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Abstract
The minimum branch vertices spanning tree problem consists in finding a spanning tree T of an input
graph G having the minimum number of branch vertices, that is, vertices of degree at least three in T .
This NP -hard problem has been widely studied in the literature and has many important applications
in network design and optimization. Algorithmic and combinatorial aspects of the problem have
been extensively studied and its fixed parameter tractability has been recently considered. In this
paper we focus on modular-width and show that the problem of finding a spanning tree with the
minimum number of branch vertices is FPT with respect to this parameter.
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1 Introduction

Let G = (V, E) be an undirected graph where V is the set of vertices and E is the set of
edges. Given a spanning tree T of G, a branch vertex is a vertex having degree at least three
in T . If G is a connected graph, we denote by b(G) the smallest number of branch vertices
in any spanning tree of G. We study the following problem:

Minimum Branch Vertices (MBV)
Instance: A connected graph G = (V, E).
Goal: Find a spanning tree of G having b(G) branch vertices.

Notice that a spanning tree of G without branch vertices is a Hamilton path, that is, b(G) = 0
if and only if G admits a Hamilton path.

The problem of determining a spanning tree with a bounded number of branch vertices,
while a natural theoretical question, was introduced to solve a problem related to wavelength-
division multiplexing technology in optical networks, where one wants to minimize the
number of light-splitting switches in a light-tree [11]. Also for Cognitive Radio Networks
other than for 5G technologies, that operate with a wide range of frequencies, bounding the
switching costs due to the switching between different service providers has high importance
both in terms of delay and energy consumption [16, 24]. MBV has been then widely studied,
both from the algorithmic and the graph-theoretic point of view. Gargano et al. [12] proved
that it is NP-complete to decide whether a graph G admits a spanning tree with at most k

branch vertices, for given G and k, even in cubic graphs. Salamon [23] proved the existence
of an algorithm that finds a spanning tree with O(log |V (G)|) branch vertices whenever the
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50:2 An FPT Algorithm for Spanning Trees with Few Branch Vertices

degree of each vertex of the input graph is Ω(n); moreover, an approximation factor better
than O(log |V (G)|) would imply that NP ⊆ DTIME(nO(log log n)). Sufficient conditions for
a connected claw-free graph to have a spanning tree with k branch vertices are given in [20].
Integer linear formulations of MBV and some variants are presented in [5–7], together with
different relaxations of them; the authors also provide numerical result comparison of the
considered relaxations. In [26] hybrid integer linear programs for MB are considered and
solved with branch-and-cut algorithms. In [18, 21, 22] decomposition methods of graphs
are used to solve the MBV problem. Other heuristics are presented in [19, 25, 27]. In [8]
a complementary formulation of MBV is investigated. It is called maximum path-node
spanning tree (MPN), where the goal is to find a spanning tree that maximizes the number
of vertices with degree at most two; the authors prove that MPN is APX-hard and present
an approximation algorithm with ratio 6/11. Related gathering processes are considered
in [2–4,13,14].

1.1 Parameterized Complexity
Parameterized complexity is a refinement to classical complexity theory in which one takes
into account not only the input size, but also other aspects of the problem given by a
parameter p. A problem with input size n and parameter p is called fixed parameter tractable
(FPT) if it can be solved in time f(p) · nc, where f is a computable function only depending
on p and c is a constant.

In this paper we are interested in assessing the complexity of MBV when parameterized
by modular-width. It was recently proven that MBV is FPT when parameterized either
by treewidth [1] or by neighborhood diversity [15]. On the other hand, it was shown in [9]
that the problem is W [1]-hard when parameterized by clique-width. Specifically, in [9]
it was proven that the (MBV special case) hamiltonian path problem is W [1]-hard when
parameterized by clique-width. See Figure 1 for a relation among the above parameters.

cw(G)

nd(G)

mw(G)

tw(G)

vc(G)

Figure 1 A summary of the relations holding among some popular parameters. We use mw(G),
tw(G), cw(G), nd(G), and vc(G) to denote modular-width, treewidth, cliquewidth, neighborhood
diversity, and minimum vertex cover of a graph G, respectively. Solid arrows denote generalization,
e.g., modular-width generalizes neighborhood diversity. Dashed arrows denote that the generalization
may exponentially increase the parameter.

1.2 Modular-width
Modular-width was introduced in [10] as graph parameter which could cover dense graphs
but still allows FPT algorithms for the problems lost to clique-width.
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▶ Definition 1 (Modular-width [10]). Consider graphs that can be obtained from an algebraic
expression that uses the following operations:

(O1) Create an isolated vertex;
(O2) the disjoint union of 2 graphs denoted by G1 ⊕ G2, i.e., G1 ⊕ G2 is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2);
(O3) the complete join of 2 graphs denoted by G1⊗G2, i.e., G1⊗G2 is the graph with vertex
set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {{v, w} : v ∈ V (G1) and w ∈ V (G2)};
(O4) the substitution operation with respect to some graph G with vertex set {1, 2, . . . , n}
i.e., for graphs G1, . . . , Gn the substitution of the vertices of G by the graphs G1, . . . , Gn,
denoted by G(G1, . . . , Gn), is the graph with vertex set

⋃n
i=1 V (Gi) and edge set

⋃n
i=1 E(Gi)

∪{{u, v} | u ∈ V (Gi), v ∈ V (Gj), {i, j} ∈ E(G)}. Hence, G(G1, . . . , Gn) is obtained from
G by substituting every vertex i ∈ V (G) with the graph Gi and adding all edges between
the vertices of a graph Gi and the vertices of a graph Gj whenever {i, j} ∈ E(G).

