252 research outputs found

    Algorithms and complexity for approximately counting hypergraph colourings and related problems

    Get PDF
    The past decade has witnessed advancements in designing efficient algorithms for approximating the number of solutions to constraint satisfaction problems (CSPs), especially in the local lemma regime. However, the phase transition for the computational tractability is not known. This thesis is dedicated to the prototypical problem of this kind of CSPs, the hypergraph colouring. Parameterised by the number of colours q, the arity of each hyperedge k, and the vertex maximum degree Δ, this problem falls into the regime of LovĂĄsz local lemma when Δ â‰Č qᔏ. In prior, however, fast approximate counting algorithms exist when Δ â‰Č qᔏ/Âł, and there is no known inapproximability result. In pursuit of this, our contribution is two-folded, stated as follows. ‱ When q, k ≄ 4 are evens and Δ ≄ 5·qᔏ/ÂČ, approximating the number of hypergraph colourings is NP-hard. ‱ When the input hypergraph is linear and Δ â‰Č qᔏ/ÂČ, a fast approximate counting algorithm does exist

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Efficient Symbolic Reasoning for Neural-Network Verification

    Full text link
    The neural network has become an integral part of modern software systems. However, they still suffer from various problems, in particular, vulnerability to adversarial attacks. In this work, we present a novel program reasoning framework for neural-network verification, which we refer to as symbolic reasoning. The key components of our framework are the use of the symbolic domain and the quadratic relation. The symbolic domain has very flexible semantics, and the quadratic relation is quite expressive. They allow us to encode many verification problems for neural networks as quadratic programs. Our scheme then relaxes the quadratic programs to semidefinite programs, which can be efficiently solved. This framework allows us to verify various neural-network properties under different scenarios, especially those that appear challenging for non-symbolic domains. Moreover, it introduces new representations and perspectives for the verification tasks. We believe that our framework can bring new theoretical insights and practical tools to verification problems for neural networks

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Parameterized Graph Modification Beyond the Natural Parameter

    Get PDF

    Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

    Get PDF

    Hardness of Approximating Bounded-Degree Max 2-CSP and Independent Set on k-Claw-Free Graphs

    Full text link
    We consider the question of approximating Max 2-CSP where each variable appears in at most dd constraints (but with possibly arbitrarily large alphabet). There is a simple (d+12)(\frac{d+1}{2})-approximation algorithm for the problem. We prove the following results for any sufficiently large dd: - Assuming the Unique Games Conjecture (UGC), it is NP-hard (under randomized reduction) to approximate this problem to within a factor of (d2−o(d))\left(\frac{d}{2} - o(d)\right). - It is NP-hard (under randomized reduction) to approximate the problem to within a factor of (d3−o(d))\left(\frac{d}{3} - o(d)\right). Thanks to a known connection [Dvorak et al., Algorithmica 2023], we establish the following hardness results for approximating Maximum Independent Set on kk-claw-free graphs: - Assuming the Unique Games Conjecture (UGC), it is NP-hard (under randomized reduction) to approximate this problem to within a factor of (k4−o(k))\left(\frac{k}{4} - o(k)\right). - It is NP-hard (under randomized reduction) to approximate the problem to within a factor of (k3+22−o(k))≄(k5.829−o(k))\left(\frac{k}{3 + 2\sqrt{2}} - o(k)\right) \geq \left(\frac{k}{5.829} - o(k)\right). In comparison, known approximation algorithms achieve (k2−o(k))\left(\frac{k}{2} - o(k)\right)-approximation in polynomial time [Neuwohner, STACS 2021; Thiery and Ward, SODA 2023] and (k3+o(k))(\frac{k}{3} + o(k))-approximation in quasi-polynomial time [Cygan et al., SODA 2013]

    Experimenting with Constraint Programming Techniques in Artificial Intelligence: Automated System Design and Verification of Neural Networks

    Get PDF
    This thesis focuses on the application of Constraint Satisfaction and Optimization techniques in two Artificial Intelligence (AI) domains: automated design of elevator systems and verification of Neural Networks (NNs). The three main areas of interest for my work are (i) the languages for defining the constraints for the systems, (ii) the algorithms and encodings that enable solving the problems considered and (iii) the tools that implement such algorithms. Given the expressivity of the domain description languages and the availability of effective tools, several problems in diverse application fields have been solved successfully using constraint satisfaction techniques. The two case studies herewith presented are no exception, even if they entail different challenges in the adoption of such techniques. Automated design of elevator systems not only requires encoding of feasibility (hard) constraints, but should also take into account design preferences, which can be expressed in terms of cost functions whose optimal or near-optimal value characterizes “good” design choices versus “poor” ones. Verification of NNs (and other machine-learned implements) requires solving large-scale constraint problems which may become the main bottlenecks in the overall verification procedure. This thesis proposes some ideas for tackling such challenges, including encoding techniques for automated design problems and new algorithms for handling the optimization problems arising from verification of NNs. The proposed algorithms and techniques are evaluated experimentally by developing tools that are made available to the research community for further evaluation and improvement
    • 

    corecore