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H∞-Optimal Fractional Delay Filters
Masaaki Nagahara, Member, IEEE, Yutaka Yamamoto, Fellow, IEEE

Abstract

Fractional delay filters are digital filters to delay discrete-time signals by a fraction of the sampling

period. Since the delay is fractional, the intersample behavior of the original analog signal becomes

crucial. In contrast to the conventional designs based on the Shannon sampling theorem with the band-

limiting hypothesis, the present paper proposes a new approach based on the modern sampled-data H∞

optimization that aims at restoring the intersample behavior beyond the Nyquist frequency. By using the

lifting transform or continuous-time blocking the design problem is equivalently reduced to a discrete-

time H∞ optimization, which can be effectively solved by numerical computation softwares. Moreover,

a closed-form solution is obtained under an assumption on the original analog signals. Design examples

are given to illustrate the advantage of the proposed method.

Index Terms

Fractional delay filters, interpolation, sampled-data systems, H∞ optimization, linear matrix inequal-

ity.

I. INTRODUCTION

Fractional delay filters are digital filters to delay discrete-time signals by a fractional amount of

the sampling period. Such filters have wide applications in signal processing, including sampling rate

conversion [1], [2], [3], nonuniform sampling [4], [5], wavelet transform [6], [7], digital modeling of

musical instruments [8], [9], to name a few. For more applications, see survey papers [10], [11], [12].
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Conventionally, fractional delay filters are designed based on the Shannon sampling theorem [13], [14]

for strictly bandlimited analog signals. Based on this theory, the optimal filter coefficients are obtained

by sampling a delayed sinc function. This ideal low-pass filter is however not realizable because of its

non-causality and instability, and hence many studies have focused their attention on approximating the

ideal filter by, for example, windowed sinc functions [15], [16], maximally-flat FIR approximation [17],

[18], [19], [20], [21], all-pass approximation [22], [23], and minmax (Chebyshev) optimization [24].

In particular, H2 (or weighted least-squares) design has been prevalent in the literature [10], [25],

[26], [21]. This method minimizes the H2 norm of the weighted difference between the ideal low-pass

filter and a filter to be designed, and is based on the projection theorem in Hilbert space. There are,

however, two major drawbacks in this conventional approach. One is that due to the averaging nature

of the H2 criterion, the obtained frequency response can have a sharp peak at a certain frequency,

thereby yielding a poor performance at that frequency, while still maintaining small H2 error in the

overall frequency response. The other is that H2 criterion can yield a truncated frequency response as an

optimal approximant of the ideal low-pass filter, which yields a distortion due to the Gibbs phenomenon

in the time domain. Furthermore, such a design is mostly executed in the discrete-time domain, which

yields poor intersample response.

In view of these problems we employ sampled-data H∞ optimization, recently introduced for signal

processing by [27]1. This is based on sampled-data control theory [29] which accounts for the mixed

nature of continuous- and discrete-time thereby enabling optimization of the intersample signals via

discrete-time controllers (filters). This also allows for optimization according to the H∞ norm, namely

minimizing the maximum of the error frequency response. This worst-case design is clearly desirable in

that it does not have the drawback due to the averaging property of the H2 criterion. Due to the nature

of the H∞ norm, however, this optimization problem has been difficult to solve, but one can now utilize

a standardized method to solve this class of problems [30], [29]. Furthermore, the obtained filter shows

greater robustness against unknown disturbances due to the nature of the uniform attenuation of the error

frequency response; see [27] for details. Based on this H∞ optimization method, we formulate the design

of fractional delay filters as a sampled-data H∞ optimization problem2.

In order to optimize the intersample behavior, we must deal with both continuous- and discrete-time

1The approach dates back to [28], though.
2This method was first proposed in our conference articles [31], [32]. The present paper reorganizes these works with new

results on the state-space formulation (Proposition 1, Appendix A). Simulation results in Section IV are also new.
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signals, and hence the overall system is not time-invariant. The key to solving this problem is lifting,

which is introduced in the early studies of modern sampled-data control theory [33], [34], [35], [36],

[37]. Indeed, continuous-time lifting gives an exact, not approximated, time-invariant discrete-time model

for a sampled-data system, albeit with infinite-dimensional input and output spaces. Hence the problem

of the mixed time sets is circumvented without approximation.

