47 research outputs found

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    The traveling salesman problem on cubic and subcubic graphs

    Get PDF
    We study the traveling salesman problem (TSP) on the metric completion of cubic and subcubic graphs, which is known to be NP-hard. The problem is of interest because of its relation to the famous 4/3-conjecture for metric TSP, which says that the integrality gap, i.e., the worst case ratio between the optimal value of a TSP instance and that of its linear programming relaxation (the subtour elimination relaxation), is 4/3. We present the first algorithm for cubic graphs with approximation ratio 4/3. The proof uses polyhedral techniques in a surprising way, which is of independent interest. In fact we prove constructively that for any cubic graph on TeX vertices a tour of length TeX exists, which also implies the 4/3-conjecture, as an upper bound, for this class of graph-TSP. Recently, Mömke and Svensson presented an algorithm that gives a 1.461-approximation for graph-TSP on general graphs and as a side result a 4/3-approximation algorithm for this problem on subcubic graphs, also settling the 4/3-conjecture for this class of graph-TSP. The algorithm by Mömke and Svensson is initially randomized but the authors remark that derandomization is trivial. We will present a different way to derandomize their algorithm which leads to a faster running time. All of the latter also works for multigraphs

    Approximation Hardness of Graphic TSP on Cubic Graphs

    Get PDF
    We prove explicit approximation hardness results for the Graphic TSP on cubic and subcubic graphs as well as the new inapproximability bounds for the corresponding instances of the (1,2)-TSP. The proof technique uses new modular constructions of simulating gadgets for the restricted cubic and subcubic instances. The modular constructions used in the paper could be also of independent interest

    Eight-Fifth Approximation for TSP Paths

    Full text link
    We prove the approximation ratio 8/5 for the metric {s,t}\{s,t\}-path-TSP problem, and more generally for shortest connected TT-joins. The algorithm that achieves this ratio is the simple "Best of Many" version of Christofides' algorithm (1976), suggested by An, Kleinberg and Shmoys (2012), which consists in determining the best Christofides {s,t}\{s,t\}-tour out of those constructed from a family \Fscr_{>0} of trees having a convex combination dominated by an optimal solution xx^* of the fractional relaxation. They give the approximation guarantee 5+12\frac{\sqrt{5}+1}{2} for such an {s,t}\{s,t\}-tour, which is the first improvement after the 5/3 guarantee of Hoogeveen's Christofides type algorithm (1991). Cheriyan, Friggstad and Gao (2012) extended this result to a 13/8-approximation of shortest connected TT-joins, for T4|T|\ge 4. The ratio 8/5 is proved by simplifying and improving the approach of An, Kleinberg and Shmoys that consists in completing x/2x^*/2 in order to dominate the cost of "parity correction" for spanning trees. We partition the edge-set of each spanning tree in \Fscr_{>0} into an {s,t}\{s,t\}-path (or more generally, into a TT-join) and its complement, which induces a decomposition of xx^*. This decomposition can be refined and then efficiently used to complete x/2x^*/2 without using linear programming or particular properties of TT, but by adding to each cut deficient for x/2x^*/2 an individually tailored explicitly given vector, inherent in xx^*. A simple example shows that the Best of Many Christofides algorithm may not find a shorter {s,t}\{s,t\}-tour than 3/2 times the incidentally common optima of the problem and of its fractional relaxation.Comment: 15 pages, corrected typos in citations, minor change

    Approximation hardness of Travelling Salesman via weighted amplifiers

    Get PDF
    The expander graph constructions and their variants are the main tool used in gap preserving reductions to prove approximation lower bounds of combinatorial optimisation problems. In this paper we introduce the weighted amplifiers and weighted low occurrence of Constraint Satisfaction problems as intermediate steps in the NP-hard gap reductions. Allowing the weights in intermediate problems is rather natural for the edge-weighted problems as Travelling Salesman or Steiner Tree. We demonstrate the technique for Travelling Salesman and use the parametrised weighted amplifiers in the gap reductions to allow more flexibility in fine-tuning their expanding parameters. The purpose of this paper is to point out effectiveness of these ideas, rather than to optimise the expander’s parameters. Nevertheless, we show that already slight improvement of known expander values modestly improve the current best approximation hardness value for TSP from 123/122 ([9]) to 117/116 . This provides a new motivation for study of expanding properties of random graphs in order to improve approximation lower bounds of TSP and other edge-weighted optimisation problems
    corecore