Let A be an algebraic expression that uses only the operations (O1)–(O4). The width of
A is the maximum number of operands used by any occurrence of the operation (O4) in A.
The modular-width of a graph H, denoted mw(H), is the least integer m such that H can be
obtained from such an algebraic expression of width at most m.

We recall that an algebraic expression of width mw(G) can be constructed in linear time [28].

Given a graph H = G(G1, . . . , Gn), we will refer to the graphs G1, . . . , Gn also as the
modules of H. Notice that given the graph H = G(G1, . . . , Gn), by the operations O(1)-(O4),
one has that all the vertices of Gi share the same neighborhood outside Gi; indeed,

{{u, v} | u ∈ V (Gi), v ∈ V (Gj)} ⊆ E(H) if {i, j} ∈ E(G)
{{u, v} | u ∈ V (Gi), v ∈ V (Gj)} ∩ E(H) = ∅ if {i, j} /∈ E(G) (1)

for each i, j = 1, . . . , n with i ̸= j.

1.3 Graph Partitioning
A spider is a tree with at most one branch vertex. The center of the spider is the branch
vertex, if it exists, and is any vertex otherwise. A path-spider cover of a graph G is a set
composed by one spider and some paths that are pair-wise (vertex-)disjoint and whose union
contains every vertex of G. We denote by spi(G) the least integer p such that G has a
path-spider cover with p − 1 paths.

In order to solve MBV, we define and study the following problem that can be of its own
interest:

Path-Spider Cover (PSC)
Instance: A graph G = (V, E).
Goal: Find a path-spider cover of G with spi(G) − 1 paths.

Moreover, we will need the following Partitioning into Paths problem that was proven to be
FPT with respect to modular-width in [10]. A partition of a graph G into paths is a set of
(vertex-)disjoint paths of G whose union contains every vertex of G. We denote by ham(G)
the least integer p such that G has a partition into p paths. Notice that spi(G) ≤ ham(G).

Partitioning into Paths (PP)
Instance: A graph G = (V, E).
Goal: Find a partition of G into ham(G) paths.

As originally defined in [10], the Partitioning into Paths problem only asks for the value
ham(G), while we ask for the actual path partitioning of G.

MFCS 2023
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In the following we will denote by Pham(G) a partition of G into ham(G) paths, and by
Pspi(G) a path-spider cover of G with spi(G) − 1 paths.

Given a path P in G, we will denote by f(P ) and s(P ) the two end-points of P ; we will
distinguish them as the first and the second end-point of P , respectively. Furthermore, if P

denotes a spider in G then we will equally use either f(P ) or s(P ) to denote the center of P .

2 Our Results

We present an FPT algorithm for MBV parameterized by modular-width. To this aim, we
also design a FPT algorithm for PSC parameterized by modular-width.

Let H be the input graph. Consider the parse-tree of an algebraic expression describing H,
according to the rules (O1)-(O4) in Section 1.3. We take a look at the operation corresponding
to the root: Operation (O1) is trivial and (O2) yields a disconnected graph, therefore we
suppose the last operation is either (O3) or (O4). Hence, we can see the input graph as
H = G(G1, . . . , Gn) where G is a graph with n ≤ mw(H) vertices and G1, . . . , Gn are graphs.

The algorithm that finds a spanning tree of an input graph H with b(H) branch vertices
goes through the following steps 1) and 2).
1) An FPT algorithm for PSC and PP parameterized by the modular-width of the input

graph H. Namely, for each vertex Ĥ = Ĝ(Ĝ1, . . . , Ĝn̂) of the parse-tree of H, we show
how to compute the triple

(ham(Ĥ), spi(Ĥ), |V (Ĥ)|) together with Pham(Ĥ) and Pspi(Ĥ),

where Pham(Ĥ) is a partition of Ĥ into ham(Ĥ) paths and Pspi(Ĥ) is a path-spider cover
of Ĥ with spi(Ĥ) − 1 paths.

2) Compute a spanning tree of H = G(G1, . . . , Gn) with b(H) branch vertices by using the
values, computed at step 1), for the graphs G1, . . . , Gn, that is,

(ham(Gi), spi(Gi), |V (Gi)|), Pham(Gi), and Pspi(Gi),

for i = 1, . . . , n,
The computation in step 2) is only done once, i.e., for the root vertex of the parse tree,
corresponding to the input graph H = G(G1, . . . , Gn). It is shown in Section 3, which is
devoted to prove the following theorem.

▶ Theorem 2. Minimum Branch Vertices parameterized by modular-width is fixed-
parameter tractable.

The computation in step 1) is presented in Section 4. Following [10], we use a bottom-up
dynamic programming approach along the parse-tree to compute for every vertex a record of
data, using those already computed for its children. Since the operations of type (O1)-(O3)
can be replaced by one operation of type (O4) that uses at most 2 operands, we only focus
on the computation (and the time it requires) of a record of data for a vertex of type (O4) in
the parse-tree. Namely, in Section 4 we prove the following theorem.

▶ Theorem 3. Path-Spider Cover parameterized by modular-width is fixed-parameter
tractable.
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3 The MBV algorithm

In this section we give an algorithm that finds a spanning tree of graph H with b(H) branch
vertices. We assume here that for each vertex Ĥ = Ĝ(Ĝ1, . . . , Ĝn) of the parse-tree of H, we
already have

the triple (ham(Ĥ), spi(Ĥ), |V (Ĥ)|) together with Pham(Ĥ) and Pspi(Ĥ).