Lifting can also be interpreted as a continuous-time blocking or polyphase decomposition. As in multi-

rate signal processing [38], lifting makes it possible to capture continuous-time signals and systems in the

discrete-time domain without approximation; see Section III-A for details. The remaining system becomes

a time-invariant discrete-time system, albeit with infinite-dimensional input and output spaces. In view

of this infinite-dimensionality, we retain the term lifting to avoid confusion. With such a representation,

we show that our design problem is reducible to a finite-dimensional discrete-time H∞ optimization

without approximation. This type of H∞ optimization is easily solvable by standard softwares such as

MATLAB [39].

In some applications, digital filters with variable delay responses (variable fractional delay filters [40],

[10], [25], [26]) are desired. In this case, a filter should have a tunable delay parameter, and hence a

closed-form formula should be derived. In general, H∞ optimal filters are difficult to solve analytically.

However, we provide a closed-form formula of the optimal filter with the delay variable as a parameter

under the assumption that the underlying frequency characteristic of continuous-time input signals is

governed by a low-pass filter of first order. While this assumption may appear somewhat restrictive, it

covers many typical cases and variations by some robustness properties [31].

The paper is organized as follows. Section II defines fractional delay filters, and reviews a standard

H2 design method. We then reformulate our design problem as a sampled-data H∞ optimization to

overcome the difficulty due to the H2 design. Section III gives a procedure to solve the sampled-data

H∞ optimization problem based on the lifting transform. Section IV shows numerical examples to

illustrate the superiority of the proposed method.

Notation

Throughout this paper, we use the following notation. We denote by L2[0,∞) and L2[0, T ) the

Lebesgue spaces consisting of all square integrable real functions on R+ := [0,∞) and [0, T ), respectively.

L2[0,∞) may be abbreviated as L2. By ℓ2 we denote the set of all real-valued square summable sequences

on Z+ := {0, 1, 2, . . .}. For a normed space X , we denote by ℓ2(Z+, X) the set of all sequences on Z+

taking values in X with squared norms being summable. For normed linear spaces X and Y , we denote
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0 0 D
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(A) Delay

(D) FDF

(C) Sampling (B) Sampling

t t

tt

v(t) v(t−D)

v(nT ) v(nT −D)

Fig. 1. Fractional delay process: (A) a continuous-time signal v(t) (top left) is delayed by D > 0. (B) the delayed signal

v(t − D) is sampled at t = nT , n = 0, 1, . . .. (C) the signal v(t) is sampled at t = nT , n = 0, 1, . . .. (D) digital filtering

(fractional delay filter, FDF) to produce (or estimate) the sequence {v(nT −D)} from the sampled-data {v(nT )}.

by B(X,Y ) the set of all bounded linear operators of X into Y . Rν and Rm×n denote respectively the

set of real vectors of size ν and real matrices of size m×n. Finite-dimensional vectors and matrices are

denoted by bold letters, such as x or A, and infinite-dimensional operators by calligraphic letters, such

as B. The transpose of a matrix A is denoted by A⊤. Symbols s and z are used for the variables of

Laplace and Z transforms, respectively. For a linear system F , its transfer function is denoted by F̂ (z)

(if F is discrete-time) or F̂ (s) (if F is continuous-time), and its impulse response by the lower-case

letter, f [n] or f(t). The imaginary unit
√
−1 is denoted by j.

II. FRACTIONAL DELAY FILTERS

In this section, we review fractional delay filters with conventional design methods based on the

Shannon sampling theorem. Then, we reformulate the design problem as a sampled-data H∞ optimization

problem.

A. Definition and standard design method

Consider a continuous-time signal v shown in Fig. 1 (top-left figure). Assume v(t) = 0 for t < 0 (i.e.,

it is a causal signal). Delaying this signal by D > 0 gives the delayed continuous-time signal v(t−D)
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shown in Fig. 1 (top-right in Fig. 1). Then by sampling v(t−D) with sampling period T , we obtain the

discrete-time signal {v(nT −D)}n∈Z as shown in Fig. 1 (bottom-right in Fig. 1).

Next, let us consider the directly sampled signal {v(nT )}n∈Z of the original analog signal v as shown

in Fig. 1 (bottom-left in Fig. 1). The objective of fractional delay filters is to reconstruct or estimate the

delayed sampled signal {v(nT −D)}n∈Z directly from the sampled data {v(nT )}n∈Z when D is not an

integer multiple of T . We now define the ideal fractional delay filter.

