9 research outputs found

    Geodesics in Heat

    Full text link
    We introduce the heat method for computing the shortest geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The method represents a significant breakthrough in the practical computation of distance on a wide variety of geometric domains, since the resulting linear systems can be prefactored once and subsequently solved in near-linear time. In practice, distance can be updated via the heat method an order of magnitude faster than with state-of-the-art methods while maintaining a comparable level of accuracy. We provide numerical evidence that the method converges to the exact geodesic distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where more regularity is required

    Final Technical Report for "Feature Extraction, Characterization, and Visualization for Protein Interaction via Geometric and Topological Methods"

    Full text link
    Shape analysis plays an important role in many applications. In particular, in molecular biology, analyzing molecular shapes is essential to the fundamental problem of understanding how molecules interact. This project aims at developing efficient and effective algorithms to characterize and analyze molecular structures using geometric and topological methods. Two main components of this project are (1) developing novel molecular shape descriptors; and (2) identifying and representing meaningful features based on those descriptors. The project also produces accompanying (visualization) software. Results from this project (09/2006â10/2009) include the following publications. We have also set up web-servers for the software developed in this period, so that our new methods are accessible to a broader scientific community. The web sites are given below as well. In this final technical report, we first list publications and software resulted from this project. We then briefly explain the research conducted and main accomplishments during the period of this project

    An interactive analysis of harmonic and diffusion equations on discrete 3D shapes

    Get PDF
    AbstractRecent results in geometry processing have shown that shape segmentation, comparison, and analysis can be successfully addressed through the spectral properties of the Laplace–Beltrami operator, which is involved in the harmonic equation, the Laplacian eigenproblem, the heat diffusion equation, and the definition of spectral distances, such as the bi-harmonic, commute time, and diffusion distances. In this paper, we study the discretization and the main properties of the solutions to these equations on 3D surfaces and their applications to shape analysis. Among the main factors that influence their computation, as well as the corresponding distances, we focus our attention on the choice of different Laplacian matrices, initial boundary conditions, and input shapes. These degrees of freedom motivate our choice to address this study through the executable paper, which allows the user to perform a large set of experiments and select his/her own parameters. Finally, we represent these distances in a unified way and provide a simple procedure to generate new distances on 3D shapes

    Ridge-Valley Graphs: Combinatorial Ridge Detection Using Jacobi Sets

    Get PDF

    3D Shape Registration Using Spectral Graph Embedding and Probabilistic Matching

    Get PDF
    International audienceIn this book chapter we address the problem of 3D shape registration and we propose a novel technique based on spectral graph theory and probabilistic matching. Recent advancement in shape acquisition technology has led to the capture of large amounts of 3D data. Existing real-time multi-camera 3D acquisition methods provide a frame-wise reliable visual-hull or mesh representations for real 3D animation sequences The task of 3D shape analysis involves tracking, recognition, registration, etc. Analyzing 3D data in a single framework is still a challenging task considering the large variability of the data gathered with different acquisition devices. 3D shape registration is one such challenging shape analysis task. The main contribution of this chapter is to extend the spectral graph matching methods to very large graphs by combining spectral graph matching with Laplacian embedding. Since the embedded representation of a graph is obtained by dimensionality reduction we claim that the existing spectral-based methods are not easily applicable. We discuss solutions for the exact and inexact graph isomorphism problems and recall the main spectral properties of the combinatorial graph Laplacian; We provide a novel analysis of the commute-time embedding that allows us to interpret the latter in terms of the PCA of a graph, and to select the appropriate dimension of the associated embedded metric space; We derive a unit hyper-sphere normalization for the commute-time embedding that allows us to register two shapes with different samplings; We propose a novel method to find the eigenvalue-eigenvector ordering and the eigenvector sign using the eigensignature (histogram) which is invariant to the isometric shape deformations and fits well in the spectral graph matching framework, and we present a probabilistic shape matching formulation using an expectation maximization point registration algorithm which alternates between aligning the eigenbases and finding a vertex-to-vertex assignment

    Helmholtzian Eigenmap: Topological feature discovery & edge flow learning from point cloud data

    Full text link
    The manifold Helmholtzian (1-Laplacian) operator Δ1\Delta_1 elegantly generalizes the Laplace-Beltrami operator to vector fields on a manifold M\mathcal M. In this work, we propose the estimation of the manifold Helmholtzian from point cloud data by a weighted 1-Laplacian L1\mathbf{\mathcal L}_1. While higher order Laplacians ave been introduced and studied, this work is the first to present a graph Helmholtzian constructed from a simplicial complex as an estimator for the continuous operator in a non-parametric setting. Equipped with the geometric and topological information about M\mathcal M, the Helmholtzian is a useful tool for the analysis of flows and vector fields on M\mathcal M via the Helmholtz-Hodge theorem. In addition, the L1\mathbf{\mathcal L}_1 allows the smoothing, prediction, and feature extraction of the flows. We demonstrate these possibilities on substantial sets of synthetic and real point cloud datasets with non-trivial topological structures; and provide theoretical results on the limit of L1\mathbf{\mathcal L}_1 to Δ1\Delta_1

    Doctor of Philosophy

    Get PDF
    dissertationShape analysis is a well-established tool for processing surfaces. It is often a first step in performing tasks such as segmentation, symmetry detection, and finding correspondences between shapes. Shape analysis is traditionally employed on well-sampled surfaces where the geometry and topology is precisely known. When the form of the surface is that of a point cloud containing nonuniform sampling, noise, and incomplete measurements, traditional shape analysis methods perform poorly. Although one may first perform reconstruction on such a point cloud prior to performing shape analysis, if the geometry and topology is far from the true surface, then this can have an adverse impact on the subsequent analysis. Furthermore, for triangulated surfaces containing noise, thin sheets, and poorly shaped triangles, existing shape analysis methods can be highly unstable. This thesis explores methods of shape analysis applied directly to such defect-laden shapes. We first study the problem of surface reconstruction, in order to obtain a better understanding of the types of point clouds for which reconstruction methods contain difficulties. To this end, we have devised a benchmark for surface reconstruction, establishing a standard for measuring error in reconstruction. We then develop a new method for consistently orienting normals of such challenging point clouds by using a collection of harmonic functions, intrinsically defined on the point cloud. Next, we develop a new shape analysis tool which is tolerant to imperfections, by constructing distances directly on the point cloud defined as the likelihood of two points belonging to a mutually common medial ball, and apply this for segmentation and reconstruction. We extend this distance measure to define a diffusion process on the point cloud, tolerant to missing data, which is used for the purposes of matching incomplete shapes undergoing a nonrigid deformation. Lastly, we have developed an intrinsic method for multiresolution remeshing of a poor-quality triangulated surface via spectral bisection
    corecore