We start by giving a characterization of a spanning tree with the minimum number of branch
vertices in terms of the modular decomposition of H.

▶ Lemma 4. Let H = G(G1, . . . , Gn) be a connected graph. There exists a spanning tree of
H with b(H) branch vertices that has at most one branch vertex belonging to Gi for each
i = 1, . . . , n. Hence, b(H) ≤ n ≤ mw(H).

Proof. Let T be a spanning tree of H with b(H) branch vertices. Denote by B the set of
vertices of H that are branch vertices in T and by NT (v) the set of neighbors of v in T ,
for any vertex v. Assume that |V (Gi) ∩ B| ≥ 2 for some i ∈ {1, . . . , n}. We show how to
transform T so to satisfy the lemma. The transformation consists of two phases.

Phase 1. For each i = 1, . . . , n, we denote by Bi the set of branch vertices in V (Gi) that
have in T at least two neighbors outside V (Gi), that is,

Bi = {v | v ∈ V (Gi) ∩ B and |NT (v) ∩ (∪j ̸=iV (Gj))| ≥ 2}.

In this phase we transform T so that |Bi| ≤ 1, for each i. We proceed as follows.
For each i such that |Bi| ≥ 2,

let v be any node in Bi;
for each w ∈ Bi with w ̸= v, consider the path connecting v and w in T , say
v, . . . , w′, w, and modify T as follows: For any x ∈ (NT (w) − V (Gi)) − {w′},
substitute in T the edge {w, x} by the edge {v, x}.
(Notice that this is possible by (1) and implies Bi = {v}).

Phase 2. We know that each Gi contains at most one branch vertex with at least two
neighbors outside V (Gi), that is now |Bi| ≤ 1 for each i.
If there exists i such that Gi contains at least 2 branch vertices, we modify the spanning
tree so that only one remains. We proceed as follows.

While there exists i such that |V (Gi) ∩ B| ≥ 2.
Choose any j ̸= i such that {i, j} ∈ E(G) and let

w ∈


Bj if Bj = {w},
V (Gj) ∩ B if Bj = ∅ and V (Gj) ∩ B ̸= ∅
V (Gj) otherwise.

For each branch vertex v ∈ V (Gi) ∩ B with v ̸= w, perform the following step.
∗ Consider the path connecting v and w in T , say v, v′, . . . w, and modify T

as follows: For any x ∈ NT (v) ∩ V (Gi) and x ̸= v′, substitute in T the edge
{v, x} by the edge {w, x}.
(This is possible by (1). Moreover, even if now w becomes a new branch vertex,
we know that |V (Gj) ∩ B| = 1; finally, |Bj | ≤ 1, |V (Gi) ∩ B| ≤ 1), and the
number of branch vertices does not increase.

By iterating the above steps, one can obtain the desired spanning tree of H with at most
one branch vertex in each V (Gi). ◀

MFCS 2023



50:6 An FPT Algorithm for Spanning Trees with Few Branch Vertices

In the remaining part of this section, we present an algorithm that computes a spanning
tree of H = G(G1, . . . , Gn) with b(H) branch vertices, if b(H) > 0. In Section 4.2 we deal
with the case b(H) = 0, that is, we show how to find a Hamiltonian path of H, if any exists.

By exploiting Lemma 4, the algorithm proceeds by considering all the subsets BG ⊆
{1, . . . , n} with |BG| ≥ 1, ordered by size, and checking whether there exists a spanning tree
of H with |BG| branch vertices, so that exactly one branch vertex belongs to each V (Gi)
with i ∈ BG and none to each V (Gi) with i ̸∈ BG.

The identification of the spanning tree of H goes through the solution of an Integer
Linear Program that uses the values ham(Gi), spi(Gi), |V (Gi)|, for i = 1, . . . , n, and exploits
property (1). Namely, if the ILP does not admit a solution for BG, then the set is discarded;
if for BG the ILP admits a solution, we will show how to use the partition of Gi given in
Pham(Gi) and Pspi(Gi) to construct a spanning tree of H having exactly |BG| branch vertices
(recall that the sets BG are considered by increasing size). The optimal spanning tree will be
indeed shown to correspond to the smallest BG for which the ILP admits a solution.

3.1 The Integer Linear Program
Let BG ⊆ {1, . . . , n}, with |BG| ≥ 1. Construct a digraph

GBG
= ({1, . . . , n} ∪ {s}, ABG

),

where s ̸∈ V (H) is an additional vertex that will be called the source. GBG
is obtained from

G by replacing each edge {i, j} ∈ E(G) by the two directed arcs (i, j) and (j, i), and then
adding a directed arc (s, r) where r is an arbitrary vertex in BG. Formally,

ABG
= {(s, r)} ∪ {(i, j), (j, i) | there exists an edge between i and j in E(G)}.

For sake of clearness, we will refer to the vertices of G as module indices and reserve the
term vertex to those in H.

