80 research outputs found

    Semidefinite approximations of projections and polynomial images of semialgebraic sets

    No full text
    Given a compact semialgebraic set S of R^n and a polynomial map f from R^n to R^m, we consider the problem of approximating the image set F = f(S) in R^m. This includes in particular the projection of S on R^m for n greater than m. Assuming that F is included in a set B which is simple (e.g. a box or a ball), we provide two methods to compute certified outer approximations of F. Method 1 exploits the fact that F can be defined with an existential quantifier, while Method 2 computes approximations of the support of image measures.The two methods output a sequence of superlevel sets defined with a single polynomial that yield explicit outer approximations of F. Finding the coefficients of this polynomial boils down to computing an optimal solution of a convex semidefinite program. We provide guarantees of strong convergence to F in L^1 norm on B, when the degree of the polynomial approximation tends to infinity. Several examples of applications are provided, together with numerical experiments

    The Multi-Objective Polynomial Optimization

    Full text link
    The multi-objective optimization is to optimize several objective functions over a common feasible set. Since the objectives usually do not share a common optimizer, people often consider (weakly) Pareto points. This paper studies multi-objective optimization problems that are given by polynomial functions. First, we study the convex geometry for (weakly) Pareto values and give a convex representation for them. Linear scalarization problems (LSPs) and Chebyshev scalarization problems (CSPs) are typical approaches for getting (weakly) Pareto points. For LSPs, we show how to use tight relaxations to solve them, how to detect existence or nonexistence of proper weights. For CSPs, we show how to solve them by moment relaxations. Moreover, we show how to check if a given point is a (weakly) Pareto point or not and how to detect existence or nonexistence of (weakly) Pareto points. We also study how to detect unboundedness of polynomial optimization, which is used to detect nonexistence of proper weights or (weakly) Pareto points.Comment: 33 page

    Utopia point method based robust vector polynomial optimization scheme

    Full text link
    In this paper, we focus on a class of robust vector polynomial optimization problems (RVPOP in short) without any convex assumptions. By combining/improving the utopia point method (a nonlinear scalarization) for vector optimization and "joint+marginal" relaxation method for polynomial optimization, we solve the RVPOP successfully. Both theoratical and computational aspects are considered

    Exact Clustering of Weighted Graphs via Semidefinite Programming

    Full text link
    As a model problem for clustering, we consider the densest k-disjoint-clique problem of partitioning a weighted complete graph into k disjoint subgraphs such that the sum of the densities of these subgraphs is maximized. We establish that such subgraphs can be recovered from the solution of a particular semidefinite relaxation with high probability if the input graph is sampled from a distribution of clusterable graphs. Specifically, the semidefinite relaxation is exact if the graph consists of k large disjoint subgraphs, corresponding to clusters, with weight concentrated within these subgraphs, plus a moderate number of outliers. Further, we establish that if noise is weakly obscuring these clusters, i.e, the between-cluster edges are assigned very small weights, then we can recover significantly smaller clusters. For example, we show that in approximately sparse graphs, where the between-cluster weights tend to zero as the size n of the graph tends to infinity, we can recover clusters of size polylogarithmic in n. Empirical evidence from numerical simulations is also provided to support these theoretical phase transitions to perfect recovery of the cluster structure

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria

    Trading off 1-norm and sparsity against rank for linear models using mathematical optimization: 1-norm minimizing partially reflexive ah-symmetric generalized inverses

    Get PDF
    The M-P (Moore-Penrose) pseudoinverse has as a key application the computation of least-squares solutions of inconsistent systems of linear equations. Irrespective of whether a given input matrix is sparse, its M-P pseudoinverse can be dense, potentially leading to high computational burden, especially when we are dealing with high-dimensional matrices. The M-P pseudoinverse is uniquely characterized by four properties, but only two of them need to be satisfied for the computation of least-squares solutions. Fampa and Lee (2018) and Xu, Fampa, Lee, and Ponte (2019) propose local-search procedures to construct sparse block-structured generalized inverses that satisfy the two key M-P properties, plus one more (the so-called reflexive property). That additional M-P property is equivalent to imposing a minimum-rank condition on the generalized inverse. (Vector) 1-norm minimization is used to induce sparsity and, importantly, to keep the magnitudes of entries under control for the generalized-inverses constructed. Here, we investigate the trade-off between low 1-norm and low rank for generalized inverses that can be used in the computation of least-squares solutions. We propose several algorithmic approaches that start from a 11-norm minimizing generalized inverse that satisfies the two key M-P properties, and gradually decrease its rank, by iteratively imposing the reflexive property. The algorithms iterate until the generalized inverse has the least possible rank. During the iterations, we produce intermediate solutions, trading off low 1-norm (and typically high sparsity) against low rank

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Adjusted chi-square test for degree-corrected block models

    Full text link
    We propose a goodness-of-fit test for degree-corrected stochastic block models (DCSBM). The test is based on an adjusted chi-square statistic for measuring equality of means among groups of nn multinomial distributions with d1,,dnd_1,\dots,d_n observations. In the context of network models, the number of multinomials, nn, grows much faster than the number of observations, did_i, hence the setting deviates from classical asymptotics. We show that a simple adjustment allows the statistic to converge in distribution, under null, as long as the harmonic mean of {di}\{d_i\} grows to infinity. This result applies to large sparse networks where the role of did_i is played by the degree of node ii. Our distributional results are nonasymptotic, with explicit constants, providing finite-sample bounds on the Kolmogorov-Smirnov distance to the target distribution. When applied sequentially, the test can also be used to determine the number of communities. The test operates on a (row) compressed version of the adjacency matrix, conditional on the degrees, and as a result is highly scalable to large sparse networks. We incorporate a novel idea of compressing the columns based on a (K+1)(K+1)-community assignment when testing for KK communities. This approach increases the power in sequential applications without sacrificing computational efficiency, and we prove its consistency in recovering the number of communities. Since the test statistic does not rely on a specific alternative, its utility goes beyond sequential testing and can be used to simultaneously test against a wide range of alternatives outside the DCSBM family. We show the effectiveness of the approach by extensive numerical experiments with simulated and real data. In particular, applying the test to the Facebook-100 dataset, we find that a DCSBM with a small number of communities is far from a good fit in almost all cases
    corecore