15,602 research outputs found

    A Unifying Theory of Biological Function

    Get PDF
    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism’s fitness, and modulates the organism’s variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories

    Leave-one-out prediction error of systolic arterial pressure time series under paced breathing

    Full text link
    In this paper we show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. In particular we consider systolic arterial pressure time series from healthy subjects and Chronic Heart Failure patients, undergoing paced respiration. We model time series by the regularized least squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular, thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. The leave-one-out error separates controls from patients and, when all orders of nonlinearity are taken into account, alive patients from patients for which cardiac death occurred

    Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates

    Get PDF
    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge

    The human ECG - nonlinear deterministic versus stochastic aspects

    Full text link
    We discuss aspects of randomness and of determinism in electrocardiographic signals. In particular, we take a critical look at attempts to apply methods of nonlinear time series analysis derived from the theory of deterministic dynamical systems. We will argue that deterministic chaos is not a likely explanation for the short time variablity of the inter-beat interval times, except for certain pathologies. Conversely, densely sampled full ECG recordings possess properties typical of deterministic signals. In the latter case, methods of deterministic nonlinear time series analysis can yield new insights.Comment: 6 pages, 9 PS figure

    Patient Specific Congestive Heart Failure Detection From Raw ECG signal

    Full text link
    In this study; in order to diagnose congestive heart failure (CHF) patients, non-linear second-order difference plot (SODP) obtained from raw 256 Hz sampled frequency and windowed record with different time of ECG records are used. All of the data rows are labelled with their belongings to classify much more realistically. SODPs are divided into different radius of quadrant regions and numbers of the points fall in the quadrants are computed in order to extract feature vectors. Fisher's linear discriminant, Naive Bayes, Radial basis function, and artificial neural network are used as classifier. The results are considered in two step validation methods as general k-fold cross-validation and patient based cross-validation. As a result, it is shown that using neural network classifier with features obtained from SODP, the constructed system could distinguish normal and CHF patients with 100% accuracy rate. KeywordsComment: Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validatio

    A delay recruitment model of the cardiovascular control system.

    Get PDF
    Copyright will be owned by Springer. We develop a nonlinear delay-differential equation for the human cardiovascular control system, and use it to explore blood pressure and heart rate variability under short-term baroreflex control. The model incorporates an intrinsically stable heart rate in the absence of nervous control, and features baroreflex influence on both heart rate and peripheral resistance. Analytical simplifications of the model allow a general investigation of the rĂ´les played by gain and delay, and the effects of ageing.

    Evaluation of PPG Biometrics for Authentication in different states

    Full text link
    Amongst all medical biometric traits, Photoplethysmograph (PPG) is the easiest to acquire. PPG records the blood volume change with just combination of Light Emitting Diode and Photodiode from any part of the body. With IoT and smart homes' penetration, PPG recording can easily be integrated with other vital wearable devices. PPG represents peculiarity of hemodynamics and cardiovascular system for each individual. This paper presents non-fiducial method for PPG based biometric authentication. Being a physiological signal, PPG signal alters with physical/mental stress and time. For robustness, these variations cannot be ignored. While, most of the previous works focused only on single session, this paper demonstrates extensive performance evaluation of PPG biometrics against single session data, different emotions, physical exercise and time-lapse using Continuous Wavelet Transform (CWT) and Direct Linear Discriminant Analysis (DLDA). When evaluated on different states and datasets, equal error rate (EER) of 0.5%0.5\%-6%6\% was achieved for 4545-6060s average training time. Our CWT/DLDA based technique outperformed all other dimensionality reduction techniques and previous work.Comment: Accepted at 11th IAPR/IEEE International Conference on Biometrics, 2018. 6 pages, 6 figure

    Evolution of Parasympathetic Modulation throughout the Life Cycle

    Get PDF
    Based on the largest data set ever available for analysis of heart rate variability (HRV) variables, in healthy individuals, it was possible to determine the evolutionary behavior of three representative components of parasympathetic nervous system function (RMSSD, PNN50, and HF ms2), in different age groups of the life cycle: newborns, children and adolescents, young adults, and, finally, middle-aged adults. A near-parabolic and nonsynchronous behavior was observed among the different variables evaluated, with low values at first, then progressive elevation, and later fall, approximating the values of the newborns to the values of middle-aged adults and suggesting that the autonomic nervous system, at least relatively to its parasympathetic component, undergoes a growing maturation that is completed in the young adult and later suffers a progressive degeneration, completing the life cycle. This fact should be considered when comparing the analysis between healthy individuals and those with different states of pathological impairment

    Right Heart Remodeling in Patients with End-Stage Alcoholic Liver Cirrhosis: Speckle Tracking Point of View

    Get PDF
    BACKGROUND: Data regarding cardiac remodeling in patients with alcoholic liver cirrhosis are scarce. We sought to investigate right atrial (RA) and right ventricular (RV) structure, function, and mechanics in patients with alcoholic liver cirrhosis. METHODS: This retrospective cross-sectional investigation included 67 end-stage cirrhotic patients, who were referred for evaluation for liver transplantation and 36 healthy controls. All participants underwent echocardiographic examination including strain analysis, which was performed offline. RESULTS: RV basal diameter and RV thickness were significantly higher in patients with cirrhosis. Conventional parameters of the RV systolic function were similar between the observed groups. Global, endocardial, and epicardial RV longitudinal strains were significantly lower in patients with cirrhosis. Active RA function was significantly higher in cirrhotic patients than in controls. The RA reservoir and conduit strains were significantly lower in cirrhotic patients, while there was no difference in the RA contractile strain. Early diastolic and systolic RA strain rates were significantly lower in cirrhotic patients than in controls, whereas there was no difference in the RA late diastolic strain rate between the two groups. Transaminases and bilirubin correlated negatively with RV global longitudinal strain and RV-free wall strain in patients with end-stage liver cirrhosis. The Model for End-stage Liver Disease (MELD) score, predictor of 3-month mortality, correlated with parameters of RV structure and systolic function, and RA active function in patients with end-stage liver cirrhosis. CONCLUSIONS: RA and RV remodeling is present in patients with end-stage liver cirrhosis even though RV systolic function is preserved. Liver enzymes, bilirubin, and the MELD score correlated with RV and RA remodeling
    • …
    corecore