors from this data can be unintuitive and has become

computationally difficult.

Using novel tools like VisuaLyzer enables analyzing data without hypotheses about what

it might show, without being restricted to preconceived models. Imagine the possibility of

applying powerful computing clusters to the rapidly growing data streams in public health

and letting statistical algorithms find patterns where science cannot. How about using

such patterns to generate multiple parallel hypotheses instead of sequentially exploring

individual hypotheses to derive a common pattern? This type of approach will develop

highly targeted evidence-based public health interventions faster than ever before. More

remarkably, VisuaLyzer and similar tool transform today's massive corpus of data into a

laboratory for the human condition, emerging as "threat detective" capable of predicting

and preventing outbreaks before they erupt.
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