396 research outputs found

    Approximate Polytope Membership Queries

    Get PDF
    International audienceIn the polytope membership problem, a convex polytope K in R d is given, and the objective is to preprocess K into a data structure so that, given any query point q ∈ R d , it is possible to determine efficiently whether q ∈ K. We consider this problem in an approximate setting. Given an approximation parameter ε, the query can be answered either way if the distance from q to K's boundary is at most ε times K's diameter. We assume that the dimension d is fixed, and K is presented as the intersection of n halfspaces. Previous solutions to approximate polytope membership were based on straightforward applications of classic polytope approximation techniques by Dudley (1974) and Bentley et al. (1982). The former is optimal in the worst-case with respect to space, and the latter is optimal with respect to query time. We present four main results. First, we show how to combine the two above techniques to obtain a simple space-time trade-off. Second, we present an algorithm that dramatically improves this trade-off. In particular, for any constant α ≥ 4, this data structure achieves query time roughly O 1/ε (d−1)/α and space roughly O 1/ε (d−1)(1−Ω(log α)/α). We do not know whether this space bound is tight, but our third result shows that there is a convex body such that our algorithm achieves a space of at least Ω 1/ε (d−1)(1−O(√ α)/α. Our fourth result shows that it is possible to reduce approximate Euclidean nearest neighbor searching to approximate polytope membership queries. Combined with the above results, this provides significant improvements to the best known space-time trade-offs for approximate nearest neighbor searching in R d. For example, we show that it is possible to achieve a query time of roughly O(log n + 1/ε d/4) with space roughly O(n/ε d/4), thus reducing by half the exponent in the space bound

    Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries

    Full text link
    Suppose that an mm-simplex is partitioned into nn convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ϵ\epsilon from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant mm uses poly(n,log(1ϵ))poly(n, \log \left( \frac{1}{\epsilon} \right)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant nn uses poly(m,log(1ϵ))poly(m, \log \left( \frac{1}{\epsilon} \right)) queries. We show via Kakutani's fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in Theorem 6, adds footnotes with additional comments and fixes typo

    On the expected diameter, width, and complexity of a stochastic convex-hull

    Full text link
    We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of nn points in Rd\mathbb{R}^d each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic 1.633-approximation algorithm with a time complexity polynomial in both nn and dd. For width, two approximation algorithms are provided: a deterministic O(1)O(1)-approximation running in O(nd+1logn)O(n^{d+1} \log n) time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact O(nd)O(n^d)-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest

    Dispersion of Mass and the Complexity of Randomized Geometric Algorithms

    Get PDF
    How much can randomness help computation? Motivated by this general question and by volume computation, one of the few instances where randomness provably helps, we analyze a notion of dispersion and connect it to asymptotic convex geometry. We obtain a nearly quadratic lower bound on the complexity of randomized volume algorithms for convex bodies in R^n (the current best algorithm has complexity roughly n^4, conjectured to be n^3). Our main tools, dispersion of random determinants and dispersion of the length of a random point from a convex body, are of independent interest and applicable more generally; in particular, the latter is closely related to the variance hypothesis from convex geometry. This geometric dispersion also leads to lower bounds for matrix problems and property testing.Comment: Full version of L. Rademacher, S. Vempala: Dispersion of Mass and the Complexity of Randomized Geometric Algorithms. Proc. 47th IEEE Annual Symp. on Found. of Comp. Sci. (2006). A version of it to appear in Advances in Mathematic

    Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

    Get PDF
    Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time

    Economical Delone Sets for Approximating Convex Bodies

    Get PDF
    Convex bodies are ubiquitous in computational geometry and optimization theory. The high combinatorial complexity of multidimensional convex polytopes has motivated the development of algorithms and data structures for approximate representations. This paper demonstrates an intriguing connection between convex approximation and the classical concept of Delone sets from the theory of metric spaces. It shows that with the help of a classical structure from convexity theory, called a Macbeath region, it is possible to construct an epsilon-approximation of any convex body as the union of O(1/epsilon^{(d-1)/2}) ellipsoids, where the center points of these ellipsoids form a Delone set in the Hilbert metric associated with the convex body. Furthermore, a hierarchy of such approximations yields a data structure that answers epsilon-approximate polytope membership queries in O(log (1/epsilon)) time. This matches the best asymptotic results for this problem, by a data structure that both is simpler and arguably more elegant

    The Complexity of Partial Function Extension for Coverage Functions

    Get PDF
    Coverage functions are an important subclass of submodular functions, finding applications in machine learning, game theory, social networks, and facility location. We study the complexity of partial function extension to coverage functions. That is, given a partial function consisting of a family of subsets of [m] and a value at each point, does there exist a coverage function defined on all subsets of [m] that extends this partial function? Partial function extension is previously studied for other function classes, including boolean functions and convex functions, and is useful in many fields, such as obtaining bounds on learning these function classes. We show that determining extendibility of a partial function to a coverage function is NP-complete, establishing in the process that there is a polynomial-sized certificate of extendibility. The hardness also gives us a lower bound for learning coverage functions. We then study two natural notions of approximate extension, to account for errors in the data set. The two notions correspond roughly to multiplicative point-wise approximation and additive L_1 approximation. We show upper and lower bounds for both notions of approximation. In the second case we obtain nearly tight bounds
    corecore