We use the solution of the following Integer Linear Programming (ILP) to select arcs of
GBG

that will help to construct the desired spanning tree in H.

xsr = 1 (2)∑
j:(j,i)∈ABG

xji ≤ |V (Gi)| ∀i ∈ {1, . . . , n} (3)

∑
j:(j,i)∈ABG

xji ≥ spi(Gi) ∀i ∈ BG (4)

∑
j:(j,i)∈ABG

xji ≥ ham(Gi) ∀i ∈ {1, . . . , n} − BG (5)

∑
ℓ:(i,ℓ)∈ABG

xiℓ −
∑

j:(j,i)∈ABG

xji ≤ 0 ∀i ∈ {1, . . . , n} − BG (6)

ysr = n (7)∑
j:(j,i)∈ABG

yji −
∑

ℓ:(i,ℓ)∈ABG

yiℓ = 1 ∀i ∈ {1, . . . , n} (8)

yij ≤ n xij ∀(i, j) ∈ ABG
(9)

yij , xij ∈ N ∀(i, j) ∈ ABG
(10)
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For each arc (i, j) ∈ ABG
, the non negative decision variable xij represents the load to

be put on (i, j). The load of the arc (s, r) is set to 1. The total incoming load at module
index i ∈ {1, . . . , n} has to be at most |V (Gi)| and at least spi(Gi) in case i ∈ BG (to be
sure that the spider and all the spi(Gi) − 1 paths in Gi are reached) and at least ham(Gi)
in case i ̸∈ BG (to be sure that all the ham(Gi) paths in Gi are reached). Constraints (3),
(4) and (5) correspond to this requirement.
Constraint (6) binds the relation between the total incoming and outgoing loads at any
i ̸∈ BG, namely i must have an outgoing load upper bounded by its incoming load.
Constraints (7) and (8) use a single commodity flow in which s is used as the source and
the other module indices are demand vertices. For each arc (i, j) ∈ ABG

, the non negative
decision variable yij represents the quantity of flow from i to j.
Each i ∈ {1, . . . , n} has demand of one unit; therefore, the difference between the inflow and
the outflow must be exactly one. Meanwhile, the supply quantity at the source s has to be
exactly n, in order to reach each of the module index in {1, . . . , n}.
Constraint (9) stresses variable yij = 0 whenever xij = 0; thus if no load is put on (i, j) then
j cannot be reached trough i.

Given an integer solution (y, x), if any, to the above ILP, the values of variables y imply
that each module index i ∈ {1, . . . , n} − {r} is reached from the source s. Then, by the
construction of the digraph GBG

, each module index i ∈ {1, . . . , n} is reached from module
index r. Furthermore, by the relation between variables x and y (constraint (9)), we know
that each module index i ∈ {1, . . . , n} gets incoming load from at least one of its neighbors.

▷ Claim 5. The subgraph Gx of GBG
with vertex set {1, . . . , n} and arc set {(i, j)| xij ≥ 1}

contains a directed path from r to any other module index .

We stress that the constraints involving variables y only assure that a spanning tree in Gx

exists. A more sophisticate approach is necessary to find a spanning tree of H with branch
vertices in BG only.

3.2 The spanning tree construction
Our algorithm constructs a spanning tree T of H with |BG| branch vertices, one in each
V (Gi) with i ∈ BG. To this aim, it uses the values of variables x and the path-spider cover
Pspi(Gi) for i ∈ BG and the partition into disjoint paths Pham(Gi) for i ̸∈ BG.

Denote by In(i) the set of the module indices for which there exist arcs in Gx toward i,
that is, In(i) = {j |xji ≥ 1}, and by

αi =
∑

j:j∈In(i)

xji (11)

the number of vertices of V (Gi) whose parent in T is a vertex outside V (Gi).
Let Pi = {P i

1, P i
2, . . . , P i

αi
} be

the path-spider cover of Gi obtained from those in Pspi(Gi) by removing αi − spi(Gi)
arbitrary edges in case i ∈ BG (notice that by constraint (4), it holds αi ≥ spi(Gi)), or
the partition of Gi into disjoint paths obtained from those in Pspi(Gi) by removing
αi − ham(Gi) arbitrary edges in case i ̸∈ BG (notice that by (4), it holds αi ≥ ham(Gi)).

Furthermore, denote by

f(Pi) = {f(P i
1), f(P i

2), . . . , f(P i
αi

)}

the sets of the first end-points in the partition Pi and by

s(Pi) = {s(P i
1), s(P i

2), . . . , s(P i
αi

)}

MFCS 2023



50:8 An FPT Algorithm for Spanning Trees with Few Branch Vertices

the sets of the second end-points in Pi. In case i ∈ BG, we assume that P i
1 ∈ Pi is the spider

and f(P i
1) = s(P i

1) is the center in P i
1.

We also denote by

βi =
{∑

ℓ:i∈In(ℓ) xiℓ if i ̸∈ BG

1 if i ∈ BG

(12)

the number of vertices of V (Gi), that will be the parent of some vertex in
⋃

ℓ:i∈In(ℓ) V (Gℓ).
Our algorithm ensures that the αi vertices in f(Pi) are the vertices in Gi whose parent

in T is outside V (Gi), and that βi vertices among those in s(Pi) are chosen to be parents of
vertices outside V (Gi). Notice that by Claim 5 (αi ≥ 1) and constraint (6), it follows that
αi ≥ βi for each i ∈ {1, . . . , n}.

Figure 2 shows the partition of graph Gi (whose vertices are grouped in the dotted circle)
into αi disjoint paths if i ̸∈ BG and into a spider plus αi − 1 disjoint paths if i ∈ BG.

P i
1 P i

j P i
αi P i

1 P i
j P i

αii ∈ BGi �∈ BG

Gi

Figure 2 The vertices of graph Gi, grouped in the dotted circle, as partitioned in αi disjoint
paths if i ̸∈ BG and in a spider plus αi − 1 disjoint paths if i ∈ BG. Vertex f(P i

j ) is the only vertex
in P i

j whose parent in T is outside Gi and vertex s(P i
j ) is the only vertex in P i

j that can have a
children in T outside Gi.