Definition 1: The ideal fractional delay filter Kid with delay D > 0 is the mapping that produces

{v(nT −D)}n∈Z from {v(nT )}n∈Z, that is,

Kid : {v(nT )}n∈Z 7→ {v(nT −D)}n∈Z.

Assume for the moment that the original analog signal v is fully band-limited below the Nyquist

frequency ΩN = π/T , that is,

v̂(jω) = 0, |ω| ≥ ΩN, (1)

where v̂ is the Fourier transform of v. Then the impulse response of the ideal fractional delay filter is

obtained by [10]:

kid[n] =
sinπ(n−D/T )

π(n−D/T )
= sinc(n−D/T ),

n = 0,±1,±2, . . . , sinc(t) :=
sin(πt)

πt
.

(2)

The frequency response of this ideal filter is given in the frequency domain as

K̂id(e
jωT ) = e−jωD, ω ≤ ΩN. (3)

Since the impulse response (2) does not vanish at n = −1,−2, . . . and is not absolutely summable, the

ideal filter is noncausal and unstable, and hence the ideal filter is not physically realizable. Conventional

designs thus aim at approximating the impulse response (2) or the frequency response (3) by a causal and

stable filter. We here review in particular the H2 optimization, also known as weighted least squares [10].

Define the weighted approximation error by

E2 := (Kid −K)Wd (4)

where Wd is a weighting function and K is a filter to be designed, which is assumed to be FIR (finite

impulse response). The H2 design aims at finding the FIR coefficients of the transfer function K̂(z) of

K that minimize the H2 norm of the weighted error system E2:

∥E2∥22 = ∥(Kid −K)Wd∥22

=
1

ΩN

∫ ΩN

0

∣∣∣[K̂id(e
jωT )− K̂(ejωT )

]
Ŵd(e

jωT )
∣∣∣2 dω. (5)
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W

ST K

STe−Ds

−

+

w v ud

vd ūd ed

(B)

(C) (D)

(A)

Fig. 2. Error system E for designing fractional delay filter K. (A)–(D) correspond to those in Fig. 1.

As pointed out in the Introduction, this H2 design has some drawbacks. One is that the designed filter

K may yield a large peak in the error frequency response Ê2(e
jωT ) due to the averaging nature of the

H2 norm (5). If an input signal has a frequency component at around such a peak of Ê2(e
jωT ), the error

will become very large. The second is that the perfect band-limiting assumption (1) implies that the H2

suboptimal filter is given as an approximant of the ideal low-pass filter [41], which induces large errors

in the time domain [27]. Moreover, real analog signals always contain frequency components beyond the

Nyquist frequency, and hence (1) never holds exactly for real signals.

B. Reformulation of design problem

To simultaneously solve the two problems pointed out above, we introduce sampled-data H∞ optimiza-

tion [27]. This method has advantages as mentioned in Section I. To adapt sampled-data H∞ optimization

for the design of fractional delay filters, we reformulate the design problem, instead of mimicking the

“ideal” filter given in (2) or (3).

Let us consider the error system shown in Fig. 2. W is a stable continuous-time system with strictly

proper transfer function Ŵ (s) that defines the frequency-domain characteristic of the original analog

signal v. More precisely, we assume that the analog signal v is in the following subspace of L2:

WL2 :=
{
v ∈ L2 : v = Ww, w ∈ L2

}
.

Note that the signal subspace WL2 is much wider than that of band-limited L2 signals [42].

The upper path of the diagram in Fig. 2 is the ideal process of the fractional delay filter (the process

(A) → (B) in Fig. 1); that is, the continuous-time signal v is delayed by the continuous-time delay

denoted by e−Ds (we use the notation e−Ds, the transfer function of the D-delay system, as the system
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itself), and then sampled by the ideal sampler denoted by ST with period T > 0 to become an ℓ2 signal3

ud := ST e
−Dsv, or

ud[n] :=
(
ST e

−Dsv
)
[n] = v(nT −D), n ∈ Z+.

On the other hand, the lower path represents the real process ((C) → (D) in Fig. 1); that is, the

continuous-time signal v is directly sampled with the same period T to produce a discrete-time signal

vd ∈ ℓ2 defined by

vd[n] := (ST v) [n] = v(nT ), n ∈ Z+.

