21 research outputs found

    On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint

    Full text link
    In the problem of minimum connected dominating set with routing cost constraint, we are given a graph G=(V,E)G=(V,E), and the goal is to find the smallest connected dominating set DD of GG such that, for any two non-adjacent vertices uu and vv in GG, the number of internal nodes on the shortest path between uu and vv in the subgraph of GG induced by D{u,v}D \cup \{u,v\} is at most α\alpha times that in GG. For general graphs, the only known previous approximability result is an O(logn)O(\log n)-approximation algorithm (n=Vn=|V|) for α=1\alpha = 1 by Ding et al. For any constant α>1\alpha > 1, we give an O(n11α(logn)1α)O(n^{1-\frac{1}{\alpha}}(\log n)^{\frac{1}{\alpha}})-approximation algorithm. When α5\alpha \geq 5, we give an O(nlogn)O(\sqrt{n}\log n)-approximation algorithm. Finally, we prove that, when α=2\alpha =2, unless NPDTIME(npolylogn)NP \subseteq DTIME(n^{poly\log n}), for any constant ϵ>0\epsilon > 0, the problem admits no polynomial-time 2log1ϵn2^{\log^{1-\epsilon}n}-approximation algorithm, improving upon the Ω(logn)\Omega(\log n) bound by Du et al. (albeit under a stronger hardness assumption)

    An FPT Algorithm for Minimum Additive Spanner Problem

    Get PDF
    For a positive integer t and a graph G, an additive t-spanner of G is a spanning subgraph in which the distance between every pair of vertices is at most the original distance plus t. The Minimum Additive t-Spanner Problem is to find an additive t-spanner with the minimum number of edges in a given graph, which is known to be NP-hard. Since we need to care about global properties of graphs when we deal with additive t-spanners, the Minimum Additive t-Spanner Problem is hard to handle and hence only few results are known for it. In this paper, we study the Minimum Additive t-Spanner Problem from the viewpoint of parameterized complexity. We formulate a parameterized version of the problem in which the number of removed edges is regarded as a parameter, and give a fixed-parameter algorithm for it. We also extend our result to the case with both a multiplicative approximation factor ? and an additive approximation parameter ?, which we call (?, ?)-spanners

    Approximating the Norms of Graph Spanners

    Get PDF

    Approximating Approximate Distance Oracles

    Get PDF
    Given a finite metric space (V,d), an approximate distance oracle is a data structure which, when queried on two points u,v in V, returns an approximation to the the actual distance between u and v which is within some bounded stretch factor of the true distance. There has been significant work on the tradeoff between the important parameters of approximate distance oracles (and in particular between the size, stretch, and query time), but in this paper we take a different point of view, that of per-instance optimization. If we are given an particular input metric space and stretch bound, can we find the smallest possible approximate distance oracle for that particular input? Since this question is not even well-defined, we restrict our attention to well-known classes of approximate distance oracles, and study whether we can optimize over those classes. In particular, we give an O(log n)-approximation to the problem of finding the smallest stretch 3 Thorup-Zwick distance oracle, as well as the problem of finding the smallest Pv{a}trac{s}cu-Roditty distance oracle. We also prove a matching Omega(log n) lower bound for both problems, and an Omega(n^{frac{1}{k}-frac{1}{2^{k-1}}}) integrality gap for the more general stretch (2k-1) Thorup-Zwick distance oracle. We also consider the problem of approximating the best TZ or PR approximate distance oracle with outliers, and show that more advanced techniques (SDP relaxations in particular) allow us to optimize even in the presence of outliers