The algorithm TREE constructs a spanning tree of H = G(G1, . . . , Gn) iteratively by
exploring unexplored vertices of H, until possible, and maintains a main subtree T and a
forest whose roots are progressively connected to T to assemble the spanning tree. The
process stops when all the vertices of H are explored. A similar idea was used in [15] in the
special case in which each graph Gi is either a clique or an independent set.

The algorithm uses a queue Q to enqueue the explored vertices and maintains a set R of
the roots of trees of explored vertices that wait to be connected to the main tree T . The
forest structure is described through the parent function π.

At the beginning the set R is empty. The exploration starts with the center f(P r
1 ) of the

spider in the path-spider cover of Gr (recall that by construction r ∈ BG); the procedure
EXPLORE(f(P r

1 )) carries out the construction of the main tree T rooted at f(P r
1 ) and

marks as explored all the reached vertices (adding them to the set Ex). Clearly, for each
explored vertex v there is a path in T joining f(P r

1 ) to v.
However, it can occur that some of the vertices have not been explored (i.e., V (H)−Ex ≠

∅). In such a case an explored vertex w ∈ f(Pj) ∩ Ex is chosen so that it belongs to some
V (Gj) which also contains at least a unexplored vertex u ∈ (f(Pj) − Ex) − R which is able
to explore at least one unexplored neighbour outside Gj , that is, βj ≥ 1 (the existence of
such a set V (Gj) is assured by Lemma 7). By using (1) and knowing that the parents of
vertices in f(Pj) are outside V (Gj), the algorithm makes:

the parent of w (recall that w is explored) become the parent of u, and
w (the root of a subtree of explored vertices) is added to R and removed from Ex (this
allows to later explore w and add it, together with its subtree, to the main tree T ), and
EXPLORE(u) is called to start a new exploration from u.
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Notice that the algorithm modifies the forest by assigning to u the parent of w and only later
(after adding u and some descendants of u) adding again the subtree rooted in w to the main
tree T . This allows connecting new vertices in V (H) − Ex to the main tree T ; the particular
choice of u and w will be shown to avoid the possibility that the algorithm fails, due to the
fact that no arc can be added to T without forming a cycle or creating an extra branch
vertex. The process is iterated as long as there are unexplored vertices, i.e. V (H) − Ex ̸= ∅.

The procedure EXPLORE(u) starts exploring u = f(P j
k ) together with the whole P j

k
∗,

then putting in Q only the vertex s(P j
k ) and successively padding the main tree T (recall

that (unless u = f(P r
1 )) the parent of u is a vertex already in T , thus we construct a

subtree rooted at u spanning on all the newly explored vertices). EXPLORE(u) uses for
each module index i the values of αi and βi that are initially defined as in (11) and (12), and
the partition Pi = {P i

1, P i
2, . . . , P i

αi
} of Gi. The value αi =

∑
j:j∈In(i) xji counts the number

of vertices of V (Gi) that must be assigned a parent outside V (Gi), they are the vertices in
f(Pi) = {f(P i

1), f(P i
2), . . . , f(P i

αi
)}; in particular, xji vertices of f(Pi) have to be explored

by vertices in V (Gj), for j ∈ In(i). The value βi counts the number of vertices of V (Gi)
that have to explore other vertices in some other V (Gℓ), for ℓ : i ∈ In(ℓ); in particular,

if i ∈ BG then exactly βi = 1 vertex in V (Gi), that is s(P i
1) (i.e., the center of the spider

P i
1), becomes a branch vertex in T : it is set as the parent of xiℓ unexplored vertices in

f(Pℓ) for each ℓ such that xiℓ ≥ 1 (i.e., i ∈ In(ℓ)), and
if i ̸∈ BG then βi =

∑
ℓ:i∈In(ℓ) xiℓ vertices in s(Pi) = {s(P i

1), s(P i
2), . . . , s(P i

αi
)} are

chosen and each one becomes the parent of one unexplored vertex in f(Pℓ).
Recall that, by the ILP constraints, we know that αi ≥ βi.

The vertices in s(Pi) for i ∈ {1, . . . , n} are the only one to be enqueued in Q. When a
vertex v ∈ s(Pi) is dequeued from Q in EXPLORE(u) then the value of βi is decreased by
one if v explores (i.e., if βi ≥ 1). In this case, for each explored vertex f(P ℓ

h), with i ∈ In(ℓ),
the whole P ℓ

h is also explored. Furthermore, the value αℓ is decreased by the number of
vertices in s(Pℓ) that v explores, for i ∈ In(ℓ). Hence, at the beginning of each iteration of
the while loop in EXPLORE(u) the values of αi represents the number of vertices in f(Pi)
that remain to be explored while βi is the number of vertices in s(Pi) that already have
to explore. Note that when a vertex v ∈ s(Pi) is dequeued from Q in EXPLORE(u), with
u ̸= f(P r

1 ), and βi ≥ 1, the algorithm checks if the neighbour v′ ∈ f(Pℓ), that v explores, is
in R (i.e., v′ is a root of a tree in the forest). In this case v′, with the tree rooted at it, is
connected to the main tree T (since it was already explored in the past).

▶ Lemma 6. At the end of EXPLORE(f(P r
1 )) the function π describes a tree, rooted at

f(P r
1 ), spanning the set Ex ⊆ V (H) of explored vertices. The vertices in B ∩ Ex are the

branch vertices.

