5,260 research outputs found

    Approximating Ideal Filters by Systems of Fractional Order

    Get PDF
    The contributions in this paper are in two folds. On the one hand, we propose a general approach for approximating ideal filters based on fractional calculus from the point of view of systems of fractional order. On the other hand, we suggest that the Paley and Wiener criterion might not be a necessary condition for designing physically realizable ideal filters. As an application of the present approach, we show a case in designing ideal filters for suppressing 50-Hz interference in electrocardiogram (ECG) signals

    Filter bank based fractional delay filter implementation for widely accurate broadband steering vectors

    Get PDF
    Applications such as broadband angle of arrival estimation require the implementation of accurate broadband steering vectors, which generally rely on fractional delay filter designs. These designs commonly exhibit a rapidly decreasing performance as the Nyquist rate is approached. To overcome this, we propose a filter bank based approach, where standard fractional delay filters operate on a series of frequency-shifted oversampled subband signals, such that they appear in the filter's lowpass region. Simulations demonstrate the appeal of this approach

    Implementation of accurate broadband steering vectors for broadband angle of arrival estimation

    Get PDF
    Motivated by accurate broadband steering vector requirements for applications such as broadband angle of arrival estimation, we review fractional delay filter designs. A common feature across these are their rapidly decreasing performance as the Nyquist rate is approached. We propose a filter bank based approach, which operates standard fractional delay filters on a series of frequency-shifted subband signals, such that they appear in the filters’ lowpass region. We demonstrate the appeal of this approach in simulations

    Fractional Delay Digital Filters

    Get PDF

    The fractional orthogonal derivative

    Full text link
    This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper in J. Approx. Theory (2012) by the author and Koornwinder. Here an approximation of the Weyl or Riemann-Liouville fractional derivative is considered by replacing the n-th derivative by its approximation in the formula for the fractional derivative. In the case of, for instance, Jacobi polynomials an explicit formula for the kernel of this approximate fractional derivative can be given. Next we consider the fractional derivative as a filter and compute the transfer function in the continuous case for the Jacobi polynomials and in the discrete case for the Hahn polynomials. The transfer function in the Jacobi case is a confluent hypergeometric function. A different approach is discussed which starts with this explicit transfer function and then obtains the approximate fractional derivative by taking the inverse Fourier transform. The theory is finally illustrated with an application of a fractional differentiating filter. In particular, graphs are presented of the absolute value of the modulus of the transfer function. These make clear that for a good insight in the behavior of a fractional differentiating filter one has to look for the modulus of its transfer function in a log-log plot, rather than for plots in the time domain.Comment: 32 pages, 7 figures. The section between formula (4.15) and (4.20) is correcte

    Variable Fractional Delay Filter Design Using a Symmetric Window

    Get PDF

    Analysis of Root Displacement Interpolation Method for Tunable Allpass Fractional-Delay Filters

    Full text link

    H^∞-Optimal Fractional Delay Filters

    Get PDF
    Fractional delay filters are digital filters to delay discrete-time signals by a fraction of the sampling period. Since the delay is fractional, the intersample behavior of the original analog signal becomes crucial. In contrast to the conventional designs based on the Shannon sampling theorem with the band-limiting hypothesis, the present paper proposes a new approach based on the modern sampled-data HinftyH^{infty} optimization that aims at restoring the intersample behavior beyond the Nyquist frequency. By using the lifting transform or continuous-time blocking the design problem is equivalently reduced to a discrete-time HinftyH^{infty} optimization, which can be effectively solved by numerical computation softwares. Moreover, a closed-form solution is obtained under an assumption on the original analog signals. Design examples are given to illustrate the advantage of the proposed method
    corecore