This signal is then filtered by a digital filter K to be designed, and we obtain an estimation signal

ūd = KST v ∈ ℓ2.

Put ed := ud− ūd (the difference between the ideal output ud and the estimation ūd), and let E denote

the error system from w ∈ L2 to ed ∈ ℓ2 (see Fig. 2). Symbolically, E is represented by (cf. (4))

E =
(
ST e

−Ds −KST

)
W. (6)

Then our problem is to find a digital filter K that minimizes the H∞ norm of the error system E.

Problem 1: Given a stable, strictly proper W (s), a delay time D > 0, and a sampling period T > 0,

find the digital filter K that minimizes (cf. (5))

∥E∥∞ =
∥∥(ST e

−Ds −KST

)
W

∥∥
∞

= sup
w∈L2, ∥w∥2=1

∥
(
ST e

−Ds −KST

)
Ww∥ℓ2 .

Note that W , or its transfer function Ŵ (s), can be interpreted as a frequency-domain weighting function

for the optimization. This is comparable to Ŵd(z) in the discrete-time H2 design minimizing (5). The

point to use continuous-time Ŵ (s) is that one can model the frequency characteristic of signals beyond

the Nyquist frequency. Also, the advantage of using the sampled-data setup here is that we can minimize

the norm of the overall transfer operator from continuous-time w to the error ed. In the next section, we

will show a procedure to solve Problem 1 based on sampled-data control theory.

III. H∞ DESIGN OF FRACTIONAL DELAY FILTERS

The error system E in Fig. 2 contains both continuous- and discrete-time signals, and hence the

system is not time-invariant; in fact, it is T -periodic [29]. In this section, we introduce the continuous-

time lifting technique [37], [29] to derive a norm-preserving transformation from E to a time-invariant

3If Ŵ (s) is stable and strictly proper, the discrete-time signal ud = ST e
−Dsv belongs to ℓ2. Otherwise, ST is not a bounded

operator on L2; see [29, Section 9.3].
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w̃ ṽ ud

vd ūd

−

+ ed

LWL

−1
ST e

−Ds
L

−1

STL
−1 K(z)

Fig. 3. Lifted error system E .

finite-dimensional discrete-time system. After this, one can use a standard discrete-time H∞ optimization

implemented on a computer software such as MATLAB to obtain an optimal filter. We also give a closed-

form solution of the optimization under an assumption on W (s).

A. Lifted model of sampled-data error system

Let {A,B,C} be a minimal realization [43] of Ŵ (s):

dx(t)

dt
= Ax(t) +Bw(t), v(t) = Cx(t), t ∈ R+, (7)

where x(t) ∈ Rν is the state variable (ν is a positive integer). We assume A ∈ Rν×ν , B ∈ Rν×1,

C ∈ R1×ν , and x(0) = 0. Let D = mT + d where m ∈ Z+ and d is a real number such that

0 ≤ d < T . First, we introduce the lifting operator L [37], [29] that transforms a continuous-time signal

in L2[0,∞) to an ℓ2 sequence of functions in L2[0, T ). Apply L to the continuous-time signals w and

v, and put w̃ := Lw, ṽ := Lv. By this, the error system in Fig. 2, is transformed into a time-invariant

discrete-time system E shown in Fig. 3. Since the operator L gives an isometry between L2[0,∞) and

ℓ̃2 := ℓ2(Z+, L
2[0, T )), we have

∥E∥∞ = ∥E∥∞ := sup
w̃∈ℓ̃2, ∥w̃∥2

ℓ̃
=1

∥Ew̃∥ℓ2 (8)

The following proposition is fundamental to the sampled-data optimization in (8).

Proposition 1: A state-space realization of the lifted error system E is given by

ξ[n+ 1] = Adξ[n] +

 B

0

 w̃[n],

ed[n] = C1ξ[n]− ūd[n], vd[n] = C2ξ[n],

ūd[n] = (k ∗ vd)[n],

(9)
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where ∗ stands for convolution, and the pertinent operators Ad, B, C1 and C2 are given as follows:

First, B is a linear (infinite-dimensional) operator defined by

B : L2[0, T ] → Rν+1,

w̃ 7→ Bw̃ =

B1w̃

B2w̃



=


∫ T

0
eA(T−τ)Bw̃(τ)dτ∫ T−d

0
CeA(T−d−τ)Bw̃(τ)dτ


(10)

The matrices Ad, C1, and C2 in (9) are defined by

Ad :=


eAT 0 0

CeA(T−d) 0 0

0 Bm Am

 ∈ R(ν+1+m)×(ν+1+m),

C1 := [0, 0,Cm] ∈ R1×(ν+1+m),

C2 := [C, 0, 0] ∈ R1×(ν+1+m),

where Am, Bm, and Cm are state-space realization matrices of the discrete-time delay z−m.