Proof. When EXPLORE(f(P r
1 )) is called, the whole spider P r

1 is explored (i.e. Ex = Ex∪P r
1

and so added to T ) and its center s(P r
1 ) is enqueued in Q. After that, each time a vertex

v ∈ s(Pi) is dequeued from Q (recall, v ∈ Ex, i.e., it is an explored vertex), the algorithm
can either stop its exploration (i.e., βi = 0) or explore one o more unexplored neighbor of v

together with the path/spider it belongs. Indeed, we can prove that v has the needed number
of unexplored neighbors. If βi = 0 then v is a leaf in T ; hence, we only have to consider the
case βi ≥ 1. If i ̸∈ BG then v has βi ≥ 1 unexplored neighbors and one of them, say f(P ℓ

h)

∗ Assume that when in the algorithm P ∈ Pj is explored, that is Ex = Ex ∪ P , then the parent function
π is set going through all the vertices in P from f(P ) to s(P ) in case P is a path, and from the center
f(P ) = s(P ) to the leaves in case P is a spider.
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Algorithm 1 TREE(H, G1, . . . , Gn, r, BG).

1: R = ∅, B = ∅, Ex = ∅
2: π(u) = nhil for each u ∈ V (H)
3: EXPLORE(f(P r

1 ))
4: while V (H) − Ex ̸= ∅ do
5: - Let Gj be any graph s.t. ((f(Pj) − Ex) − R ̸= ∅ ≠ f(Pj) ∩ Ex) and βj ≥ 1
6: - Let w ∈ f(Pj) ∩ Ex and u ∈ (f(Pj) − Ex) − R

7: - Set π(u) = π(w), Ex = Ex − {w}, R = R ∪ {w}
8: - EXPLORE(u)
9: end while

10: return π, B

for i ∈ In(ℓ), can be added to T as child of v . If i ∈ BG then v is the first vertex of V (Gi)
that explores and xiℓ vertices in f(Pℓ) are unexplored and can be added to T as children of
v, for each ℓ such that xiℓ ≥ 1. Hence v becomes a branch vertex in T and is put in B. Since
R = ∅ (i.e, no tree is in the forest), each time a neighbor of v is explored, say f(P ℓ

h), then the
whole path/spider P ℓ

h is added to T and s(P ℓ
h) is enqueued in Q. Hence, any explored vertex

has f(P r
1 ) has ancestor, i.e., the function π describes a path joining any explored vertex to

f(P r
1 ). Noticing that no vertex can be enqueued twice in Q (since any enqueued vertex is

also marked as explored), we have that the function π does not create cycles. ◀

We can also prove the following result.

▶ Lemma 7. Let Ex be the set of explored vertices at the beginning of any iteration of the
while loop in algorithm TREE. If V (H) − Ex ≠ ∅ then there exists a module index j such
that (f(Pj) − Ex) − R ̸= ∅ ≠ f(Pj) ∩ Ex and βj ≥ 1.

▶ Lemma 8. After each call of EXPLORE(u) the function π describes a forest spanning the
vertices in Ex ∪ R of explored vertices and consisting of |R| + 1 trees respectively rooted at
f(P r

1 ) and at the vertices in R. The vertices in B are the only branch vertices in the forest.

Proof. When EXPLORE(u) is called, the function π describes a forest, spanning the current
set Ex ∪ R, whose roots are the vertices in {f(P r

1 )} ∪ R and where R ⊂ V (H) − Ex. We
notice that by Lemma 6, this is true the first time EXPLORE is called, that is, after the call
to EXPLORE(f(P r

1 )) (at that time R = ∅).
We prove that the claim is also true at the end of each call to EXPLORE(u). When

EXPLORE(u) is called, Q is empty; vertex u is explored (i.e. it is added to Ex) and enqueued
in Q. Then EXPLORE(u) proceeds, exactly as in EXPLORE(f(P r

1 )), dequeueing vertices
from Q and exploring their unexplored neighbors, so constructing a subtree of the main tree
T rooted at u described by function π. The only difference with EXPLORE(f(P r

1 )) is when
one of the vertices explored is v′ ∈ R. Vertex v′ ∈ R is removed from R (see lines 11, 22)
and connected to the main tree T through the function π and marked as explored exactly as
any other explored vertex. However v′ is not enqueued in Q since it has already explored its
neighbors; hence, v′ is connected to T together with its subtree of explored vertices. ◀

We are now able to prove the following result.

▶ Lemma 9. The algorithm TREE returns a spanning tree of H, described by function π,
with branch vertex set B.

Proof. By using Lemma 6 we know that algorithm TREE constructs, through procedure
EXPLORE(f(P r

1 )), a main tree T , described by π. In case T does not span all the vertices
in V (H) then, Lemma 7 assures that the algorithm finds a graph Gj with an explored vertex
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Algorithm 2 EXPLORE(u).

1: Let Q be an empty queue
2: Let u = f(P j

k )
3: Ex = Ex ∪ P j

k

4: Q.enqueue(s(P j
k ))

5: while Q ̸= ∅ do
6: v = Q.dequeue

7: Let v ∈ s(Pi)
8: if i /∈ BG and βi ≥ 1 then
9: - Let f(P ℓ

h) ∈ f(Pℓ) − Ex for some ℓ s.t. i ∈ In(ℓ)
10: - π(f(P ℓ

h)) = v

11: if f(P ℓ
h) ̸∈ R then

12: - Ex = Ex ∪ P ℓ
h

13: - Q.enqueue(s(P ℓ
h))

14: else R = R − {f(P ℓ
h)}

15: end if
16: - αℓ = αℓ − 1
17: - βi = βi − 1
18: else if i ∈ BG and βi = 1 then
19: - B = B ∪ {v}
20: for each ℓ s.t. i ∈ In(ℓ) do
21: - Let Aiℓ ⊆ f(Pℓ) − Ex s.t. |Aiℓ| = xiℓ

