4 research outputs found

    Spanning trees with few branch vertices

    Get PDF
    A branch vertex in a tree is a vertex of degree at least three. We prove that, for all s≥1s\geq 1, every connected graph on nn vertices with minimum degree at least (1s+3+o(1))n(\frac{1}{s+3}+o(1))n contains a spanning tree having at most ss branch vertices. Asymptotically, this is best possible and solves, in less general form, a problem of Flandrin, Kaiser, Ku\u{z}el, Li and Ryj\'a\u{c}ek, which was originally motivated by an optimization problem in the design of optical networks.Comment: 20 pages, 2 figures, to appear in SIAM J. of Discrete Mat

    An FPT Algorithm for Spanning Trees with Few Branch Vertices Parameterized by Modular-Width

    Get PDF
    The minimum branch vertices spanning tree problem consists in finding a spanning tree T of an input graph G having the minimum number of branch vertices, that is, vertices of degree at least three in T. This NP-hard problem has been widely studied in the literature and has many important applications in network design and optimization. Algorithmic and combinatorial aspects of the problem have been extensively studied and its fixed parameter tractability has been recently considered. In this paper we focus on modular-width and show that the problem of finding a spanning tree with the minimum number of branch vertices is FPT with respect to this parameter

    Approximating Spanning Trees with Few Branches

    No full text
    Given an undirected, connected graph, the aim of the minimum branch-node spanning tree problem is to find a spanning tree with the minimum number of nodes with degree larger than 2. The problem is motivated by network design problems where junctions are significantly more expensive than simple end- or through-nodes, and are thus to be avoided. Unfortunately, it is NP-hard to recognize instances that admit an objective value of zero, rendering the search for guaranteed approximation ratios futile. We suggest to investigate a complementary formulation, called maximum path-node spanning tree, where the goal is to find a spanning tree that maximizes the number of nodes with degree at most two. While the optimal solutions (and the practical applications) of both formulations coincide, our formulation proves more suitable for approximation. In fact, it admits a trivial 1/2-approximation algorithm. Our main contribution is a local search algorithm that guarantees a ratio of 6/11
    corecore