Proof: See Appendix A.

The state-space representation (9) then gives the transfer function of the lifted system E as

Ê(z) = Ĝ1(z)− K̂(z)Ĝ2(z), (11)

where

Ĝi(z) := Ci(zI −Ad)
−1

 B

0

 , i = 1, 2.

Put

Ê0(z) :=
(
C1 − K̂(z)C2

)
(zI −Ad)

−1. (12)

Note that E0 is a finite-dimensional discrete-time system. Then the lifted system E(z) in (11) can be

factorized (see Fig. 4) as

Ê(z) = Ê0(z)

 B

0

 . (13)
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!"! "!

Fig. 4. Factorization of E .

B. Norm-equivalent finite-dimensional system

The lifted system E given in (9), or its transfer function Ê in (11), involves an infinite-dimensional

operator B : L2[0, T ) → Rν+1. Introducing the dual operator [44] B∗ : Rν+1 → L2[0, T ) of B, and

composing this with B, we can obtain a norm-equivalent finite dimensional system of the infinite-

dimensional system E .

The dual operator B∗ of B is given by [44]

B∗ =
[
B∗
1 B∗

2

]
, B∗

1(θ) := B⊤eA
⊤(T−θ),

B∗
2(θ) := 1[0,T−d)(θ)B

⊤eA
⊤(T−d−θ)C⊤, θ ∈ [0, T ),

where 1[0,T−d) is the characteristic function of the interval [0, T − d), that is,

1[0,T−d)(θ) :=

1, θ ∈ [0, T − d),

0, otherwise.

Then we have the following lemma:

Lemma 1: The operator BB∗ is a positive semi-definite matrix given by

BB∗ =

B1B∗
1 B1B∗

2

B2B∗
1 B2B∗

2


=

 M(T ) eAdM(T − d)C⊤

CM(T − d)eA
⊤d CM(T − d)C⊤

 (14)

where M(·) is defined by

M(t) :=

∫ t

0
eAθBB⊤eA

⊤θdθ ∈ Rν×ν , t ≥ 0.

Proof: We first prove B1B∗
2 = eAdM(T − d)C⊤.
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Fig. 5. Discrete-time system Ed.

For every u ∈ R, we have

B1B∗
2u =

∫ T

0
eA(T−θ)B

(
B∗
2(θ)u

)
dθ

=

∫ T

0
eA(T−θ)B

(
1[0,T−d)(θ)B

⊤eA
⊤(T−d−θ)C⊤u

)
dθ

= eAd

∫ T−d

0
eA(T−d−θ)BB⊤eA

⊤(T−d−θ)dθ C⊤u

= eAdM(T − d)C⊤u.

Similarly, we can prove the equalities B1B∗
1 = M(T ) and B2B∗

2 = CM(T − d)C⊤.

Remark 1: The matrix M(t) can be computed via the matrix exponential formula [45]:

M(t) = F⊤
22(t)F 12(t), F 11(t) F 12(t)

0 F 22(t)

 := exp


 −A BB⊤

0 A⊤

 t

 .

By this formula, we can easily compute the matrices M(T ) and M(T − d) in (14) without performing

a numerical integration.

From Lemma 1, BB∗ is a positive semi-definite matrix and hence there exists a matrix Bd such that

BB∗ = BdB
⊤
d . With matrix Bd and discrete-time system E0 given in (12), define a finite-dimensional

discrete-time system by

Ed := E0

 Bd

0

 .

See Fig. 5 for the block diagram of Ed. Then the discrete-time system Ed is equivalent to the original

sampled-data error system E in Fig. 2 with respect to their H∞ norm as described in the following

theorem:

Theorem 1: Assume that the sampled-data error system E gives an operator belonging to B(L2, ℓ2),

the set of all bounded linear operators of L2 into ℓ2. Then the discrete-time system Ed belongs to B(ℓ2, ℓ2)

and equivalent to E with respect to their H∞ norm, that is, ∥E∥∞ = ∥Ed∥∞.