22: - αℓ = αℓ − xiℓ,
23: for each f(P ℓ

h) ∈ Aiℓ do
24: - π(f(P ℓ

h)) = v

25: if f(P ℓ
h) ̸∈ R then

26: -Ex = Ex ∪ P ℓ
h

27: -Q.enqueue(s(P ℓ
h))

28: else R = R − {f(P ℓ
h)}

29: end if
30: end for
31: end for
32: - βi = βi − 1
33: end if
34: end while

w ∈ f(Pj) ∩ Ex and an unexplored vertex u ∈ (f(Pj) − Ex) − R. Disconnecting w (together
with its subtree) from the main tree T , the algorithm let w become one of the roots of trees
in R. Furthermore, since the parent of w in T is a vertex outside V (Gj) and, since u and w

share the same neighborhood outside Gj (by (1)), the algorithm let u be connected to the
vertex that was the parent of w in T (thus, connecting u to T ). Considering that u ̸∈ R and
βj ≥ 1, the algorithm starts a new exploration from u (recall that u ∈ f(Pj) − Ex) calling
EXPLORE(u). By Lemma 8, this allows padding T with the subtree rooted a u. The lemma
follows by iterating the above procedure until no unexplored vertex exists in V (H). ◀
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3.3 The algorithm complexity
Summarizing, given the triple (ham(Gi), spi(Gi), |V (Gi)|) together with Pham(Gi) and
Pspi(Gi), for each i ∈ {1, . . . , n}, the proposed method to construct the spanning tree
of H = G(G1, . . . , Gn) works as follows.
For each BG ⊆ {1, . . . , n} with |BG| ≥ 1, selected in order of increasing size, the algorithm
executes the following steps:

solve the corresponding ILP
if a solution exists for the current set BG, use algorithm TREE to construct a spanning
tree of H = G(G1, . . . , Gn) with |BG| branch vertices.

Jansen and Rohwedderb [17] have recently showed that the time needed to find a feasible
solution of an ILP with p integer variables and q constraints is O(√q∆)(1+o(1))q + O(qp),
where ∆ is the largest absolute value of any coefficient in the ILP. Denoted by m the number
of edges of G, our ILP has q = 3n + 2m + 1 constraints, p = 2(m + 1) variables and ∆ = n.
Hence the time to solve it is O(n

√
n + m)(1+o(1))(3n+2m+1) +O(n(n+m)). Using the solution

(y, x) of the ILP, the algorithm TREE returns the spanning tree of H in time O(|V (H)|2).
Overall, the algorithm requires time

2n[O(n
√

n + m)(1+o(1))(3n+2m+1) + O(n(n + m))] + O(|V (H)|2).

Recall that n ≤ mw, and therefore m ≤ mw2.

3.4 Optimality
It is possible to show that if no set BG ⊆ {1, . . . , n}, of size k exists for which the ILP
admits a solution then any spanning tree of H = G(G1, . . . , Gn) has b(H) ≥ k + 1 branch
vertices. This allows to say that the optimal spanning tree in H corresponds to the smallest
set BG ⊆ {1, . . . , n} for which the ILP admits a solution, if any. Namely, we can prove the
following result.

▶ Lemma 10. Given the graphs G1, . . . , Gn and ham(Gi), spi(Gi), |V (Gi)| for each i =
1, . . . , n, if there exists a spanning tree in H = G(G1, . . . , Gn) with k ≥ 1 branch vertices
then there exist a set BG ⊆ {1, . . . , n} with |BG| = k, for which ILP admits a solution (x, y).

4 The triple and partition computation

In this section we show how to compute the record of data for any vertex Ĥ = Ĝ(Ĝ1, . . . , Ĝn̂)
of the parse-tree. Namely, given the triple (ham(Ĝi), spi(Ĝi), |V (Ĝi)|), Pham(Ĝi) and Pspi(Ĝi),
for each i = 1, . . . , n̂, we have to compute

the triple (ham(Ĥ), spi(Ĥ), |V (Ĥ)|) together with Pham(Ĥ) and Pspi(Ĥ),

Clearly, |V (Ĥ)| =
∑n̂

i=1 |V (Ĝi)|. We show below how to compute spi(Ĥ) and Pspi(Ĥ),
and also ham(Ĥ) and Pham(Ĥ),

For a graph Ĥ and an integer ℓ, we denote by Ĥ ⊗ ℓ the graph obtained from Ĥ by
adding ℓ vertices and connecting them to every vertex in Ĥ; formally, Ĥ ⊗ ℓ has vertex set
V (Ĥ) ∪ {v1, . . . , vℓ} and edge set E(Ĥ) ∪ {{u, vj} | u ∈ V (Ĥ), 1 ≤ j ≤ ℓ}. We notice that,
since Ĥ = Ĝ(Ĝ1, . . . , Ĝn̂) then the graph Ĥ ⊗ ℓ, for each 2 ≤ ℓ ≤ |V (Ĥ)|, is equal to the
graph Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ) where Ĝ′ is the graph obtained from Ĝ by adding the vertex n̂ + 1
(i.e., V (Ĝ′) = {1, . . . , n̂, n̂ + 1}) and making it adjacent to all the other vertices of Ĝ (i.e.,
E(Ĝ′) = {(i, n̂ + 1) | 1 ≤ i ≤ n̂}), and Iℓ is the independent set with ℓ vertices {v1, . . . , vℓ}.
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4.1 Computing spi(Ĥ) and Pspi(Ĥ)

In order to compute the values spi(Ĥ) and Pspi(Ĥ), we first need a preliminary result.

