3,907 research outputs found

    Transient Reward Approximation for Continuous-Time Markov Chains

    Full text link
    We are interested in the analysis of very large continuous-time Markov chains (CTMCs) with many distinct rates. Such models arise naturally in the context of reliability analysis, e.g., of computer network performability analysis, of power grids, of computer virus vulnerability, and in the study of crowd dynamics. We use abstraction techniques together with novel algorithms for the computation of bounds on the expected final and accumulated rewards in continuous-time Markov decision processes (CTMDPs). These ingredients are combined in a partly symbolic and partly explicit (symblicit) analysis approach. In particular, we circumvent the use of multi-terminal decision diagrams, because the latter do not work well if facing a large number of different rates. We demonstrate the practical applicability and efficiency of the approach on two case studies.Comment: Accepted for publication in IEEE Transactions on Reliabilit

    A space communications study Final report, 15 Sep. 1966 - 15 Sep. 1967

    Get PDF
    Investigation of signal to noise ratios and signal transmission efficiency for space communication system

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Permutation Trellis Coded Multi-level FSK Signaling to Mitigate Primary User Interference in Cognitive Radio Networks

    Full text link
    We employ Permutation Trellis Code (PTC) based multi-level Frequency Shift Keying signaling to mitigate the impact of Primary Users (PUs) on the performance of Secondary Users (SUs) in Cognitive Radio Networks (CRNs). The PUs are assumed to be dynamic in that they appear intermittently and stay active for an unknown duration. Our approach is based on the use of PTC combined with multi-level FSK modulation so that an SU can improve its data rate by increasing its transmission bandwidth while operating at low power and not creating destructive interference for PUs. We evaluate system performance by obtaining an approximation for the actual Bit Error Rate (BER) using properties of the Viterbi decoder and carry out a thorough performance analysis in terms of BER and throughput. The results show that the proposed coded system achieves i) robustness by ensuring that SUs have stable throughput in the presence of heavy PU interference and ii) improved resiliency of SU links to interference in the presence of multiple dynamic PUs.Comment: 30 pages, 12 figure

    Doctor of Philosophy

    Get PDF
    dissertationOver the past few decades, synthetic biology has generated great interest to biologists and engineers alike. Synthetic biology combines the research of biology with the engineering principles of standards, abstraction, and automated construction with the ultimate goal of being able to design and build useful biological systems. To realize this goal, researchers are actively working on better ways to model and analyze synthetic genetic circuits, groupings of genes that influence the expression of each other through the use of proteins. When designing and analyzing genetic circuits, researchers are often interested in building circuits that exhibit a particular behavior. Usually, this involves simulating their models to produce some time series data and analyzing this data to discern whether or not the circuit behaves appropriately. This method becomes less attractive as circuits grow in complexity because it becomes very time consuming to generate a sufficient amount of runs for analysis. In addition, trying to select representative runs out of a large data set is tedious and error-prone thereby motivating methods of automating this analysis. This has led to the need for design space exploration techniques that allow synthetic biologists to easily explore the effect of varying parameters and efficiently consider alternative designs of their systems. This dissertation attempts to address this need by proposing new analysis and verification techniques for synthetic genetic circuits. In particular, it applies formal methods such as model checking techniques to models of genetic circuits in order to ensure that they behave correctly and are as robust as possible for a variety of different inputs and/or parameter settings. However, model checking stochastic systems is not as simple as model checking deterministic systems where it is always known what the next state of the system will be at any given step. Stochastic systems can exhibit a variety of different behaviors that are chosen randomly with different probabilities at each time step. Therefore, model checking a stochastic system involves calculating the probability that the system will exhibit a desired behavior. Although it is often more difficult to work with the probabilities that stochastic systems introduce, stochastic systems and the models that represent them are becoming commonplace in many disciplines including electronic circuit design where as parts are being made smaller and smaller, they are becoming less reliable. In addition to stochastic model checking, this dissertation proposes a new incremental stochastic simulation algorithm (iSSA) based on Gillespie's stochastic simulation algorithm (SSA) that is capable of presenting a researcher with a simulation trace of the typical behavior of the system. Before the development of this algorithm, discerning this information was extremely error-prone as it involved performing many simulations and attempting to wade through the massive amounts of data. This algorithm greatly aids researchers in designing genetic circuits as it efficiently shows the researcher the most likely behavior of the circuit. Both the iSSA and stochastic model checking can be used in concert to give a researcher the likelihood that the system will exhibit its most typical behavior. Once the typical behavior is known, properties for nontypical behaviors can be constructed and their likelihoods can also be computed. This methodology is applied to several genetic circuits leading to new understanding of the effects of various parameters on the behavior of these circuits
    • …
    corecore