    Reachability Preservers: New Extremal Bounds and Approximation Algorithms

    Full text link
    We abstract and study \emph{reachability preservers}, a graph-theoretic primitive that has been implicit in prior work on network design. Given a directed graph G=(V,E)G = (V, E) and a set of \emph{demand pairs} PV×VP \subseteq V \times V, a reachability preserver is a sparse subgraph HH that preserves reachability between all demand pairs. Our first contribution is a series of extremal bounds on the size of reachability preservers. Our main result states that, for an nn-node graph and demand pairs of the form PS×VP \subseteq S \times V for a small node subset SS, there is always a reachability preserver on O(n+nPS)O(n+\sqrt{n |P| |S|}) edges. We additionally give a lower bound construction demonstrating that this upper bound characterizes the settings in which O(n)O(n) size reachability preservers are generally possible, in a large range of parameters. The second contribution of this paper is a new connection between extremal graph sparsification results and classical Steiner Network Design problems. Surprisingly, prior to this work, the osmosis of techniques between these two fields had been superficial. This allows us to improve the state of the art approximation algorithms for the most basic Steiner-type problem in directed graphs from the O(n0.6+ε)O(n^{0.6+\varepsilon}) of Chlamatac, Dinitz, Kortsarz, and Laekhanukit (SODA'17) to O(n4/7+ε)O(n^{4/7+\varepsilon}).Comment: SODA '1

    Spanner Approximations in Practice

    Get PDF
    A multiplicative ?-spanner H is a subgraph of G = (V,E) with the same vertices and fewer edges that preserves distances up to the factor ?, i.e., d_H(u,v) ? ?? d_G(u,v) for all vertices u, v. While many algorithms have been developed to find good spanners in terms of approximation guarantees, no experimental studies comparing different approaches exist. We implemented a rich selection of those algorithms and evaluate them on a variety of instances regarding, e.g., their running time, sparseness, lightness, and effective stretch

    The Norms of Graph Spanners

    Get PDF
    A tt-spanner of a graph GG is a subgraph HH in which all distances are preserved up to a multiplicative tt factor. A classical result of Alth\"ofer et al. is that for every integer kk and every graph GG, there is a (2k1)(2k-1)-spanner of GG with at most O(n1+1/k)O(n^{1+1/k}) edges. But for some settings the more interesting notion is not the number of edges, but the degrees of the nodes. This spurred interest in and study of spanners with small maximum degree. However, this is not necessarily a robust enough objective: we would like spanners that not only have small maximum degree, but also have "few" nodes of "large" degree. To interpolate between these two extremes, in this paper we initiate the study of graph spanners with respect to the p\ell_p-norm of their degree vector, thus simultaneously modeling the number of edges (the 1\ell_1-norm) and the maximum degree (the \ell_{\infty}-norm). We give precise upper bounds for all ranges of pp and stretch tt: we prove that the greedy (2k1)(2k-1)-spanner has p\ell_p norm of at most max(O(n),O(n(k+p)/(kp)))\max(O(n), O(n^{(k+p)/(kp)})), and that this bound is tight (assuming the Erd\H{o}s girth conjecture). We also study universal lower bounds, allowing us to give "generic" guarantees on the approximation ratio of the greedy algorithm which generalize and interpolate between the known approximations for the 1\ell_1 and \ell_{\infty} norm. Finally, we show that at least in some situations, the p\ell_p norm behaves fundamentally differently from 1\ell_1 or \ell_{\infty}: there are regimes (p=2p=2 and stretch 33 in particular) where the greedy spanner has a provably superior approximation to the generic guarantee

    Spanner Approximations in Practice

    Get PDF
    A multiplicative α\alpha-spanner HH is a subgraph of G=(V,E)G=(V,E) with the same vertices and fewer edges that preserves distances up to the factor α\alpha, i.e., dH(u,v)αdG(u,v)d_H(u,v)\leq\alpha\cdot d_G(u,v) for all vertices uu, vv. While many algorithms have been developed to find good spanners in terms of approximation guarantees, no experimental studies comparing different approaches exist. We implemented a rich selection of those algorithms and evaluate them on a variety of instances regarding, e.g., their running time, sparseness, lightness, and effective stretch
    corecore