▶ Proposition 11. Let Ĥ be a graph and

s(Ĥ) = min{ℓ | Ĥ ⊗ (ℓ − 1) has a spanning spider with center in Ĥ}.

Then spi(Ĥ) = s(Ĥ).

Proof. We first show that s(Ĥ) ≤ spi(Ĥ). Let P1, P2, . . . , Pspi(Ĥ) be the path-spider cover
of Ĥ and let f(P1) be the center of spider P1 and, f(Pi) be the first end-point of path Pi for
i = 2, . . . , spi(Ĥ). Hence, the graph Ĥ ⊗ (spi(Ĥ) − 1) contains the spider with center f(P1)
obtained connecting f(P1) to the vertex i and then connecting vertex i to f(Pi) for each for
i = 1, . . . , spi(Ĥ)−1. Now, we prove that spi(Ĥ) ≤ s(Ĥ). Let S be a spider in Ĥ ⊗(s(Ĥ)−1)
with the center u ∈ V (Ĥ). Then, removing from S the vertices in {1, . . . , s(Ĥ) − 1} we have
a path-spider cover with center u and s(Ĥ) − 1 path pairwise disjoint. ◀

Recall that the graph Ĥ ⊗ (ℓ − 1) is equal to Ĝ′(Ĝ1, . . . , Ĝn, Iℓ−1) and notice that

ham(Iℓ−1) = spi(Iℓ−1) = ℓ − 1 and Pham(Iℓ−1) = Pspi(Iℓ−1) = Iℓ−1.

We can then take into account the values ham(Ĝi), spi(Ĝi), |V (Ĝi)|, and the sets
Pham(Ĝi) and Pspi(Ĝi), for all i ∈ {1, . . . , n̂}. For each BĜ′ = {j}, for j = 1, . . . , n̂, we can
follow the lines of Section 3.1 to verify whether the corresponding ILP is feasible. In the
positive case, following the construction given in Section 3.2, one can obtain a spider of
Ĥ ⊗ (ℓ − 1) centered in V (Ĝi)

The minimum ℓ for which the above occurs, gives spi(Ĥ) as well as the spider T covering
Ĥ ⊗ (spi(Ĥ) − 1) with center in V (Ĥ). The arguments used in Section 2.3 allows to obtain
the time complexity of this computation (here, m̂ represents the number of edges of Ĝ)

spi(Ĥ) n̂ [O(n̂
√

n̂ + m̂)(1+o(1))(3n̂+2m̂+1) + O(n̂(n̂ + m̂))] + O(|V (Ĥ)|2).

Clearly, the subgraph of T induced by V (Ĥ) returns the path-spider cover Pspi(Ĥ) of Ĥ,
thus concluding the proof of Theorem 3.

4.2 Computing ham(Ĥ) and Pham(Ĥ)

Using an approach similar to the one in the proof of Proposition 11, we can prove the
following result.

▶ Proposition 12. Let Ĥ be a graph and

h(Ĥ) = min{ℓ | Ĥ ⊗ ℓ has a hamiltonian path with an end-point in {v1, . . . , vℓ}}.

Then ham(Ĥ) = h(Ĥ).

By Proposition 12, the value ham(Ĥ) is equal to the minimum positive integer ℓ with
1 ≤ ℓ ≤ |V (Ĥ)| such that the graph

Ĥ ⊗ ℓ has a hamiltonian path with an end-point not in {v1, . . . , vℓ}. (13)

To verify if graph Ĥ ⊗ ℓ has a hamiltonian path and eventually find it, we can proceed
as in Section 3. Indeed, considering that Ĥ ⊗ ℓ = Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ), and that ham(Iℓ) = ℓ

and Pham(Iℓ) = Iℓ, then given the values ham(Ĝi), |V (Ĝi)| and the set Pham(Ĝi), for each
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i ∈ {1, . . . , n̂}, we can consider the corresponding ILP as in Section 3.1 choosing BĜ′ = ∅ and
r = n̂ + 1 (i.e., Ĝr = Iℓ). If the ILP admits a solution, we can construct the hamiltonian path
P of Ĥ ⊗ ℓ = Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ) following the construction in Section 3.2 choosing any vertex
in Ĝr = Iℓ as end-point (i.e., root). Finally, we notice that everything was proved in Section
3.2 holds also in this case (i.e., Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ), BĜ′ = ∅ and Ĝr = Iℓ) and that, as in
Section 3.4, it can be proved that if there exists a hamiltonian path of Ĝ′(Ĝ1, . . . , Ĝn̂, Iℓ) with
an end-point in Iℓ then exists a solution (x, y) of the corresponding ILP (the same arguments
used in the proof of Lemma 10 holds rooting the hamiltonian path at the end-point in Iℓ).

The minimum ℓ for which (13) occurs, gives ham(Ĥ) and also the hamiltonian path P of
Ĥ ⊗ ham(Ĥ) with one end-point in Iham(Ĥ). The arguments used in Section 2.3 allows to
have the time complexity of this computation

ham(Ĥ) [O(n̂
√

n̂ + m̂)(1+o(1))(3n̂+2m̂+1) + O(n̂(n̂ + m̂))] + O(|V (Ĥ)|2).

Obviously, the subgraph of P induced by V (Ĥ) will return the partition in ham(Ĥ)
disjoint paths of Ĥ, Pham(Ĥ).

We stress that ham(Ĥ) = 1 iff the graph Ĥ has a hamiltonian path.
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