May 24, 2013 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2013.2265678

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



12

Proof: First, the equality in (8) and E ∈ B(L2, ℓ2) give ∥E∥∞ = ∥E∥∞ < ∞. Using the factorization

(13), we have

∥E∥2∞ = ∥E∥2∞ =

∥∥∥∥∥∥E0

 B

0

∥∥∥∥∥∥
2

∞

=

∥∥∥∥∥∥E0

 B

0

 B

0

∗

E∗
0

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥E0

 Bd

0

 Bd

0

⊤

E∗
0

∥∥∥∥∥∥∥
∞

= ∥Ed∥2∞ .

Thus the sampled-data H∞ optimization (Problem 1) is equivalently transformed to discrete-time H∞

optimization. A MATLAB code for the H∞-optimal fractional delay filter is available on the web at

[46]. Moreover, if we assume that the filter K(z) is an FIR filter, the design is reduced to a convex

optimization with a linear matrix inequality. See [32], [47] for details.

C. Closed-form solution under a first-order assumption

Assume that the weighting function Ŵ (s) is a first-order low-pass filter with cutoff frequency ωc > 0:

Ŵ (s) =
ωc

s+ ωc
. (15)

Under this assumption, a closed-form solution for the optimal filter is obtained [31], [32]:

Theorem 2: Assume that Ŵ (s) is given by (15). Then the optimal filter K̂(z) is given by

K̂(z) = a0(d)z
−m + a1(d)z

−m−1, (16)

where

a0(d) :=
sinh (ωc(T − d))

sinh(ωcT )
, a1(d) := e−ωcT

(
eωcd − a0(d)

)
.

Moreover, the optimal value of ∥E∥∞ is given by

∥E∥∞ =

√
ωc sinh(ωcd) sinh(ωc(T − d))

sinh(ωcT )
. (17)

Since the optimal filter K̂(z) in (16) is a function of the fractional delay d and the integer delay m,

the filter can be used as a variable fractional delay filter [10].

Remark 2: Fix d > 0 and m ∈ Z+ arbitrarily. By definition, we have T − d < T . It follows that as

ωc → ∞, we have a0(d) → 0, a1(d) → 0, and ∥E∥∞ → ∞. This means that if the original analog
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Fig. 6. Bode plot of Ŵ (s) (solid) and its impulse-invariant discretization Ŵd(z) (dash). The vertical line shows the Nyquist

frequency.

signals contain higher frequency components (far beyond the Nyquist frequency), the worst-case input

signal becomes more severe, and the H∞-optimal filter becomes closer to 0.

IV. DESIGN EXAMPLES

We here present design examples of fractional delay filters.

The design parameters are as follows: the sampling period T = 1 (sec), the delay D = 5.5 (sec), that

is, m = 5 and d = 0.5. The frequency-domain characteristic of analog signals to be sampled is modeled

by

Ŵ (s) =
ωc

s+ ωc
, ωc = 0.1.

Note that Ŵ (s) has the cutoff frequency ωc = 0.1 (rad/sec) ≈ 0.016 (Hz), which is below the Nyquist

frequency π (rad/sec) = 0.5 (Hz).

We compare the sampled-data H∞ optimal filter obtained by Theorem 2 with conventional FIR filters

designed by discrete-time H2 optimization [10], which minimizes the cost function (5). The weighting

function Ŵd(z) in (4) or (5) is chosen as the impulse-invariant discretization [48] of Ŵ (s). Fig. 6 shows

the Bode plots of Ŵ (s) and Ŵd(z).
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Fig. 7. Bode plot of filters: sampled-data H∞ design (solid), and discrete-time H2 design (dash).

The transfer function of the proposed filter is given by

K̂(z) = z−5
(
0.4994 + 0.4994z−1

)
.

Fig. 7 shows the Bode plots of the designed filters. As illustrated in Fig. 7, the H2 optimal filter is

closer to the ideal filter (3) as expected, so that it appears better in the context of the conventional design

methodology.

However, the H2 optimal filter exhibits much larger errors in the high-frequency domain as shown

in Fig. 8 that shows the frequency response gain of the sampled-data error system E shown in Fig. 2.

This is because the conventional designs cannot take into account the frequency response of the source

analog signals while the present method does.

