75 research outputs found

    Circumference and Pathwidth of Highly Connected Graphs

    Full text link
    Birmele [J. Graph Theory, 2003] proved that every graph with circumference t has treewidth at most t-1. Under the additional assumption of 2-connectivity, such graphs have bounded pathwidth, which is a qualitatively stronger result. Birmele's theorem was extended by Birmele, Bondy and Reed [Combinatorica, 2007] who showed that every graph without k disjoint cycles of length at least t has bounded treewidth (as a function of k and t). Our main result states that, under the additional assumption of (k + 1)- connectivity, such graphs have bounded pathwidth. In fact, they have pathwidth O(t^3 + tk^2). Moreover, examples show that (k + 1)-connectivity is required for bounded pathwidth to hold. These results suggest the following general question: for which values of k and graphs H does every k-connected H-minor-free graph have bounded pathwidth? We discuss this question and provide a few observations.Comment: 11 pages, 4 figure

    Structural Rounding: Approximation Algorithms for Graphs Near an Algorithmically Tractable Class

    Get PDF
    We develop a framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while still guaranteeing approximation ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an algorithmically tractable class, apply known approximation algorithms for that class, and then lift the solution to apply to the original graph. We give a general characterization of when an optimization problem is amenable to this approach, and show that it includes many well-studied graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maximal Matching, Chromatic Number, (l-)Dominating Set, Edge (l-)Dominating Set, and Connected Dominating Set. To enable this framework, we develop new editing algorithms that find the approximately-fewest edits required to bring a given graph into one of a few important graph classes (in some cases these are bicriteria algorithms which simultaneously approximate both the number of editing operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r log{n})-approximation and a bicriteria (4,4)-approximation which also extends to a smoother bicriteria trade-off. For bounded treewidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w}))-approximation, and for bounded pathwidth, we obtain a bicriteria (O(log^{1.5} n), O(sqrt{log w} * log n))-approximation. For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove complementary hardness-of-approximation results assuming P != NP: in particular, these problems are all log-factor inapproximable, except the last which is not approximable below some constant factor 2 (assuming UGC)

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    Structural Parameters, Tight Bounds, and Approximation for (k,r)-Center

    Get PDF
    In (k,r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most k vertices (centers), so that all other vertices are at distance at most r from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any r>=1, we show an algorithm that solves the problem in O*((3r+1)^cw) time, where cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithm\u27s performance. As a corollary, for r=1, this closes the gap that previously existed on the complexity of Dominating Set parameterized by cw. - We strengthen previously known FPT lower bounds, by showing that (k,r)-Center is W[1]-hard parameterized by the input graph\u27s vertex cover (if edge weights are allowed), or feedback vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is 2^Theta(td^2) by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of k,r. In particular, we give algorithms which, for any epsilon>0, run in time O*((tw/epsilon)^O(tw)), O*((cw/epsilon)^O(cw)) and return a (k,(1+epsilon)r)-center, if a (k,r)-center exists, thus circumventing the problem\u27s W-hardness

    Polynomial expansion and sublinear separators

    Full text link
    Let C\mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed 0<δ≤10<\delta\le 1, every nn-vertex graph of C\mathcal{C} has a balanced separator of order O(n1−δ)O(n^{1-\delta}), then any depth-kk minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most kk) of a graph in C\mathcal{C} has average degree O((k polylog k)1/δ)O\big((k \text{ polylog }k)^{1/\delta}\big). This confirms a conjecture of Dvo\v{r}\'ak and Norin.Comment: 6 pages, no figur

    Structurally Parameterized d-Scattered Set

    Full text link
    In dd-Scattered Set we are given an (edge-weighted) graph and are asked to select at least kk vertices, so that the distance between any pair is at least dd, thus generalizing Independent Set. We provide upper and lower bounds on the complexity of this problem with respect to various standard graph parameters. In particular, we show the following: - For any d≥2d\ge2, an O∗(dtw)O^*(d^{\textrm{tw}})-time algorithm, where tw\textrm{tw} is the treewidth of the input graph. - A tight SETH-based lower bound matching this algorithm's performance. These generalize known results for Independent Set. - dd-Scattered Set is W[1]-hard parameterized by vertex cover (for edge-weighted graphs), or feedback vertex set (for unweighted graphs), even if kk is an additional parameter. - A single-exponential algorithm parameterized by vertex cover for unweighted graphs, complementing the above-mentioned hardness. - A 2O(td2)2^{O(\textrm{td}^2)}-time algorithm parameterized by tree-depth (td\textrm{td}), as well as a matching ETH-based lower bound, both for unweighted graphs. We complement these mostly negative results by providing an FPT approximation scheme parameterized by treewidth. In particular, we give an algorithm which, for any error parameter ϵ>0\epsilon > 0, runs in time O∗((tw/ϵ)O(tw))O^*((\textrm{tw}/\epsilon)^{O(\textrm{tw})}) and returns a d/(1+ϵ)d/(1+\epsilon)-scattered set of size kk, if a dd-scattered set of the same size exists
    • …
    corecore