107 research outputs found

    Approximating Hamiltonian dynamics with the Nyström method

    Get PDF
    Simulating the time-evolution of quantum mechanical systems is BQP-hard and expected to be one of the foremost applications of quantum computers. We consider classical algorithms for the approximation of Hamiltonian dynamics using subsampling methods from randomized numerical linear algebra. We derive a simulation technique whose runtime scales polynomially in the number of qubits and the Frobenius norm of the Hamiltonian. As an immediate application, we show that sample based quantum simulation, a type of evolution where the Hamiltonian is a density matrix, can be efficiently classically simulated under specific structural conditions. Our main technical contribution is a randomized algorithm for approximating Hermitian matrix exponentials. The proof leverages a low-rank, symmetric approximation via the Nyström method. Our results suggest that under strong sampling assumptions there exist classical poly-logarithmic time simulations of quantum computations

    Composition Methods for Dynamical Systems Separable into Three Parts

    Get PDF
    New families of fourth-order composition methods for the numerical integration of initial value problems defined by ordinary differential equations are proposed. They are designed when the problem can be separated into three parts in such a way that each part is explicitly solvable. The methods are obtained by applying different optimization criteria and preserve geometric properties of the continuous problem by construction. Different numerical examples exhibit their improved performance with respect to previous splitting methods in the literature

    Uncertainty quantification for phase-space boundary integral models of ray propagation

    Get PDF
    Vibrational and acoustic energy distributions of wave fields in the high-frequency regime are often modeled using flow transport equations. This study concerns the case when the flow of rays or non-interacting particles is driven by an uncertain force or velocity field and the dynamics are determined only up to a degree of uncertainty. A boundary integral equation description of wave energy flow along uncertain trajectories in finite two-dimensional domains is presented, which is based on the truncated normal distribution, and interpolates between a deterministic and a completely random description of the trajectory propagation. The properties of the Gaussian probability density function appearing in the model are applied to derive expressions for the variance of a propagated initial Gaussian density in the weak noise case. Numerical experiments are performed to illustrate these findings and to study the properties of the stationary density, which is obtained in the limit of infinitely many reflections at the boundary
    • …
    corecore