To see the difference between the present filter and the conventional one, we show the time response

against a piecewise regular signal produced by the MakeSignal function of WaveLab [49] in Fig. 9.

The present method is superior to the conventional one that shows much ringing at edges of the wave.

To see the difference more finely, we show the reconstruction error in Fig. 10. The H2-optimal filter

has much larger errors around edges of the signal than the proposed H∞-optimal one. In fact, the L2

norm of the error is 1.34 × 10−2 for H∞ design and 2.07 × 10−2 for H2 design. This illustrates the

effectiveness of our method.
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(dash).

V. CONCLUSION

We have presented a new method of designing fractional delay filters via sampled-data H∞ optimiza-

tion. An advantage here is that an optimal analog performance can be attained. The optimal design

problem can be equivalently transformed to discrete-time H∞ optimization, which is easily executed

by standard numerical optimization toolboxes. A closed-form solution is given when the frequency

distribution of the input analog signal is modeled as a first-order low-pass filter. Design examples show

that the H∞-optimal filter exhibits a much more satisfactory performance than the conventional H2-

optimal filter.
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APPENDIX A

PROOF OF PROPOSITION 1

From the relation (6), the lifted system E is described as (see also Fig. 3)

E = ST e
−DsWL−1 −KSTWL−1

= ST e
−mTse−dsWL−1 −KSTWL−1

= z−mST e
−dsWL−1 −KSTWL−1

= z−myd −Kvd,

where yd := ST e
−dsWL−1w̃ and vd := STWL−1w̃. From the state-space representation of W in (7),

for any t1 and t2 such that 0 ≤ t1 ≤ t2 < ∞, we have

x(t2) = eA(t2−t1)x(t1) +

∫ t2

t1

eA(t2−t)Bw(t)dt.

Putting t1 := nT and t2 := (n+ 1)T for n ∈ Z+ gives

x(nT + T ) = eATx(nT ) +

∫ T

0
eA(T−τ)Bw(nT + τ)dτ.

May 24, 2013 DRAFT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSP.2013.2265678

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



17

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
Error (H−inf design)

time (sec)

am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
Error (H−2 design)

time (sec)

am
pl

itu
de

Fig. 10. Absolute value of reconstruction error: sampled-data H∞ design (above) and discrete-time H2 design (below).

Define x1[n] := x(nT ) and w̃[n] := (Lw)[n]. Then we have

x1[n+ 1] = eATx1[n] + B1w̃[n], (18)

where B1 is defined in (10). On the other hand, from (7), we have v(t) = Cx(t) for t ∈ R+. Putting

t1 := nT and t2 := nT + θ for n ∈ Z+ and θ ∈ [0, T ), we have

v(nT + θ) = Cx(nT + θ)

= CeAθx(nT ) +

∫ θ

0
CeA(θ−τ)Bw(nT + τ)dτ.

(19)

By this, we have

vd[n] = v(nT ) = Cx1[n]. (20)

Next, from (19), we have

yd[n] = v(nT − d) = v(nT − T + T − d)

= CeA(T−d)x1[n− 1]

+

∫ T−d

0
CeA(θ−τ)Bw̃[n− 1](τ)dτ.
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Put x2[n] := yd[n]. Then we have

x2[n+ 1] = CeA(T−d)x1[n] + B2w̃[n],

yd[n] = x2[n],

(21)

where B2 is defined in (10). By the relation

ud[n] = yd[n−m] = z−myd[n],

and the state-space matrices Am, Bm, and Cm for m-step delay z−m, we have

x3[n+ 1] = Amx3[n] +Bmyd[n],

ud[n] = Cmx3[n].

(22)

Combining (18), (20), (21), and (22) all together gives the state-space representation (9) with ξ⊤ :=

[x⊤
1 , x2,x

⊤
3 ]

⊤.

REFERENCES

[1] T. A. Ramstad, “Digital methods for conversion between arbitrary sampling frequencies,” IEEE Trans. Acoust., Speech,

Signal Processing, vol. 32, no. 3, pp. 577–591, 1984.

[2] J. O. Smith and P. Gossett, “A flexible sampling-rate conversion method,” in IEEE ICASSP’84, 1984, pp. 19.4.1–19.4.4.

[3] S. Park, G. Hillman, and R. Robles, “A novel structure for real-time digital sample-rate converters with finite precision

error analysis,” in IEEE ICASSP’91, 1991, pp. 3613–3616.
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